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Harmonic and power balance tools for tapping-mode atomic
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The atomic force microscop@\FM) is a powerful tool for investigating surfaces at atomic scales.
Harmonic balance and power balance techniques are introduced to analyze the tapping-mode
dynamics of the atomic force microscope. The harmonic balance perspective explains observations
hitherto unexplained in the AFM literature. A nonconservative model for the cantilever—sample
interaction is developed. The energy dissipation in the sample is studied and the resulting power
balance equations combined with the harmonic balance equations are used to estimate the model
parameters. Experimental results confirm that the harmonic and power balance tools can be used
effectively to predict the behavior of the tapping cantilever. 2@01 American Institute of Physics.
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I. INTRODUCTION ity, the numerical models preclude identification of model

Although dynamic modes have been known and use(ﬁ)a.rameters in a §traightforw§1rd manner. Indeeq, the ;et of
since the beginning of the field of atomic force microscdpy, €Xisting tools to identify a given model of the interaction
it is only within the last few years that a better understandind™m experimental data is inadequate. Another void in this
has developed of the complicated dynamics occurring irffea is a systematic methodology for the purposes of identi-
these modes. For several years, a linear approximation wékation (some recent studies in this direction are pursued in
used to explain the physics of noncontact imaging. In thisRef. 4. Of particular interest is a set of common tools that
approximation, the cantilever amplitude was assumed to bean be applied over a wide range of tapping-mode AFM
small enough so that the tip—sample gradient could beapplications. Such tools are particularly relevant because of
viewed as altering the spring constant of the cantiledlr  the diverse variety of materials and properties that the
higher derivatives ignorgd Although this model explains tapping-mode AFM is used for imaging.
some of the basic physics associated with dynamic modes, A surprising property of the tapping-mode dynamics is
except for long-ranged forcetfor example, electric and the near sinusoidal nature of the steady-state cantilever—tip
magnetig the approximation fails because the tip—sampleggilations. Like experimental data, this feature is predicted
potential changes appreciably over angsiscas the tip and  py the complex numerical models of the nonlinear tip—
Samplg get very CIOS? orcome |_nto contact. . . sample interactiofisee Ref. B Also, this feature is found to

With the mtrgducuon Qf tgpplng—n_]ode at_omlc force_ M- he a robust property that is present in most applications of
croscope(AFM),” the oscillating cantilever tip comes into tapping-mode AFM. Many studies are based on this behavior
intermittent contact with the sample and a simple linear '

model does not suffice. A couple of years later, the resolu9f the cantilevex(for example, see Refs. 4 anil $n spite of

tion of single defects using noncontact AFM in ultrahigh its importance and prevalence, little insight is present in the

vacuum spurred significant development in that field. In thiditrature on this behavior of the cantilever. Itis clear that an
mode, the cantilever oscillation is at least several angetro effective identification framework should explain this feature
and the tip comes within Angstroms of the sample surface2nd exploit it for its purposes.
Thus again a simple linear model does not explain the dy- In this article we provide a feedback perspective of the
namics. The rash of activity in both of these AFM fields tapping-mode dynamics. Based on this we develop a set of
prompted considerable theoretical work to explain the nonprinciples that can be used for identifying the tip—sample
linear dynamics. interaction. These general tools can be utilized for a wide
Initially, much of the research on tapping-mode AFM range of tapping-mode applications. One of the fallouts of
centered around numerically solving nonlinear differentialthe study is the explanation of the near sinusoidal steady-
equations that include terms to account for the tip—samplgtate behavior of the cantilever. We also develop a simple
interaction (see, for example, Ref.)3These models were model of the tapping-mode dynamics and apply the devel-
successful in capturing many of the intricate details presengped identification tools to estimate the parameters of the
in most experimental dataHowever due to their complex- proposed model. It is shown that the identification paradigm
developed is powerful and that a simple model can match
dElectronic mail: murti@iastate.edu experimental data remarkably well. The tools also elucidate

0021-8979/2001/89(11)/6473/8/$18.00 6473 © 2001 American Institute of Physics

Downloaded 21 May 2003 to 133.28.19.11. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



6474 J. Appl. Phys., Vol. 89, No. 11, 1 June 2001 Sebastian et al.

Laser gt .,

t
photodiode —00— G p(»)

FIG. 2. Block diagram depicting the cantilever dynamiGsis any linear
time-invariant model of the cantilever agds the drive force. The block
models the sample.

sample distancéand possibly velocityis fed back to the
systemG (which models the cantilevethrough the function
h. Note that we are viewing the tapping-mode dynamics as
FIG. 1. Experimental setup used. The sample is positioned using a piez%m mterconqecﬂon of two SyStemS’_the syst@mwhich mod-
tube. The cantilever is oscillated using a sinusoidal voltage applied to th&!S the cantilever and the blo¢ckwhich models the sample.
dither piezo. The displacement of the cantilever is recorded by a laser which ~ The harmonic balance equations are derived findy
reflects off the cantilever surface and is incident into a split photodiodeyere first introduced by the authors in Ref. B is shown in
Sensor. Ref. 9 that under unrestrictive assumptions, the tapping-
mode dynamics admit a periodic solution with the same pe-
the limitations of tapping-mode AFM in identifying the tip— fiod T as that of the sinusoidal forcingy We denote such a
sample potential. periodic solution byp, (t). Because the nonlinear force on
This article is organized as follows. In Sec. Il we de- the cantilever due to the sample is assumed to be time in-
velop the analytical principles for identification purposes. Invariant it follows thath(p, ,p,) is also periodic with period
Sec. Il we present the model of the cantilever and the tip-T. Thus p, , h(p, .p,) and g(t) all admit expansions of
sample interaction used in this article. We then specialize thg,e ~ form (=30 .pe el hlp, (1), P, (t)]
identification tools for this model. In Sec. IV we present = | elket and g(t)=="_ . ge*el, where x =Xy

experimental methods developed and in Sec. V we give re;H-)(|;i are the exponential Fourier coefficients ofand w
sults and discussion. =27/T.

Note that for the periodic solution Fig. 2 can be viewed
Il. ANALYSIS as illustrated in Fig. 3. Since the cantilever modlis a

In the tapping mode, the cantilever in the AFM is forced linear time-invariant system, it follows from the Fourier se-
sinusoidally by a dither piezo attached to the substrate thdtes properties of linear time-invariant systems that the input
forms the support of the cantilevésee Fig. 1 The cantile- and output harmonics of the system are related by
ver is thus subjected to the drive force through the ditheig(jkw)(—g,+h,)+p,=0, forall k=0,=1,+2,... .
piezo and the tip—sample interaction force. In addition to (1)
these forces the cantilever motion is influenced by the damp-

ing force due to the ambient environment and the intrinsicri%léaetlgnégmﬁsg_vﬁ tfwreozgjriﬁetcsr eréﬁg%gﬁfefgggzgpégg'
damping caused by the bending of the cantilever beam. We y ' y

N . . . scribed aboveis linear time invariant and the tip—sample
term these dissipative forces collectively as the air dampmg%ln o . ) .
force. teraction is time invariant then the Fourier coefficiegts

We assume that a linear time-invariant modebf the i at?]d P« of t(;].e forg!lt’lhgg(t)t, t|p—s;r?ri)let!nte(jrgctllon forcet
cantilever suffices to predict its behavior. Thads a linear on the periodic orbith[p, (t)] an € tip displacemen

time-invariant operator which takes the sample and the drivg*l(Jgt,io;esspi(\e/(:LVEly’E?(i;/e to obey the harmonic balance
force as its input and provides the tip displacement as it§9 n ordegr o ve%fy the. harmonic balance equations. data
output. Note thatG includes the effect of the air damping fro q '

force. Also note that efficient techniques exist in the Iitera—sarr;1 Iieifr.ltjravt\:ﬁ(r)i \lIvaeercei ;vnr:elrg sgv‘rf‘rr;fee?i zggqelfe f%rt;:gg_
ture to obtain a precise model 6f(see, for example, Refs. 6 . P . . ployed. P P
and 7. tion model given in Ref. 3 captures most of the features seen

The tip—sample interaction force is a function of the tip
displacement and possibly of the tip velocity. llebe the
function which maps the tip—sample separatprand its g(t)' l?(t) G L)(t)
velocity p to the force on the cantilever due to the sample. A : I
block diagram depicting the dynamics is given in Fig. 2,
Where,G IS an_y linear tlme_mva”_am m(,)del of the _Cantllev,er FIG. 3. On the periodic orbit Fig. 2 can be viewed as illustrated above
andg is the drive force. The nonlinear _t|p—sample_|nteracthnwhereg(t) is the sinusoidal forcing ang, () is a periodic solution the
appears as a feedback block. In this perspective the tiptapping-mode dynamics admits.
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x10” Fourier coefficients of the forcing, are known and the Fou-
rier coefficienty, of the cantilever oscillations can be found
by performing a Fourier analysis on the measured

I ©»
[ ]
T
L

()]
é 2r ] cantilever—tip oscillations. Equatiail) can then be used to
é"-s‘ ] evaluateh, . Indeed Eq(1) can be rewritten as

.k _

05| 7 Pk

% 500 7000 1500 2000 2500 3000 hk: 9k~ G(] kw) ! (2)

g1 . . . . . where hy are the unknowns and the right-hand side of the

above equation can be obtained from experimental data.
Note thath, are the Fourier coefficients @i p, (t)] where

] p. (t) is the steady-state cantilever oscillation. The steady-
1 state periodic orbit of the cantilever depends on the forcing
J L ] frequencyw, the magnitude of the forcing, and the tip—
sample offset. Thush,, g, andp, are functions otv, y and
500

% Erequency in kHz 200 %% ], By varying each one of these parameters we can evaluate
h(w,y,l) for different values ofw,y and|. The Fourier

coefficients h, can be processed to provide information
about the sample properties that can be used to identify vari-
ous parameters in a given model of the interaction between
the tip and the sample.

Note that any time-invariant model of the tip—sample
interaction has to satisfy E@2) if we account for any noise
in the detection op(t). An approach to identifying the tip—
sample interaction is to assume a parametric model of the
tip—sample interaction which takes in as input the tip dis-
placement and velocity and provides the force on the canti-
lever due to the sample as its output. E{®) denote such
a model where is a finite set of parameters. Thus we have
h[p(t)]=H(®)[p(t)]. The corresponding minimization

Magnitude

Gain in dB

problem is
300 . . " ' I *
(] 500 1000 1500 2000 2500 3000
Frequency in kHz mmkEO |H—hy 2 (3
0 K=

FIG. 4. Magnitude plots of the Fourier transforms mft) and u(t) are
shown first. The ratios betweerip, (jkw)| and |u,(jk)| for k  whereH, are the Fourier coefficients ¢1(®)[p(t)]. Note
=1,..., 10 are then compar_ed with_ the corresponc_jing points on the fregnat the tractability of the problem, E¢3) depends on the
quency response plot @ thus illustrating the harmonic balance. parametric modeH and thus care should be taken so that the
resulting minimization problem is solvable. We will follow
_ ) ) ) this approach for identification in Sec. Ill.
in e_xperl_mental d_ata. The simulation data used corr_esp_ond 0 The feedback perspective of Fig. 2 provides significant
a sinusoidal forcing at a frequency ef=300 kHz Wh.ICh IS insights which we present now. In most tapping-mode appli-
the same as the resonant frequency of the cantilever. Lelyions the forcing frequency is close to the resonant fre-
u(t)=g(t)—h(p, ,p,x). The magnitudes of the Fourier quency of the cantilever. If the forcing frequency is selected
transforms of the simulation data, (t) andu(t) given by  to be the resonant frequency, then the thermal noise response
Ip, (jw)| and|u, (jw)|, respectively, are shown in Fig. 4. plots of a typical cantilever indicate thiG(jkw)|~0 for
Next the ratios betweerhﬁ*(jkw)| and |G*(jkw)| for k k=2,3,... (see Ref. B ThusG acts like a low pass filter
=1, ...,10 arecompared with the corresponding points on Which ensures that the higher frequency components get fil-
the frequency response plot 6f The remarkable agreement tered. It now follows immediately from Eq1) thatp,~0 if
between the two illustrates Eql). The only assumption |K|=2. Thus one can write
made for Eq(1) to be true is that the cantilever dynamics are _
linear time invariant and that the tip—sample interaction is P« (t)=acogwt+ )+ po, @
time invariant. Note that the assumption that the cantilevewherea=2|p,| andp,=|p;|e'?. Thus the filtering effect of
motion and hence tip—sample interaction are periodic is not ¢he cantilever transfer function results in a nearly sinusoidal
trivial one. We will address this further later in the article. orbit of the cantilever. This explains one of the essential
We will now utilize Eq.(1) to develop schemes for identify- features of tapping-mode AFM which is pivotal to its opera-
ing the tip—sample interaction. tions. Note that we have assumed tlaats a linear time-
Note that, in Eq(1), thermal noise response plots can beinvariant model of the cantilever. However, for the near sinu-
used to identifyG(jkw) (see Refs. 6 and)7In Eq. (1) the  soidal behavior of the steady-state oscillations the essential
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ingredient is only the low pass property of the cantilever. $b(t)
Note that this also indicates that the higher the quality factor

Q the more sinusoidal the resulting steady-state oscillations

will be. It is important to remember that this assumes the k LL_/[LL
cantilever motion to be periodirecluding, for example, p '—|—' ¢
cases where the cantilever hits the sample only every third L| m |

cycle). Such cases can occur. For example, the side bands
around the peak in Fig.(d) of Ref. 5 indicate nonperiodic
motion. However the power carried in the side bands is small F{(1)
compared to that in the central peak. The power carried in
the higher harmonics is quite small as well. Thus the hargG. 5. Model of the cantilevef is the force on the cantilever due to the
monic balance should work well on the first harmonic. sample and describes the displacement of the base of the cantilever.

A limitation of the tapping-mode AFM in identifying the
tip—sample interaction is also indicated by the above discus-
sion. Note that the cantilever tip oscillatidmwhich is the - . -
measured signatontains negligible information on the high p+2£wop+wgp-+h(p,p)=g(b), ©)
frequency content ofi[ p, (t)], because such information is wherewy= Vk/m, 2éwy=c/m andg(t)=kb(t)/m andh is
filtered out by the cantilever. Thus the tapping-mode AFMthe force due to the sample per unit mass that is assumed to
can be utilized to identify the tip—sample interaction only upbe dependent only on the position and velocity of the canti-
to the first harmonic oh[p, (t)]. lever tip. The cantilever model dynamics are described by

Now we introduce a power balance technique forFig. 5. Assuming the second-order model described by Eq.
tapping-mode AFM. This technique is based on the fact that (9) and that the sinusoidal nature of the tip displacement
at steady state the average rate at which energy is fed into thgven by Eq.(4) are true, the harmonic balance equatiths
cantilever must equal the average rate at which energy igeduce to
dissipated by the cantilever. The instantaneous power deliv-
ered by the driver is the force on the drivdy{,) times the
velocity of the driver as given by

ho— 9o+ w§Po=0, (10

a a
1 . hlr(a,qb,po)—glr+QEcos¢—2§wwozsm¢=0,
Pin=r7 Tarived (1). 5) (12)

imi i a a
Similarly P4 and P, are given by hli(a,¢,po)—gli+2§wwo§COS¢+Q§Sin¢>=0, (12)

1 :
Pg=—TaamPx (1), (6)  where Q=w3—w? Note that p;,=(a/2) cos¢ and py;
=(al2)sin¢. Also, for the second-order model of the canti-
lever given by Eq(9), G(jw)=1/(— 0’+|2fwwy+ ).

Let the dither forcing function be given by(t)
=aqy cost) (note thatay=y/ w%) and the steady-state sinu-
soidal orbit be given by, (t) =a cost+ ¢)+py, Wherea is
the amplitude of the cantilevek) is the phase difference

etweenp, (t) andb(t) andp, is the dc offset. Averaging
g. (5) over a complete cycle we obtai, to be

1 .
Ptzafimp*(t)a (7)

wheref gy is the damping force andi, is the tip—sample
interaction force, respectivel\r;,, P4 and P, are obtained
by averaging?;,, P4 andP; over one cycle of the cantilever
oscillation, respectively. The fact that energy is conserve
results in

-_— = = 1k
Pin=Pg+t Py 8 Pin=— 5 aadaw Sin(¢). (13

From knowledge of the tip motiop, (t) and the canti- S
lever modelG(jw) we can evaluat®,, andPy. Using Eq.  Similarly Py is given by
(8) we can evaluateP—t. As will be seen later, this forms lc ,,
another tool with which to identify the parameters of the  Par= 5 ja @”. (14)
tip—sample interaction.

From Eq.(8)

5 1 kaw
Il. CANTILEVER AND TIP—SAMPLE INTERACTION =" 2m Q
MODEL

(15

Qaysin(¢) +3)

a (1)0.

If the drive frequency is chosen to g, Eq.(15) reduces to
We now apply the harmonic and power balance tools to 1 kalw,
the tapping-mode dynamics assuming a model for the canti- Py,=— >m o
lever and a model for the tip—sample interaction. For most
applications the dynamical equation for the displacement oivhereay,=Qay is the resonance amplitude of the cantilever
the cantilever is well modeled by when not subjected to the sample influence with vy and

Qo

—sin(¢)+1

a

: (16)
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FIG. 6. Sketch of typical cantilever—sample force as a function of position.
It indicates long range attractive forces and short range strong repulsivs
forces.

k
Q=—

C(,l)o

1

=5z

Jkm

c

17

For a conservative systerRy, is equal to zero since there is
no dissipation in the sample. Thus E46) shows that the
plot of —sin¢ againsta/ag will have a slope of 1 for a
conservative systertsee Ref. 5 for more detajlsHence a
deviation from a slope of 1 is likely to indicate power dissi-
pation in the sample. In most experiments thaing Vs

alag plot is still linear and has a slope considerably less than

1 indicating significant energy dissipation.

A model for the nonlinear tip—sample interaction force
(denoted byh) is developed next. Experimental data have
indicated that a force curve of the form shown in Fig. 6
characterizes the force on the cantilever due to the samp
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strong repulsive forces. We assume a piecewise linear canti-
lever tip—sample force curve. The additional assumption that
the interaction force is also a function of the velocity of the
cantilever tip is made.

The model of the tapping-mode dynamics with the
piecewise linear interaction is described in Fig. 7. The nega-
tive spring accounts for long range attractive forces and the
positive spring accounts for the short range strong repulsive
forces. The dampers will account for the energy dissipation
in the sample. The variablewill characterize the tip—sample
separation. Specifically, we assume that

h(p,p)=0, if p=—I+d (18

wi(ptl—d)+cap, if—I<p<—(I—-d) (19

= wh(p+1)— wi(p+1—d)+cap+cpp,
if p<—1. (20

Whenp is periodic,h is periodic and the Fourier coefficients

hy and h; of the periodic functionh(p,p) when p(t)
=acost+ ¢)+p, are given by

if pp—a=—1+d

2
w
2(V1-s2—|sy|cos (|sy))),

ko

hO(a1 pO) = 0!

a

if —I<pg—a=<l+d

well. It indicates long range attractive forces and short range

$b(t)

S i
c
1, |
m
!
T d
L= mca 1 -m(\)z
moy me, =

T S

S

FIG. 7. Model with the piecewise linear cantilever—sample force interac-
tion. When the mass is displaced in the negative direction, first it will en-
counter the attractive forces modeled by a damper and a negative spring.
the displacement of the mass exceédswill encounter repulsive forces

modeled by a damper and a positive spring. The dampers account for the

energy dissipation due to sample interaction.

2 2
aw - aw;
= —2(V1-si—[sy|cos X(|se])) - —
™ a
X (V1-s5—|s,|cos *(|s,])), if po—a=l.
hy(a,pg,¢)=0, if pp—a=—1+d (21)
_acos$ wi  asing wc,
le 2 ?Cl"‘ > C1,
if —l<pg—as<lIl+d
_acosg wi  acose wp
T2 T2 R©
asing wcac N asing w—CbC
2 s 1 2 T 2
if pp—a<l. (22)
hyi(a,pg,#)=0, if po—a=—I+d
_asing i acos¢ wc,
= 2 T Cl 2 p Cl’
if —l<py—as<-—I+d
_asing i asing op
B 2 s C1 2 T 2
acos¢ wC,  acos¢g wcy
If B - o
2 s 2 T ’
if pp—a<—I 23)
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with  c=|sy|(1-s?)—cos Y(si), c,=|s,/\(1—s2) V. RESULTS AND DISCUSSION
—cos Y(|sy]), s;=(—1+d—pg)/a, ands,=(—1—py)/a.

Note that in the above identities, »?, c, andc, are
the parameters of the model which appear linearly. This re
sults in a tractable optimization problem, E§). Also, using

For the piecewise tip—sample interaction model there are
five parameters to be estimated, namely, the length of the
attractive regiord (the attractive region is where the phase

the piecewise linear model for the nonlinear interaction,d'ﬁcerence is less thar-90°), the attractive and repulsive

closed-form expressions were obtained for the various powe?prlng constants per unit mass, and wj, and the damper

components involved in the power balance equation given byalues per unit mass, andc,. The estimation is based on

— data obtained by varying and by fixing the magnitude of
E.q. .(8). Note that we can spliPy, into the average POWET" t5rcing ay and the frequency of the forcing at the first reso-
dissipated due to the damperc,, P, and the power dissi- ,5nt frequency of the cantilever.

pated due to the dampercy, P, PoyandPy, are evalu- The first parameter estimated is the length of the attrac-
ated to be tive region,d. Note that the absolute tip—sample separation is
not available experimentally. What can be measured is the
—1 2
- 1, ,[cos (Isa] —Is4] \/(1_51)) photodiode output in voltédenoted by,) which is a mea-
att— 5 Cad @ ) - . ) . . .
2 T sure of the vibration amplitude,and the differential motion,

(29 Al of the piezo actuator which positions the sample. The

—1 ., cos X(|sy] —|s,] V(1 —2) assumption that the amplitude equals the tip—sample separa-
Prep= §Cba w = ' tion in the repulsive region is made. This is justified because
the penetration of the tip into this region is small due to the

The power balance equation can be rewritten as very strong repulsive forces in most samples. From this as-
sumption,Aa/Al equals 1 in the repulsive region wheka
Pin— Pair= Patt Prep (25 s the change in amplitude amd is the change in the sepa-

If the amplitude, phase amu, are measured experimen- ration. Hence,

tally, the zeroth- and the first-order Fourier coefficiehts dv, da da

andh; of the tip—sample interaction for¢ecan be evaluated drdv, di 1. (26)

by solving the harmonic balance equati¢gs)s.(10)—(12)]. ) o )

This process can be repeated at various tip—sample separa’c€dVa/dl, which is the slope of the photodiode output
tions. The values oh, and h, thus obtained together with Versus the _sep_aratlon curve, can be obtained experimentally,
Egs. (21)—(23) provide a tool for the estimation of the tip— 4&/dVa which is the sensitivity denoted by can be calcu-
sample interaction model parameters. AlBg, and P, can lated from Eq.(26). psmgSand the expenmentally obtame_d
be evaluated using Eq&l3) and (14). Hence Eqs(24) and valueV,, the amplitudea is obtained in nanometers. Again

(25) will form another set of tools for the analysis of experi- PY the assumption that the tip extension into the repulsive
mental data. region is negligible, the absolute tip—sample separdtimn

obtained from the relative separation by making the tip—

sample separation and amplitude values coincide in the re-

pulsive region. The next step is to identify the minimum
IV. EXPERIMENTAL METHODS separation possible to keep the cantilever freely oscillating.

Experiments were performed on silicon, mica, high den-Let this separation bk,. The freely vibrating amplitude,

sity polyethylene and low density polyethylene. A Multi- when subtracted fronh, givesd. The estimated value from

Mode scanning probe microscope from Digital Instrumentsthe experimental data is 1.695 nm.
The data points from the attractive region are used to

was used for the experiments. Here one of the eXperimenteSstimatec using the power balance equation, E&). Equa-
performed on silicon is presentgd@he results of this experi- a 9 P q - =0

ment were first reported in Ref.)5. tion (8) is first used to obtain the value B%;, which is equal

An atomic force microscopéMulti-Mode, Digital In-  t0 Py The assumption that, values are negligible com-
struments, Santa Barbara, C#vas operated in the tapping Pared to the amount by which the tip penetrates into the
mode. A silicon cantilever 22%m in length was used. The attractive region is made and is justified by the simulation
model parameters were evaluated by analyzing the cantilevélata of Ref. 3. Note that due to the small magnitudepin
response to thermal noi¢gee Refs. 6 and)7The parameters typical tapping-mode applications, it is difficult to measure
were identified to b&=0.0038,w,=27X 73881 rad/s, and py. The linear relationship between tiRg; and thec, evi-
k=4 N/m. A sinusoidal voltage with its frequency equal to dent from Eqg.(24) is exploited to obtain a least square esti-
wo was applied to the dither piezo. The samfédesilicon  mate ofc,. A value of 3—7 us ! was obtained which is
wafen initially was sufficiently far from the cantilever so approximated by Qus 1. Even though for this experimental
that it did not affect the cantilever motion. Once the cantile-data ac, value of approximately zero was obtained, in other
ver reached its steady state, the sample was slowly movegkperiments on softer samples, higher values for the attrac-
towards the vibrating cantilever by extending the piezo. Thdive region damper were obtained.
motion of the cantilever tip at various values of the piezo  Once the parameter, has been estimated the harmonic
extension was recorded using the HP 89410 vector signddalance equations can be used to estimate There is a
analyzer. linear relationship between the real and imaginary parts of
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AdG. 10. sing plotted againsa/a,. It can be seen that the model captures

FIG. 8. Using the estimated parameter values simulations are performed al ) - ; ==
rghe linearity of this plot and even the reduction in the slope from 1.

the plots thus obtained are compared with those obtained through expe
ments. Here the amplitude is plotted against the separation. There is remark-
able agreement between the two plots.

A reasonable estimate faf, can be obtained by observ-
ing the slope of the sigh vsa/a, plot in the repulsive region.
Thec, value of 1.45us ! was fixed by comparing the slope
é)f the simulation plots with that of the experimental plot.

Oncegcy, is fixed, thep, dependent term in the expression
for P,¢p can be estimated for each amplitude and phase value
using the power balance equatidi&ys.(8) and(24)]. Now
a similar procedure as that for the estimation«gf can be
employed, the difference being that the estimation is done
using data from the repulsive regio®a, was obtained to be

10]. The value ofw, was estimated to be 0.31s 2.7 us . Simulations show that a higher, value is desir-

_1 .
The estimation of attractive region related parameters igble. A valug of 303““? Wﬁs found t(()j be adgood Ch;'ze'
fairly robust since the effect op, on them is negligible. As mentioned earlier, the strong dependencepan
However the strong dependenceafand w,, on p, values @b on pg mak_es th_elr estimation more difficult. Therefore
makes the estimation of repulsive region parameters difficul18l @nd error iterations on the estimated values may be re-
This dependence is due to the fact that the amount of pergmred for the repulsive region parameters. Also the assump-

etration of the tip into the repulsive region is of the order of 1" mhade that ]the amphr:ude equals th? Lepulsw:a region
b, unlike in the attractive region. may have an effect on the estimation of the repulsive region

parameters. Hence the procedure outlined here is more suit-
able for the estimation of the attractive region parameters.
The estimated parameters were used to simulate the
. o AFM operating in tapping mode. The corresponding results
—sof e Earenr 1 were compared with those obtained experimentally. The val-
ues of the various parameters used for simulationsegye
=0.31 (attractive spring constant of 1.78 Nyyw,=3.03
(repulsive spring constant of 170.42 Njnandc,=0 us !
and c,=1.45 us 1. The corresponding plots are shown in
Figs. 8—10. It is evident from the plots that the model agrees
with the experimental data. The most remarkable feature is
that a simple model can capture the behavior of the tapping-
mode AFM. The fact that a piecewise linear model for tip—
sample interaction suffices to predict the essential features of
the tapping-mode AFM also indicates the limitation of using
tapping-mode AFM to identify tip—sample interaction. As

the Fourier coefficients oh(p,p) and w2, Egs.(22) and
(23). For the estimation of this parameter data points wer
chosen from the attractive regiopg is assumed to be zero.
The harmonic balance equations given by E@4) and(12)
were used to evaluatg, andhy; directly from the amplitude
and phase datdhy was not used for estimation since it is
very sensitive top, values. The problem is set up in the
framework of least square estimatipsee Eq.(3) and Ref.

Phase in degrees
1
3

L
8

-110

1200 ] mentioned before the high frequency content of the tip—
1 6 » CE 2 % »  sample interaction force is filtered out by the cantilever thus
Separation in nm making it unsuitable for identifying the finer features of the
FIG. 9. Phase plotted against the separakidrere also the two plots show tIP—sample pqtential curve. ' .
a good match. In conclusion the feedback perspective together with the
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harmonic and power balance tools provide an effectivgM.V.S). The authors thank Dr. Ken Babcock and Dr. Sergei
method by which to identify the tip—sample interaction. TheN. Magonov of Digital Instruments for all the assistance dur-
feedback perspective with the cantilever viewed as a filteing the research. They would also like to thank Dr. Boris
explains the sinusoidal nature of the steady-state oscillation&nczykowski for providing them with the data from Ref. 3.
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erating conditions. Note that in identifying the model used in
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process by utilizing Eqg1) and(8). Note also that the har- ,J:{hp' CL'EVEY'Z”‘Z"G%/;’;%ZV"OWSK" A. E. Schmid, and V. B. Elings, Appl.
monic and power balance methods are general tools WhichM.)(fl' Sg};pa’ka’ H.(S. BZ'rgh' J. Lai, A. Majumdar, and E. McFarland, J.
can be applied to a different model than the one provided appl. Phys.81, 2480(1997.
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