
JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 11 1 JUNE 2001
Harmonic and power balance tools for tapping-mode atomic
force microscope

A. Sebastian, M. V. Salapaka,a) and D. J. Chen
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011

J. P. Cleveland
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The atomic force microscope~AFM! is a powerful tool for investigating surfaces at atomic scales.
Harmonic balance and power balance techniques are introduced to analyze the tapping-mode
dynamics of the atomic force microscope. The harmonic balance perspective explains observations
hitherto unexplained in the AFM literature. A nonconservative model for the cantilever–sample
interaction is developed. The energy dissipation in the sample is studied and the resulting power
balance equations combined with the harmonic balance equations are used to estimate the model
parameters. Experimental results confirm that the harmonic and power balance tools can be used
effectively to predict the behavior of the tapping cantilever. ©2001 American Institute of Physics.
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I. INTRODUCTION

Although dynamic modes have been known and u
since the beginning of the field of atomic force microscop1

it is only within the last few years that a better understand
has developed of the complicated dynamics occurring
these modes. For several years, a linear approximation
used to explain the physics of noncontact imaging. In t
approximation, the cantilever amplitude was assumed to
small enough so that the tip–sample gradient could
viewed as altering the spring constant of the cantilever~all
higher derivatives ignored!. Although this model explains
some of the basic physics associated with dynamic mo
except for long-ranged forces~for example, electric and
magnetic! the approximation fails because the tip–sam
potential changes appreciably over angstro¨ms as the tip and
sample get very close or come into contact.

With the introduction of tapping-mode atomic force m
croscope~AFM!,2 the oscillating cantilever tip comes int
intermittent contact with the sample and a simple line
model does not suffice. A couple of years later, the reso
tion of single defects using noncontact AFM in ultrahig
vacuum spurred significant development in that field. In t
mode, the cantilever oscillation is at least several angstr¨ms
and the tip comes within Angstroms of the sample surfa
Thus again a simple linear model does not explain the
namics. The rash of activity in both of these AFM field
prompted considerable theoretical work to explain the n
linear dynamics.

Initially, much of the research on tapping-mode AF
centered around numerically solving nonlinear differen
equations that include terms to account for the tip–sam
interaction ~see, for example, Ref. 3!. These models were
successful in capturing many of the intricate details pres
in most experimental data.3 However due to their complex

a!Electronic mail: murti@iastate.edu
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ity, the numerical models preclude identification of mod
parameters in a straightforward manner. Indeed, the se
existing tools to identify a given model of the interactio
from experimental data is inadequate. Another void in t
area is a systematic methodology for the purposes of ide
fication ~some recent studies in this direction are pursued
Ref. 4!. Of particular interest is a set of common tools th
can be applied over a wide range of tapping-mode AF
applications. Such tools are particularly relevant becaus
the diverse variety of materials and properties that
tapping-mode AFM is used for imaging.

A surprising property of the tapping-mode dynamics
the near sinusoidal nature of the steady-state cantilever
oscillations. Like experimental data, this feature is predic
by the complex numerical models of the nonlinear tip
sample interaction~see Ref. 3!. Also, this feature is found to
be a robust property that is present in most applications
tapping-mode AFM. Many studies are based on this beha
of the cantilever~for example, see Refs. 4 and 5!. In spite of
its importance and prevalence, little insight is present in
literature on this behavior of the cantilever. It is clear that
effective identification framework should explain this featu
and exploit it for its purposes.

In this article we provide a feedback perspective of t
tapping-mode dynamics. Based on this we develop a se
principles that can be used for identifying the tip–sam
interaction. These general tools can be utilized for a w
range of tapping-mode applications. One of the fallouts
the study is the explanation of the near sinusoidal stea
state behavior of the cantilever. We also develop a sim
model of the tapping-mode dynamics and apply the dev
oped identification tools to estimate the parameters of
proposed model. It is shown that the identification paradi
developed is powerful and that a simple model can ma
experimental data remarkably well. The tools also elucid
3 © 2001 American Institute of Physics
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the limitations of tapping-mode AFM in identifying the tip
sample potential.

This article is organized as follows. In Sec. II we d
velop the analytical principles for identification purposes.
Sec. III we present the model of the cantilever and the t
sample interaction used in this article. We then specialize
identification tools for this model. In Sec. IV we prese
experimental methods developed and in Sec. V we give
sults and discussion.

II. ANALYSIS

In the tapping mode, the cantilever in the AFM is forc
sinusoidally by a dither piezo attached to the substrate
forms the support of the cantilever~see Fig. 1!. The cantile-
ver is thus subjected to the drive force through the dit
piezo and the tip–sample interaction force. In addition
these forces the cantilever motion is influenced by the da
ing force due to the ambient environment and the intrin
damping caused by the bending of the cantilever beam.
term these dissipative forces collectively as the air damp
force.

We assume that a linear time-invariant modelG of the
cantilever suffices to predict its behavior. ThusG is a linear
time-invariant operator which takes the sample and the d
force as its input and provides the tip displacement as
output. Note thatG includes the effect of the air dampin
force. Also note that efficient techniques exist in the lite
ture to obtain a precise model ofG ~see, for example, Refs.
and 7!.

The tip–sample interaction force is a function of the
displacement and possibly of the tip velocity. Leth be the
function which maps the tip–sample separationp and its
velocity ṗ to the force on the cantilever due to the sample
block diagram depicting the dynamics is given in Fig.
whereG is any linear time-invariant model of the cantilev
andg is the drive force. The nonlinear tip–sample interacti
appears as a feedback block. In this perspective the

FIG. 1. Experimental setup used. The sample is positioned using a p
tube. The cantilever is oscillated using a sinusoidal voltage applied to
dither piezo. The displacement of the cantilever is recorded by a laser w
reflects off the cantilever surface and is incident into a split photodi
sensor.
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sample distance~and possibly velocity! is fed back to the
systemG ~which models the cantilever! through the function
h. Note that we are viewing the tapping-mode dynamics
an interconnection of two systems, the systemG which mod-
els the cantilever and the blockh which models the sample

The harmonic balance equations are derived next~they
were first introduced by the authors in Ref. 8!. It is shown in
Ref. 9 that under unrestrictive assumptions, the tappi
mode dynamics admit a periodic solution with the same
riod T as that of the sinusoidal forcingg. We denote such a
periodic solution byp* (t). Because the nonlinear force o
the cantilever due to the sample is assumed to be time
variant it follows thath(p* ,ṗ* ) is also periodic with period
T. Thus p* , h(p* ,ṗ* ) and g(t) all admit expansions of
the form p* (t)5(k52`

` pke
jkvt, h@p* (t),ṗ* (t)#

5(k52`
` hke

jkvt and g(t)5(k52`
` gke

jkvt, where xk5xkr

1 jxki are the exponential Fourier coefficients ofx and v
52p/T.

Note that for the periodic solution Fig. 2 can be view
as illustrated in Fig. 3. Since the cantilever modelG is a
linear time-invariant system, it follows from the Fourier s
ries properties of linear time-invariant systems that the in
and output harmonics of the system are related by

G~ jkv!~2gk1hk!1pk50, for all k50,61,62, . . . .
~1!

Equation~1! above provides the first principle for tapping
mode dynamics; if the cantilever dynamics~in the sense de-
scribed above! is linear time invariant and the tip–samp
interaction is time invariant then the Fourier coefficientsgk ,
hk and pk of the forcingg(t), tip–sample interaction force
on the periodic orbith@p* (t)# and the tip displacemen
p* (t), respectively, have to obey the harmonic balan
equations given by Eq.~1!.

In order to verify the harmonic balance equations, d
from Ref. 3 were used where advanced models for t
sample interaction were employed. The tip-sample inter
tion model given in Ref. 3 captures most of the features s

zo
e

ch
e

FIG. 2. Block diagram depicting the cantilever dynamics.G is any linear
time-invariant model of the cantilever andg is the drive force. The blockh
models the sample.

FIG. 3. On the periodic orbit Fig. 2 can be viewed as illustrated ab
where g(t) is the sinusoidal forcing andp* (t) is a periodic solution the
tapping-mode dynamics admits.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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in experimental data. The simulation data used correspon
a sinusoidal forcing at a frequency ofv5300 kHz which is
the same as the resonant frequency of the cantilever.
u(t)5g(t)2h(p* ,ṗ* ). The magnitudes of the Fourie
transforms of the simulation datap* (t) and u(t) given by
u p̂* ( j v)u and uû* ( j v)u, respectively, are shown in Fig. 4
Next the ratios betweenu p̂* ( jkv)u and uû* ( jkv)u for k
51, . . . ,10 arecompared with the corresponding points
the frequency response plot ofG. The remarkable agreemen
between the two illustrates Eq.~1!. The only assumption
made for Eq.~1! to be true is that the cantilever dynamics a
linear time invariant and that the tip–sample interaction
time invariant. Note that the assumption that the cantile
motion and hence tip–sample interaction are periodic is n
trivial one. We will address this further later in the articl
We will now utilize Eq.~1! to develop schemes for identify
ing the tip–sample interaction.

Note that, in Eq.~1!, thermal noise response plots can
used to identifyG( jkv) ~see Refs. 6 and 7!. In Eq. ~1! the

FIG. 4. Magnitude plots of the Fourier transforms ofp(t) and u(t) are

shown first. The ratios betweenu p̂* ( jkv)u and uû* ( jkv)u for k
51, . . . ,10 are then compared with the corresponding points on the
quency response plot ofG thus illustrating the harmonic balance.
Downloaded 21 May 2003 to 133.28.19.11. Redistribution subject to AI
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Fourier coefficients of the forcinggk are known and the Fou
rier coefficientspk of the cantilever oscillations can be foun
by performing a Fourier analysis on the measur
cantilever–tip oscillations. Equation~1! can then be used to
evaluatehk . Indeed Eq.~1! can be rewritten as

hk5gk2
pk

G~ jkv!
, ~2!

wherehk are the unknowns and the right-hand side of t
above equation can be obtained from experimental d
Note thathk are the Fourier coefficients ofh@p* (t)# where
p* (t) is the steady-state cantilever oscillation. The stea
state periodic orbit of the cantilever depends on the forc
frequencyv, the magnitude of the forcingg, and the tip–
sample offsetl . Thushk , gk andpk are functions ofv,g and
l . By varying each one of these parameters we can eval
hk(v,g,l ) for different values ofv,g and l . The Fourier
coefficients hk can be processed to provide informatio
about the sample properties that can be used to identify v
ous parameters in a given model of the interaction betw
the tip and the sample.

Note that any time-invariant model of the tip–samp
interaction has to satisfy Eq.~2! if we account for any noise
in the detection ofp(t). An approach to identifying the tip–
sample interaction is to assume a parametric model of
tip–sample interaction which takes in as input the tip d
placement and velocity and provides the force on the ca
lever due to the sample as its output. LetH(Q) denote such
a model whereQ is a finite set of parameters. Thus we ha
h@p(t)#5H(Q)@p(t)#. The corresponding minimization
problem is

min
Q

(
k50

`

uHk2hku2, ~3!

whereHk are the Fourier coefficients ofH(Q)@p(t)#. Note
that the tractability of the problem, Eq.~3! depends on the
parametric modelH and thus care should be taken so that
resulting minimization problem is solvable. We will follow
this approach for identification in Sec. III.

The feedback perspective of Fig. 2 provides significa
insights which we present now. In most tapping-mode ap
cations the forcing frequency is close to the resonant
quency of the cantilever. If the forcing frequency is selec
to be the resonant frequency, then the thermal noise resp
plots of a typical cantilever indicate thatuG( jkv)u'0 for
k52,3, . . . ~see Ref. 6!. ThusG acts like a low pass filter
which ensures that the higher frequency components ge
tered. It now follows immediately from Eq.~1! that pk'0 if
uku>2. Thus one can write

p* ~ t !5a cos~vt1f!1p0 , ~4!

wherea52up1u andp15up1uej f. Thus the filtering effect of
the cantilever transfer function results in a nearly sinusoi
orbit of the cantilever. This explains one of the essen
features of tapping-mode AFM which is pivotal to its oper
tions. Note that we have assumed thatG is a linear time-
invariant model of the cantilever. However, for the near sin
soidal behavior of the steady-state oscillations the esse

e-
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ingredient is only the low pass property of the cantilev
Note that this also indicates that the higher the quality fac
Q the more sinusoidal the resulting steady-state oscillati
will be. It is important to remember that this assumes
cantilever motion to be periodic~precluding, for example
cases where the cantilever hits the sample only every t
cycle!. Such cases can occur. For example, the side ba
around the peak in Fig. 1~d! of Ref. 5 indicate nonperiodic
motion. However the power carried in the side bands is sm
compared to that in the central peak. The power carried
the higher harmonics is quite small as well. Thus the h
monic balance should work well on the first harmonic.

A limitation of the tapping-mode AFM in identifying the
tip–sample interaction is also indicated by the above disc
sion. Note that the cantilever tip oscillation~which is the
measured signal! contains negligible information on the hig
frequency content ofh@p* (t)#, because such information i
filtered out by the cantilever. Thus the tapping-mode AF
can be utilized to identify the tip–sample interaction only
to the first harmonic ofh@p* (t)#.

Now we introduce a power balance technique
tapping-mode AFM.5 This technique is based on the fact th
at steady state the average rate at which energy is fed into
cantilever must equal the average rate at which energ
dissipated by the cantilever. The instantaneous power de
ered by the driver is the force on the driver (f drive) times the
velocity of the driver as given by

Pin5
1

m
f driveḃ~ t !. ~5!

Similarly Pd andPt are given by

Pd5
1

m
f dampṗ* ~ t !, ~6!

Pt5
1

m
f intṗ* ~ t !, ~7!

where f damp is the damping force andf int is the tip–sample
interaction force, respectively.Pin, Pd and Pt are obtained
by averagingPin , Pd andPt over one cycle of the cantileve
oscillation, respectively. The fact that energy is conser
results in

Pin5Pd1Pt. ~8!

From knowledge of the tip motionp* (t) and the canti-
lever modelG( j v) we can evaluatePin and Pd. Using Eq.
~8! we can evaluatePt̄. As will be seen later, this forms
another tool with which to identify the parameters of t
tip–sample interaction.

III. CANTILEVER AND TIP–SAMPLE INTERACTION
MODEL

We now apply the harmonic and power balance tools
the tapping-mode dynamics assuming a model for the ca
lever and a model for the tip–sample interaction. For m
applications the dynamical equation for the displacemen
the cantilever is well modeled by
Downloaded 21 May 2003 to 133.28.19.11. Redistribution subject to AI
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p̈12jv0ṗ1v0
2p1h~p,ṗ!5g~ t !, ~9!

wherev05Ak/m, 2jv05c/m andg(t)5kb(t)/m andh is
the force due to the sample per unit mass that is assume
be dependent only on the position and velocity of the ca
lever tip. The cantilever model dynamics are described
Fig. 5. Assuming the second-order model described by
~9! and that the sinusoidal nature of the tip displacem
given by Eq.~4! are true, the harmonic balance equations~1!
reduce to

h02g01v0
2p050, ~10!

h1r~a,f,p0!2g1r1V
a

2
cosf22jvv0

a

2
sinf50,

~11!

h1i~a,f,p0!2g1i12jvv0

a

2
cosf1V

a

2
sinf50, ~12!

where V5v0
22v2. Note that p1r5(a/2) cosf and p1i

5(a/2)sinf. Also, for the second-order model of the can
lever given by Eq.~9!, G( j v)51/(2v21 j 2jvv01v0

2).
Let the dither forcing function be given byb(t)

5ad cos(vt) ~note thatad5g/v0
2) and the steady-state sinu

soidal orbit be given byp* (t)5a cos(vt1f)1p0 wherea is
the amplitude of the cantilever,f is the phase difference
betweenp* (t) and b(t) and p0 is the dc offset. Averaging
Eq. ~5! over a complete cycle we obtainPin to be

Pin̄52
1

2

k

m
adav sin~f!. ~13!

Similarly Pair̄ is given by

Pair̄5
1

2

c

m
a2v2. ~14!

From Eq.~8!

Ptip̄52
1

2m

ka2v

Q S Qad sin~f!

a
1

v

v0
D . ~15!

If the drive frequency is chosen to bev0 , Eq.~15! reduces to

Ptip̄52
1

2m

ka2v0

Q S a0

a
sin~f!11D , ~16!

wherea05Qad is the resonance amplitude of the cantilev
when not subjected to the sample influence withv5v0 and

FIG. 5. Model of the cantilever.F is the force on the cantilever due to th
sample andb describes the displacement of the base of the cantilever.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Q5
k

cv0
5

1

2j
5

Akm

c
. ~17!

For a conservative system,Ptip̄ is equal to zero since there
no dissipation in the sample. Thus Eq.~16! shows that the
plot of 2sinf againsta/a0 will have a slope of 1 for a
conservative system~see Ref. 5 for more details!. Hence a
deviation from a slope of 1 is likely to indicate power diss
pation in the sample. In most experiments the2sinf V s
a/a0 plot is still linear and has a slope considerably less th
1 indicating significant energy dissipation.

A model for the nonlinear tip–sample interaction for
~denoted byh) is developed next. Experimental data ha
indicated that a force curve of the form shown in Fig.
characterizes the force on the cantilever due to the sam
well. It indicates long range attractive forces and short ra

FIG. 7. Model with the piecewise linear cantilever–sample force inter
tion. When the mass is displaced in the negative direction, first it will
counter the attractive forces modeled by a damper and a negative spri
the displacement of the mass exceedsl it will encounter repulsive forces
modeled by a damper and a positive spring. The dampers account fo
energy dissipation due to sample interaction.

FIG. 6. Sketch of typical cantilever–sample force as a function of posit
It indicates long range attractive forces and short range strong repu
forces.
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strong repulsive forces. We assume a piecewise linear ca
lever tip–sample force curve. The additional assumption t
the interaction force is also a function of the velocity of t
cantilever tip is made.

The model of the tapping-mode dynamics with t
piecewise linear interaction is described in Fig. 7. The ne
tive spring accounts for long range attractive forces and
positive spring accounts for the short range strong repuls
forces. The dampers will account for the energy dissipat
in the sample. The variablel will characterize the tip–sample
separation. Specifically, we assume that

h~p,ṗ!50, if p>2 l 1d ~18!

52va
2~p1 l 2d!1caṗ, if 2 l<p,2~ l 2d! ~19!

5vb
2~p1 l !2va

2~p1 l 2d!1caṗ1cbṗ,

if p,2 l . ~20!

Whenp is periodic,h is periodic and the Fourier coefficient
h0 and h1 of the periodic functionh(p,ṗ) when p(t)
5a cos(vt1f)1p0 are given by

h0~a,p0!50, if p02a>2 l 1d

5
ava

2

p
~A12s1

22us1ucos21~ us1u!!,

if 2 l<p02a< l 1d

5
ava

2

p
~A12s1

22us1ucos21~ us1u!!2
avb

2

p

3~A12s2
22us2ucos21~ us2u!!, if p02a< l .

~21!
h1r~a,p0 ,f!50, if p02a>2 l 1d

5
acosf

2

va
2

p
c11

a sinf

2

vca

p
c1 ,

if 2 l<p02a< l 1d

5
a cosf

2

va
2

p
c12

a cosf

2

vb
2

p
c2

1
a sinf

2

vca

p
c11

a sinf

2

vcb

p
c2 ,

if p02a< l . ~22!

h1i~a,p0 ,f!50, if p02a>2 l 1d

5
a sinf

2

va
2

p
c12

a cosf

2

vca

p
c1 ,

if 2 l<p02a<2 l 1d

5
a sinf

2

va
2

p
c12

a sinf

2

vb
2

p
c2

2
a cosf

2

vca

p
c12

a cosf

2

vcb

p
c2 ,

if p02a<2 l ~23!
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with c15us1uA(12s1
2)2cos21(us1u), c25us2uA(12s2

2)
2cos21(us2u), s15(2 l 1d2p0)/a , ands25(2 l 2p0)/a .

Note that in the above identitiesva
2 , vb

2 , ca andcb are
the parameters of the model which appear linearly. This
sults in a tractable optimization problem, Eq.~3!. Also, using
the piecewise linear model for the nonlinear interactio
closed-form expressions were obtained for the various po
components involved in the power balance equation given
Eq. ~8!. Note that we can splitPtip̄ into the average powe
dissipated due to the dampermca , Patt̄ and the power dissi-
pated due to the dampermcb , Prep̄, Patt̄ andPrep̄ are evalu-
ated to be

Patt̄5
1

2
caa2v2S cos21~ us1u2us1uA~12s1

2!

p
D ,

~24!

Prep̄5
1

2
cba2v2S cos21~ us2u2us2uA~12s2

2!

p
D .

The power balance equation can be rewritten as

Pin̄2Pair̄5Patt̄1Prep̄. ~25!

If the amplitude, phase andp0 are measured experimen
tally, the zeroth- and the first-order Fourier coefficientsh0

andh1 of the tip–sample interaction forceh can be evaluated
by solving the harmonic balance equations@Eqs.~10!–~12!#.
This process can be repeated at various tip–sample se
tions. The values ofh0 and h1 thus obtained together with
Eqs. ~21!–~23! provide a tool for the estimation of the tip
sample interaction model parameters. Also,Pin̄ andPair̄ can
be evaluated using Eqs.~13! and ~14!. Hence Eqs.~24! and
~25! will form another set of tools for the analysis of expe
mental data.

IV. EXPERIMENTAL METHODS

Experiments were performed on silicon, mica, high de
sity polyethylene and low density polyethylene. A Mult
Mode scanning probe microscope from Digital Instrume
was used for the experiments. Here one of the experim
performed on silicon is presented.~The results of this experi
ment were first reported in Ref. 5.!

An atomic force microscope~Multi-Mode, Digital In-
struments, Santa Barbara, CA! was operated in the tappin
mode. A silicon cantilever 225mm in length was used. The
model parameters were evaluated by analyzing the cantil
response to thermal noise~see Refs. 6 and 7!. The parameters
were identified to bej50.0038,v052p373881 rad/s, and
k54 N/m. A sinusoidal voltage with its frequency equal
v0 was applied to the dither piezo. The sample~a silicon
wafer! initially was sufficiently far from the cantilever s
that it did not affect the cantilever motion. Once the canti
ver reached its steady state, the sample was slowly mo
towards the vibrating cantilever by extending the piezo. T
motion of the cantilever tip at various values of the pie
extension was recorded using the HP 89410 vector sig
analyzer.
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V. RESULTS AND DISCUSSION

For the piecewise tip–sample interaction model there
five parameters to be estimated, namely, the length of
attractive regiond ~the attractive region is where the pha
difference is less than290°!, the attractive and repulsive
spring constants per unit mass,va

2 and vb
2 and the damper

values per unit mass,ca andcb . The estimation is based o
data obtained by varyingl and by fixing the magnitude o
forcing ad and the frequency of the forcing at the first res
nant frequency of the cantilever.

The first parameter estimated is the length of the attr
tive region,d. Note that the absolute tip–sample separation
not available experimentally. What can be measured is
photodiode output in volts~denoted byVa) which is a mea-
sure of the vibration amplitude,a and the differential motion,
D l of the piezo actuator which positions the sample. T
assumption that the amplitude equals the tip–sample sep
tion in the repulsive region is made. This is justified becau
the penetration of the tip into this region is small due to t
very strong repulsive forces in most samples. From this
sumption,Da/D l equals 1 in the repulsive region whereDa
is the change in amplitude andD l is the change in the sepa
ration. Hence,

dVa

dl

da

dVa
5

da

dl
51. ~26!

SincedVa /dl, which is the slope of the photodiode outp
versus the separation curve, can be obtained experimen
da/dVa which is the sensitivity denoted byS can be calcu-
lated from Eq.~26!. UsingSand the experimentally obtaine
valueVa , the amplitudea is obtained in nanometers. Agai
by the assumption that the tip extension into the repuls
region is negligible, the absolute tip–sample separationl is
obtained from the relative separation by making the ti
sample separation and amplitude values coincide in the
pulsive region. The next step is to identify the minimu
separation possible to keep the cantilever freely oscillati
Let this separation bel 0 . The freely vibrating amplitudea0

when subtracted froml 0 givesd. The estimated value from
the experimental data is 1.695 nm.

The data points from the attractive region are used
estimateca using the power balance equation, Eq.~8!. Equa-
tion ~8! is first used to obtain the value ofPtip̄ which is equal
to Patt̄. The assumption thatp0 values are negligible com
pared to the amount by which the tip penetrates into
attractive region is made and is justified by the simulat
data of Ref. 3. Note that due to the small magnitude ofp0 in
typical tapping-mode applications, it is difficult to measu
p0 . The linear relationship between thePatt̄ and theca evi-
dent from Eq.~24! is exploited to obtain a least square es
mate ofca . A value of 3e27 ms21 was obtained which is
approximated by 0ms21. Even though for this experimenta
data aca value of approximately zero was obtained, in oth
experiments on softer samples, higher values for the att
tive region damper were obtained.

Once the parameterca has been estimated the harmon
balance equations can be used to estimateva . There is a
linear relationship between the real and imaginary parts
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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the Fourier coefficients ofh(p,ṗ) and va
2, Eqs. ~22! and

~23!. For the estimation of this parameter data points w
chosen from the attractive region.p0 is assumed to be zero
The harmonic balance equations given by Eqs.~11! and~12!
were used to evaluateh1r andh1i directly from the amplitude
and phase data.h0 was not used for estimation since it
very sensitive top0 values. The problem is set up in th
framework of least square estimation@see Eq.~3! and Ref.
10#. The value ofva was estimated to be 0.31ms21.

The estimation of attractive region related parameter
fairly robust since the effect ofp0 on them is negligible.
However the strong dependence ofcb andvb on p0 values
makes the estimation of repulsive region parameters diffic
This dependence is due to the fact that the amount of p
etration of the tip into the repulsive region is of the order
p0 unlike in the attractive region.

FIG. 8. Using the estimated parameter values simulations are performe
the plots thus obtained are compared with those obtained through ex
ments. Here the amplitude is plotted against the separation. There is rem
able agreement between the two plots.

FIG. 9. Phase plotted against the separationl . Here also the two plots show
a good match.
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A reasonable estimate forcb can be obtained by observ
ing the slope of the sinf vs a/a0 plot in the repulsive region.
Thecb value of 1.45ms21 was fixed by comparing the slop
of the simulation plots with that of the experimental plot.

Oncecb is fixed, thep0 dependent term in the expressio
for Prep can be estimated for each amplitude and phase v
using the power balance equations@Eqs.~8! and ~24!#. Now
a similar procedure as that for the estimation ofva can be
employed, the difference being that the estimation is do
using data from the repulsive region.vb was obtained to be
2.7 ms21. Simulations show that a highervb value is desir-
able. A value of 3.03ms21 was found to be a good choice

As mentioned earlier, the strong dependence ofcb and
vb on p0 makes their estimation more difficult. Therefo
trial and error iterations on the estimated values may be
quired for the repulsive region parameters. Also the assu
tion made that the amplitude equalsl in the repulsive region
may have an effect on the estimation of the repulsive reg
parameters. Hence the procedure outlined here is more
able for the estimation of the attractive region parameter

The estimated parameters were used to simulate
AFM operating in tapping mode. The corresponding resu
were compared with those obtained experimentally. The v
ues of the various parameters used for simulations areva

50.31 ~attractive spring constant of 1.78 N/m!, vb53.03
~repulsive spring constant of 170.42 N/m!, andca50 ms21

and cb51.45 ms21. The corresponding plots are shown
Figs. 8–10. It is evident from the plots that the model agr
with the experimental data. The most remarkable featur
that a simple model can capture the behavior of the tapp
mode AFM. The fact that a piecewise linear model for tip
sample interaction suffices to predict the essential feature
the tapping-mode AFM also indicates the limitation of usi
tapping-mode AFM to identify tip–sample interaction. A
mentioned before the high frequency content of the ti
sample interaction force is filtered out by the cantilever th
making it unsuitable for identifying the finer features of th
tip–sample potential curve.

In conclusion the feedback perspective together with

nd
ri-
rk-

FIG. 10. sinf plotted againsta/a0 . It can be seen that the model captur
the linearity of this plot and even the reduction in the slope from 1.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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harmonic and power balance tools provide an effect
method by which to identify the tip–sample interaction. T
feedback perspective with the cantilever viewed as a fi
explains the sinusoidal nature of the steady-state oscillat
of the cantilever tip. The harmonic and power balance p
ciples are applicable to a diverse range of tapping-mode
erating conditions. Note that in identifying the model used
this article it was assumed that the tip oscillations are si
soidal. Only the first harmonic data were utilized in iden
fying the model parameters. However, if it is possible
measure the higher harmonics of the cantilever oscillati
then this data can be easily incorporated into the mode
process by utilizing Eqs.~1! and ~8!. Note also that the har
monic and power balance methods are general tools w
can be applied to a different model than the one provid
here. The directions indicated above will be pursued in
ture research.
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