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Abstract. After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigen-
value problem, we discuss different extraction processes for subspace methods for the polynomial eigenvalue
problem. We generalize the harmonic and refined Rayleigh–Ritz approach which leads to novel approaches to
extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results
of the methods. In addition, we take a new look at the Jacobi–Davidson method for polynomial eigenvalue
problems.
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1. Introduction: Rayleigh–Ritz for the standard eigenvalue problem. Let A
be a (large sparse) n × n matrix, and let U be a k-dimensional search space for a sought
eigenvector x corresponding to an eigenvalue λ of A. The search space could for instance
be generated by the Arnoldi method (see, e.g., [1, Ch. VII]) or Jacobi–Davidson [2] method;
typically k � n. Let the columns of the n × k search matrix U form an orthonormal basis
for U . The Rayleigh–Ritz extraction determines approximate eigenpairs (θ, u) with u ∈ U ;
therefore, we can write u = Uc for a small k-vector c. The Galerkin condition on the residual

r := Au− θu ⊥ U , u = Uc ∈ U ,

leads to the projected eigenproblem

U∗AUc = θc.

The Ritz value θ is the Rayleigh quotient of u:

θ(u) :=
u∗Au

u∗u
.

Here c is called a primitive Ritz vector (in [3]), and u = Uc is a Ritz vector.
We continue to show that the Rayleigh–Ritz method works well for the extraction of well-

separated exterior eigenvalues of Hermitian matrices, but may fail for clustered or interior
eigenvalues, or for non-Hermitian matrices. The following claim is well known.

Claim 1.1. Rayleigh–Ritz works well for the extraction of well-separated exterior eigen-
values of Hermitian matrices.

By this we mean that if (θ, u) is a Ritz pair of a Hermitian matrix, and if θ ≈ λ, where
λ is either the leftmost or the rightmost well-separated eigenvalue, then necessarily u ≈ x.
The reason for this is the following. Let λ1 < · · · < λn be the eigenvalues of a Hermitian
matrix A, with corresponding eigenvectors x1, . . . , xn. Suppose that u ≈ x is an approximate
eigenvector. Decomposing

u =
n∑

i=1
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we have θ =
∑n

i=1 |γi|2λi. If θ ≈ λ1 or θ ≈ λn, then we must have γ1 ≈ 1 or γn ≈ 1 (when the
eigenvectors are scaled appropriately), from which we conclude u ≈ x1 or u ≈ xn, respectively.
This justifies Claim 1.1.

When the exterior eigenvalues of a Hermitian matrix are clustered, there is no guarantee
that u is close to any particular eigenvector, but (using a similar argument as before) we do
know that u is almost in the span of the relevant eigenvectors. In this case, block methods
may be advantageous.

Rayleigh–Ritz does not need to work well for the extraction of interior eigenvalues of
Hermitian matrices, as the example in [3, p. 282] shows. Claim 1.1 can also fail for exterior
eigenvalues of non-Hermitian A, as the following example, inspired by [4], shows. Let for
small ε, ϕ > 0 and α, β > 0

A = diag(0, −β, −ε + αi, −ε− αi), U = [cos(ϕ)e1 + sin(ϕ)e2 (e3 + e4)/
√

2],

where ei denotes the ith canonical basis vector. Then, although ∠(U , e1) = ϕ, that is,
the search space makes a small angle with the eigenvector of an exterior (the rightmost)
eigenvalue, the Rayleigh–Ritz method will abusively select the Ritz pair (−ε, (e3 + e4)/

√
2)

as an approximation to the rightmost eigenpair, as long as −β sin2(ϕ) < −ε.
On the other hand, Van den Eshof [5, Th. 2.2.3] has shown that if an eigenvalue is outside

the field of values generated by the space orthogonal to the corresponding eigenvector—as is
for instance the case in the last example—then the Rayleigh–Ritz approach can asymptotically
(that is, close enough to the solution) be used safely. For the example discussed, this means
that for ϕ small enough the corresponding Ritz vector is a good approximation to the true
eigenvector. Also, when the field of values condition fails to hold, Rayleigh–Ritz in practice
often performs much better for (relatively well-separated) exterior eigenvalues than for interior
eigenvalues of non-Hermitian matrices.

In an attempt to better approximate interior eigenpairs, the harmonic Rayleigh–Ritz
approach was introduced in [6]. The rest of this paper has been organized as follows. In
Section 2, we review the harmonic Rayleigh–Ritz approach for the standard and generalized
eigenvalue problem, adding a few novel viewpoints. Sections 3, 4, and 5 generalize standard
Rayleigh–Ritz, harmonic Rayleigh–Ritz, and refined Rayleigh–Ritz for the polynomial eigen-
value problem, where our goal is to find promising approximate eigenpairs corresponding to
(interior) eigenvalues from a search space. In Section 6, we revisit the Jacobi–Davidson sub-
space expansion. Finally, we give numerical experiments and a conclusion in Sections 7 and
8.

2. Harmonic Rayleigh–Ritz. Suppose we are interested in eigenvalues near a target
τ , for instance in the interior of the spectrum. We assume that τ is not an eigenvalue of A
(otherwise we are fortunate). Denote the identity matrix by I. Since

(A− τI)−1x = (λ− τ)−1x,

we see that eigenvalues of A near τ are exterior eigenvalues of (A−τI)−1, a desirable property
in view of the previous section. Consider the (Petrov–)Galerkin condition on the residual of
the shift-and-inverse matrix

(2.1) (A− τI)−1ũ− (θ̃ − τ)−1ũ ⊥ V, ũ = Uc̃,

where U is the search space and V is the test space. For large sparse matrices, working with
the inverse (A − τI)−1 is often highly undesirable. To eliminate the inverse in the Galerkin
condition, we want to choose V in a suitable way. While V = (A − τI)∗U gives rise to the
standard Rayleigh–Ritz extraction Au − θu ⊥ U , the choice V = (A − τI)∗(A − τI)U leads
to the following equivalent conditions:
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(i) (A− τI)−1ũ− (θ̃ − τ)−1ũ ⊥ (A− τI)∗(A− τI)U ,

(ii) (A− τI)−1ũ− (θ̃ − τ)−1ũ ⊥(A−τI)∗(A−τI) U ,

(iii) (A− θ̃I) ũ ⊥ (A− τI)U ,

(iv) U∗(A− τI)∗(A− τI)Uc̃ = (θ̃ − τ) U∗(A− τI)∗Uc̃;
this is called the harmonic Rayleigh–Ritz approach. In analogy to the Rayleigh–Ritz termi-
nology, θ̃ is a harmonic Ritz value, the harmonic Rayleigh quotient or the Temple quotient of
a harmonic Ritz vector ũ:

(2.2) θ̃ = θ̃τ (ũ) := τ +
‖(A− τI) ũ‖2

ũ∗(A− τI)∗ũ
.

(In this paper, ‖ · ‖ stands for the Euclidean norm.) Characterization (ii) gives a Galerkin
condition on the residual of the shift-and-inverse matrix using the inner product

(a, b)(A−τI)∗(A−τI) := b∗(A− τI)∗(A− τI)a,

where the situation that (a, b)(A−τI)∗(A−τI) = 0 is denoted by a ⊥(A−τI)∗(A−τI) b. Item (iii)
states that the (ordinary) residual should be orthogonal to a test space different from the
search space. Item (iv) expresses that a harmonic Ritz pair (θ̃, ũ) is closely connected to an
eigenpair of a projected generalized eigenvalue problem. It is natural to call c̃ a primitive
harmonic Ritz vector.

Denote ξ = θ̃ − τ . As noted in [3, p. 293], by left-multiplying

(2.3) U∗(A− τI)∗(A− τI)Uc̃ = ξ U∗(A− τI)∗Uc̃

by c̃∗ and using Cauchy–Schwarz, we see that a solution (ξ, c̃) of this generalized eigenproblem
satisfies (using ũ = Uc̃)

(2.4) ‖(A− τI) ũ‖ ≤ |ξ|.

This makes clear that if |ξ| is small, i.e., if the harmonic Ritz value θ̃ is close to τ , then
the pair (τ, ũ) has a small residual norm and therefore forms a good approximation to an
eigenpair of A, as the following well-known results show. Part (a) is Bauer–Fike. For (b),
we recall (see [3, p. 44]) that if λ is a simple eigenvalue, we have a spectral decomposition
A = λxy∗ + X1LY ∗

1 , where ‖x‖ = 1, Y1 is orthonormal, and Y ∗
1 x = 0.

Theorem 2.1. (See e.g., [7, Th. 3.6], [3, p. 288])
(a) If A = XΛX−1 is diagonalizable, there exists an eigenvalue λ such that

|λ− τ | ≤ κ(X) ‖(A− τI) ũ‖,

where κ(X) = ‖X‖ ‖X−1‖ is the condition number of X.
(b) If λ is a simple eigenvalue and A = λxy∗ + X1LY ∗

1 , where ‖x‖ = 1, Y1 is orthonormal,
and Y ∗

1 x = 0, then

sin(ũ, x) ≤ ‖(A− τI) ũ‖
σmin(L− τI)

≤ ‖(A− τI) ũ‖
σmin(L− λI)− |λ− τ |

.

We remark that the quantity σmin(L − τI) is also known in literature as sep(τ, L); it is
nonzero since τ is not an eigenvalue of A. Since we assumed that λ is simple, also σmin(L−
λI) > 0, and therefore τ → λ and ‖(A− τI) ũ‖ → 0 are sufficient to ensure that ũ → x.

The conclusion is that harmonic Rayleigh–Ritz avoids so-called “ghost eigenvalues”, also
named “imposters” or “impersonators” in [3]: if there is a harmonic Ritz pair (θ̃, ũ) with θ̃
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close to τ , the corresponding residual norm ‖(A− τI) ũ‖ (and to a lesser extent ‖(A− θ̃I) ũ‖)
is necessarily small, and hence ũ should be a good approximate eigenvector, and not some
linear combination of irrelevant eigenvectors as in the example in Section 1.

The next important observation is that the harmonic Rayleigh–Ritz extraction is primarily
meant to get a decent approximate eigenvector. It turns out that the harmonic Ritz value
can be quite inaccurate (see for instance [4]). Indeed, given the approximate eigenvector ũ,
the Rayleigh quotient ρ(ũ) is the best approximation to the eigenvalue, in the sense that it
minimizes the residual norm:

ρ(ũ) = argmin
θ

‖Aũ− θũ‖.

Therefore, it is often advisable to take the Rayleigh quotient of the harmonic Ritz vector as
an approximate eigenvalue, instead of the harmonic Ritz value.

For the generalized eigenproblem Ax = λBx, we can use a similar harmonic Rayleigh–
Ritz approach. Based on (A − τB)−1Bx = (λ − τ)−1x, we impose the Galerkin condition
(cf. (2.1))

(A− τB)−1Bũ− (θ̃ − τ)−1ũ ⊥ V, ũ = Ũ c̃.

With V = (A− τB)∗(A− τB)U , the following are equivalent:

(i) (A− τB)−1Bũ− (θ̃ − τ)−1ũ ⊥ (A− τB)∗(A− τB)U ,

(ii) (A− τB)−1Bũ− (θ̃ − τ)−1ũ ⊥(A−τB)∗(A−τB) U ,

(iii) (A− θ̃B) ũ ⊥ (A− τB)U ,

(iv) U∗(A− τB)∗(A− τB)Uc̃ = (θ̃ − τ) U∗(A− τB)∗BUc̃;
Therefore, we are interested in the eigenpair(s) (ξ, c̃) of the projected generalized eigenproblem

(2.5) U∗(A− τB)∗(A− τB)Uc̃ = ξ U∗(A− τB)∗BUc̃,

for which ξ, playing the role of θ̃ − τ , should be of minimal magnitude. Similar to (2.4), this
gives

‖(A− τB) ũ‖ ≤ |ξ| ‖Bũ‖ ≤ |ξ| ‖BU‖,

which, again, “discourages imposters” [3, p. 296].
A justification of the harmonic approach for both the standard and generalized eigenvalue

problem is that eigenvectors that are present in the search space are detected indeed, see the
following proposition, which is a straightforward generalization of [3, p. 293].

Proposition 2.2. Let (λ, x) be an eigenpair of Ax = λBx, then it is also a harmonic
Ritz pair with respect to the search space span(x).

Proof. This follows for instance from substituting (λ, x) in characterization (iii). 2

We note that if x is part of a larger subspace U the harmonic approach may still have
difficulties selecting the right vector if there are (nearly) equal harmonic Ritz values, see [8].
This, however, rarely forms a problem in practical processes, since we can just continue the
subspace method by expanding the search space and performing a new extraction process.

3. The polynomial eigenvalue problem. Now we switch our attention to the poly-
nomial eigenvalue problem

(3.1) p(λ) x = (λlAl + λl−1Al−1 + · · ·+ λA1 + A0) x = 0,

where all matrices have size n × n. In this section, we summarize some known extraction
techniques: (standard) Rayleigh–Ritz and two-sided Rayleigh–Ritz.
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3.1. Rayleigh–Ritz for the polynomial eigenvalue problem. Given an approxi-
mate eigenvalue θ ≈ λ and an approximate eigenvector u ≈ x, the residual r is defined
by

r(θ, u) := p(θ) u = (θlAl + θl−1Al−1 + · · ·+ A0) u.

Then the Rayleigh–Ritz approach for the polynomial eigenvalue problem imposes the Galerkin
condition

p(θ) u ⊥ U ,

with u = Uc leading to the projected polynomial eigenproblem

(θlU∗AlU + θl−1U∗Al−1U + · · ·+ U∗A0U) c = 0,

which, as a low-dimensional problem, may for instance be solved using techniques employing
a companion matrix. For alternative extraction methods, we consider a Petrov–Galerkin
condition

p(θ) u ⊥ V,

where V 6= U is a suitably chosen test space. For every test vector v ∈ V this implies p(θ) u ⊥ v.
We will examine one option in the next subsection, and come back to the subject in Sections
4 and 6.

3.2. Two-sided Rayleigh–Ritz. We now argue that a search space for the left eigen-
vector is the best possible test space V in the following sense. Given any nonzero v ∈ V,
the equation v∗p(θ) u = 0 defines θ = θ(u, v) implicitly as a function of u and v. When
v∗p′(λ) x 6= 0, then by the Implicit Function Theorem we get [9]

(3.2)
∂θ

∂u
(x, v) = − v∗p(λ)

v∗p′(λ) x
.

So when we choose v = y, the left eigenvector of (3.1) satisfying y∗p(λ) = 0, and if y∗p′(λ) x 6=
0, then θ is stationary in the eigenvector point (x, y) with respect to changes in x (and y).

In practice we will not have the exact left eigenvector to our disposal, but we may try
to approximate both the left and the right eigenvector in the process, this is the essence of
two-sided subspace methods, as for instance two-sided Lanczos [10], [1, Ch. VIII] or two-
sided Jacobi–Davidson [11, 12, 9]. Equation (3.2) implies that if u is a first order accurate
approximation to the right eigenvector (that is, u = x + d, with ‖d‖ small), and v is a first
order accurate approximation to the left eigenvector (v = y + e, with ‖e‖ small), then θ(u, v)
is a second order accurate approximation to the eigenvalue (|θ − λ| = O(‖d‖ ‖e‖). However,
in the rest of the paper we will not consider two-sided methods and assume that we have no
information about the left eigenvector at hand.

4. Harmonic Rayleigh–Ritz for the polynomial eigenvalue problem. Assume
that we are interested in (interior) eigenpairs (λ, x) of (3.1), where λ is close to a known
target τ , and where p(τ) is nonsingular (otherwise τ is an eigenvalue). The aim of this section
is to generalize the harmonic Rayleigh–Ritz approach to the polynomial eigenproblem. First,
we use a simple Taylor expansion which we will write out for completeness: we have

p(τ) x = (p(τ)− p(λ))x

=
(∫ 1

0
d

dαp(α(τ − λ) + λ) dα
)

x

= (τ − λ)
(∫ 1

0 p′(α(τ − λ) + λ) dα
)

x.
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So

(4.1) ‖p(τ) x‖ ≤ µ1 |λ− τ |,

where

(4.2) µ1 = max
t∈[τ,λ]

‖p′(t)‖ := max
t∈[0,1]

‖p′(t(λ− τ) + τ)‖.

Moreover,

(p(τ)− (τ − λ)p′(τ))x = (τ − λ)
(∫ 1

0 (p′(α(τ − λ) + λ)− p′(τ)) dα
)

x

= (τ − λ)
(∫ 1

0

∫ 1
0

d
dβ p′(β(α(τ − λ) + λ− τ) + τ) dβ dα

)
x

= (τ − λ)2
(∫ 1

0 (α− 1)
∫ 1
0 p′′(β(α− 1)(τ − λ) + τ) dβ dα

)
x.

From this it follows that

‖p(τ) x− (τ − λ)p′(τ) x‖ ≤ 1
2 µ2 |λ− τ |2,

where

µ2 = max
t∈[τ,λ]

‖p′′(t)‖ := max
t∈[0,1]

‖p′′(t(λ− τ) + τ)‖.

Summarizing, we have

(4.3) p(τ) x = (τ − λ)p′(τ) x + Fx, ‖F‖ = O(|τ − λ|2).

Neglecting the O(|τ − λ|2) term for the moment, this yields

p(τ)−1p′(τ) x ≈ (τ − λ)−1x.

Therefore, when we look for eigenvalues close to τ , we can also search for eigenvalues with
large magnitude of p(τ)−1p′(τ). In the (Petrov–)Galerkin equation

p(τ)−1p′(τ) ũ− (τ − θ̃)−1ũ ⊥ V, ũ = Uc̃,

we want to choose V, such that it is unnecessary to work with the inverse of p(τ). With the
choice V = p(τ)U we get back (when including again the second order term Fu) the standard
Rayleigh–Ritz condition p(θ) u ⊥ U .

Therefore, also inspired by Section 2, we take V = p(τ)∗p(τ)U . This leads to the following
four equivalent conditions:

(i) p−1(τ)p′(τ) ũ− (τ − θ̃)−1ũ ⊥ p(τ)∗p(τ)U ,

(ii) p−1(τ)p′(τ) ũ− (τ − θ̃)−1ũ ⊥p(τ)∗p(τ) U ,

(iii) p(τ) ũ− (τ − θ̃)p′(τ) ũ ⊥ p(τ)U ,

(iv) U∗p(τ)∗p(τ)Uc̃ = (τ − θ̃)U∗p(τ)∗p′(τ)Uc̃.
Any pair (ξ, c̃) solving

(4.4) U∗p(τ)∗p(τ)Uc̃ = ξ U∗p(τ)∗p′(τ)Uc̃

satisfies (left-multiply by c̃∗ and use Cauchy–Schwarz)

(4.5) ‖p(τ) ũ‖ ≤ |ξ| ‖p′(τ) ũ‖ ≤ |ξ| ‖p′(τ)U‖.
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Here, ξ plays the role of τ− θ̃. Therefore, to ensure a minimal residual norm, we are interested
in the eigenpair of (4.4) with the smallest |ξ|; we call this approach the linearized harmonic
Rayleigh–Ritz method for polynomial eigenproblems. The word “linearized” reflects the fact
that we take the linear part of the Taylor series in (4.3). The vector ũ = Uc̃ is called a
linearized harmonic Ritz vector. Note that the linearized harmonic Ritz value θ̃ satisfies
(cf. (2.2))

θ̃ = τ − ‖p(τ) ũ‖2

ũ∗p(τ)∗p′(τ) ũ
.

For the practical computation of the linearized harmonic Ritz pair, we proceed as follows.
During the process, we compute the QR decomposition p(τ)U = QR incrementally (that is,
in every step add an extra column to Q and R) and hence cheaply. Then condition (iv) is
equivalent to the low-dimensional projected generalized eigenproblem

Q∗p′(τ)Uc̃ = ξ−1Rc̃

where we are interested in the maximal |ξ−1|; see [3, p. 294] for a similar formulation for
the standard eigenvalue problem. As the harmonic Ritz value θ̃ may be a dissatisfactory
approximation to the sought eigenvalue (see [4] for the standard eigenvalue problem), we may
subsequently determine a new approximate eigenvalue from the derived linearized harmonic
Ritz vector; see [13] for a number of possible alternatives to do this.

However, in the derivation of (4.4) we have neglected the second-order term involving F .
Reintroducing this term in characterization (iii) above, we get p(τ) ũ− (τ − θ̃)p′(τ) ũ−Fũ ⊥
p(τ)U , and this is exactly the Galerkin condition

(4.6) p(θ̃) ũ ⊥ p(τ)U ,

(cf. the two characterizations (iii) in Section 2) where we are interested in the θ̃ closest to τ .
We will call this the harmonic Rayleigh–Ritz method for polynomial eigenproblems.

Both the linearized harmonic method (4.4) and the harmonic method (4.6) reduce to (2.3)
and (2.5) in case of the standard and generalized eigenvalue problem, respectively. However,
the following result indicates that the non-linearized version may be more promising than the
linearized one.

Proposition 4.1. If (λ, x) is an eigenpair of p(λ) x = 0 then it is also a harmonic Ritz
pair with respect to the search space span(x).

Proof. This follows directly from substitution in (4.6).
Therefore, if an eigenvector is in the search space, the harmonic Rayleigh–Ritz method

will find it—unless we are in an unlucky (but not serious) circumstance, see the remarks after
Proposition 2.2. The linearized harmonic Rayleigh–Ritz method, however, will in general
miss the present exact eigenvector in the search space, as may easily be checked.

Of course, we are interested in the quality of the approximate eigenpair. Denote a per-
turbation of the polynomial p(θ) by ∆p(θ) := θl∆Al +θl−1∆Al−1 + · · ·+∆A0. The backward
error ζ(θ, u) of an approximate eigenpair (θ, u) can be defined as (see Tisseur [14])

ζ(θ, u) := min{ε : (p(θ) + ∆p(θ))u = 0, ‖∆Aj‖ ≤ ε ‖Ej‖, j = 1, . . . , l},

where the Ej are error matrices; in practice one often takes either Ej = I (corresponding to
absolute perturbations) or Ej = Aj (corresponding to relative perturbations). The backward
error ζ(θ) of an approximate eigenvalue θ can be defined as

ζ(θ) := min
‖u‖=1

ζ(θ, u).
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Then we have [14]

ζ(θ, u) = ‖r(θ, u)‖

/
l∑

j=1

θj ‖Ej‖ ,

and

ζ(θ) = σmin(p(θ))

/
l∑

j=1

θj ‖Ej‖ .

The pseudospectrum for the PEP can be defined as in Tisseur and Higham [15]

Λε(p) := {z ∈ C | ζ(z) ≤ ε}.

Then in terms of the pseudospectrum Λε(p) we have

θ ∈ Λζ(θ)(p).

So from (4.5) we get that the pair (τ, ũ), where ũ is the harmonic Ritz vector, has a backward
error with respect to absolute perturbations of at most

|ξ| ‖p′(τ) ũ‖
/

(1 + |τ | · · ·+ |τ |l) ≤ |ξ| ‖p′(τ)U‖
/

(1 + |τ | · · ·+ |τ |l) .

Also, the approximate eigenvalue τ has a backward error with respect to absolute perturba-
tions of at most |ξ|σmin(p′(τ)U)

/
(1 + |τ | · · ·+ |τ |l) .

5. Refined Rayleigh–Ritz. Another idea is to generalize refined Rayleigh–Ritz, where,
for a τ , one minimizes

‖Aû− τ û‖, û ∈ U , ‖û‖ = 1.

This τ can be either be a fixed target or the computed Ritz value in each step; the latter was
advocated by Jia [16] in the context of the Arnoldi method. Generalizing this idea to the
polynomial eigenproblem, we minimize

(5.1) ‖p(τ)û‖, û ∈ U , ‖û‖ = 1,

where again τ may be a fixed target or a Ritz value. Computationally, this approach amounts
to determining the smallest right singular vector ĉ of the tall and thin n×k matrix p(τ)U . In
line with refined Rayleigh–Ritz terminology, we call the minimizing vector û = Uĉ a refined
Ritz vector. Having this vector, we can determine an approximate eigenvalue along the lines
in [13]—as for the harmonic approach.

Taking the target in (5.1) instead of the Rayleigh quotient is often more sensible in the
beginning of the process, and has the additional advantage that the QR decomposition of
p(τ)U can be computed incrementally; since

‖p(τ)Uĉ‖ = ‖QR ĉ‖ = ‖R ĉ‖,

in this case we only have to determine the smallest right singular vector of the k × k upper
triangular matrix R in the kth step of the process.

This refined approach has the following equivalent characterizations:

(i) û = argminu∈U , ‖u‖=1 ‖p(τ) u‖ with θ̂ as minimum,

(ii) (p(τ)p(τ)∗)−1 V̂ ĉ− θ̂−2V̂ ĉ ⊥ V̂ := p(τ)U where θ̂−2 is maximal,

(iii) U∗p(τ)∗p(τ)Uĉ = θ̂2ĉ where θ̂2 is minimal.
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The next theorem is a generalization of a part of [3, p. 290].
Theorem 5.1. For the residual of the refined Ritz vector we have

‖p(τ)û‖ ≤ µ1 |τ − λ|+ ‖p(τ)‖ sin∠(U , x)√
1− sin2 ∠(U , x)

,

where µ1 is as in (4.2).
Proof. Decompose x = γUxU + σUeU , where xU := UU∗x/‖UU∗x‖ is the orthogonal

projection of x onto U , ‖xU‖ = ‖eU‖ = 1, γU = cos ∠(U , x), and σU = sin ∠(U , x). Since
p(τ) xU = (p(τ) x−σUp(τ)eU )/γU , we have by the definition of a refined Ritz vector and (4.1)

‖p(τ)û‖ ≤ ‖p(τ) xU‖ ≤ (µ1 |τ − λ|+ σU ‖p(τ)‖) /γU .

2

This theorem indicates a disadvantage of the refined approach: in order to have ‖p(τ)û‖ →
0, we not only need sin(U , x) → 0 (the search space U should contain x), but also τ → λ
(the target must converge to the wanted eigenvalue). Indeed, as can be checked, if x ∈ U
but τ 6= λ, then the refined extraction will in general not select x as best approximate
eigenvector. The practical difficulty of taking a varying τ → λ is that it is computationally
more expensive: we have to recompute p(τ)U (and possibly its QR decomposition) whenever
τ changes. Therefore, it could be a good idea to change the target τ only every now and
then, for instance, change it to the Rayleigh quotient at a restart of the method if we are
close enough to the eigenvalue (indicated by a small ‖r‖). At a restart, we start over with
Unew ⊂ Uold with a basis of the form Unew := UoldC, where Uold has size n×maxdim and C has
orthonormal columns with size maxdim× mindim (see also Table 7.2). In this case, we would
have to recompute a QR decomposition of p(τ)UC = QRC in any case, so this is a relatively
good point to completely recompute p(τ)U and its QR decomposition for a different τ .

As an alternative, we can use the refined extraction in the beginning of the process and
change to the harmonic extraction when converging; see also the numerical experiments in
Section 7.

We remark that the difficulty of the refined approach sketched above is also present in
the refined approach for the standard and generalized eigenproblem: asymptotically, one has
to change the target to ensure convergence to the wanted eigenpair.

6. Subspace expansion for the polynomial eigenvalue problem. We take a new
look at the Jacobi–Davidson subspace expansion for the polynomial eigenvalue problem (see
[11] and [9] for previous work). Assume that we have an approximate eigenpair (θ, u), where
the residual r = p(θ) u is orthogonal to a certain test vector v. We are interested in an update
s ⊥ u such that

p(λ)(u + s) = 0,

that is, u + s is a multiple of the true eigenvector. Rewriting this equation in terms of the
known approximate eigenvalue θ gives

(6.1) p(θ) s = −p(θ) u + (p(θ)− p(λ))u + (p(θ)− p(λ)) s.

We will neglect the third term on the right-hand side of (6.1), which is—under a mild
assumption—of second order (O(‖s‖2)) as is shown in the next lemma.

Lemma 6.1. Let v be a test vector with r ⊥ v. If v∗p′(λ) x 6= 0 then |λ− θ| = O(‖s‖).
Proof. This follows directly from v∗p(λ)(u+s) = 0, v∗p(θ) u = 0, v∗p′(λ) x 6= 0, and (3.2).
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We note that the condition v∗p′(λ) x 6= 0 is not unnatural: if we take for v the left
eigenvector y, then y∗p′(λ) x = 0 implies that the condition number of the eigenvalue λ is
infinite, see [14, Th. 5].

In (6.1), we now would like to project out the term (p(θ)−p(λ))u, rather than disregarding
it, but the difficulty is that p(λ) u is unknown. Therefore, we approximate the term by a
multiple of a known quantity

(p(θ)− p(λ))u ≈ (θ − λ) p′(θ) u,

and we ensure that we project out the factor p′(θ) u. Actually, by doing this we disregard
only second order terms, which forms the basis for a quadratically convergent method, see
Proposition 6.2. We also want to keep the information contained in the residual r = p(θ) u.
Since we assumed that r ⊥ v, the projection P = I − p′(θ) uv∗

v∗p′(θ) u satisfies our wishes; a possible
correction equation is then

(6.2)
(

I − p′(θ) uv∗

v∗p′(θ) u

)
p(θ) (I − uu∗) s = −p(θ) u, s ⊥ u.

We may take the Rayleigh quotient or one of the other alternatives mentioned in [13] for
θ. The vector v may depend on this choice. For instance, if we take the ordinary Rayleigh
quotient θ (the most appropriate root of u∗p(θ) u = 0), then the residual r is orthogonal to u
and we may take v = u.

It may be advantageous to replace the θ on the left-hand side of (6.2) by τ for two different
reasons:

• in particular in the beginning of the process, the target τ will often be more accurate
than the Rayleigh quotient or any other of the approximations in [13];

• the computation of p′(τ) u for a fixed τ may be a bit cheaper than that of p′(θ) u for
a varying θ, in particular in combination with the linearized harmonic approach of
Section 4, where we already have to compute p′(τ)U .

To determine what “the beginning of the process” is, we can monitor the residual norm. As
long as ‖r‖ is larger than a certain parameter fix, we use the target τ in (6.2), after which
we switch to a moving approximation θ; see also Algorithm 1 in the next section.

The following proposition states conditions under which the Jacobi–Davidson method,
where we take v = u, has asymptotically quadratic convergence.

Proposition 6.2. Suppose the Jacobi–Davidson method for the polynomial eigenvalue
problem, where we solve the correction equation (6.2) exactly, converges to an eigenvalue
λ with left and right eigenvector y and x, respectively. If λ is simple, x∗p′(λ) x 6= 0, and
y∗p′(λ) x 6= 0, the method converges asymptotically quadratically.

Proof. Denote P = I − p′(θ) uu∗

u∗p′(θ) u . While the true update s ⊥ u satisfies (cf. (6.1))

(6.3) Pp(θ)Ps = −r + P (p(θ)− p(λ))u + P (p(θ)− p(λ)) s,

for the computed update s̃ ⊥ u we have

Pp(θ)P s̃ = −r.

(Note that compared with (6.2), we have replaced the projection I − uu∗ by P , but since
s ⊥ u and s̃ ⊥ u, this is equivalent.) Therefore,

Pp(θ)P (s− s̃) = P (p(θ)− p(λ)) u + P (p(θ)− p(λ)) s.

Because of the assumption and Lemma 6.1, the last term is O(‖s‖2). For the second term we
have similar to (4.3) and using Lemma 6.1

‖P (p(θ)− p(λ))u‖ = ‖PFu‖ = O(|θ − λ|2) = O(‖s‖2).
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To make sure that ‖s− s̃‖ = O(‖s‖2), the last part of the proof is to show that the operator

(6.4)
(

I − p′(λ) xx∗

x∗p′(λ) x

)
p(λ)

(
I − p′(λ) xx∗

x∗p′(λ) x

)
is an invertible operator from x⊥ to x⊥. Suppose therefore that this operator maps z ⊥ x to 0.
Then it follows that p(λ)z = αp′(λ) x for an α ∈ C. Left multiplying by the left eigenvector
gives 0 = y∗p(λ)z = αy∗p′(λ) x. Because of the assumption, we must have α = 0. So
p(λ)z = 0 and since z ⊥ x and the assumption that λ is a simple eigenvalue, we have z = 0.
Therefore, we have proved the injectivity of (6.4); the bijectivity follows from comparing
dimensions.

We remark that for a two-sided variant of Jacobi–Davidson (that is, the test vector v
converges to the left eigenvector y), the condition x∗p′(λ) x 6= 0 is no longer necessary.

The following proposition proves what is often experienced in practice: inexact Jacobi–
Davidson typically converges asymptotically linearly. By “inexact” we mean that the correc-
tion equation is solved until the residual norm is reduced by a fixed factor.

Proposition 6.3. We assume the same hypotheses as in Proposition 6.2, only now we
solve the correction equation (6.2) inexactly, such that s̃ ⊥ u satisfies

‖Pp(θ)P s̃ + r‖ ≤ η ‖r‖,

for η < 1. If η < κ−1, where κ is the condition number of the operator in (6.4), seen
as operator from x⊥ to x⊥, the asymptotic convergence of the Jacobi–Davidson method is
linear.

Proof. In this case, we have

Pp(θ)P (s− s̃) = η1 ‖r‖ f + P (p(θ)− p(λ))u + P (p(θ)− p(λ)) s,

for a certain vector f ⊥ u, ‖f‖ = 1, and 0 ≤ η1 ≤ η. In the previous proposition we saw
that the last two terms on the right-hand side are O(‖s‖2), and that the operator Pp(θ)P is
asymptotically invertible. Moreover, from (6.3) it is clear that, neglecting higher order terms,
‖r‖ ≤ ‖Pp(λ)P‖‖s‖. Therefore, ‖s− s̃‖ ≤ η κ ‖s‖+ higher order terms, where κ denotes the
condition number of (6.4).

Rather than a fixed residual reduction, we will take a fixed number of inner iterations to
solve the correction equation (6.2) in the numerical experiments in the following section.

7. Numerical experiments. The following experiments were carried out in Matlab.
For all experiments we first put the “seed” to 0 by the command “rand(’seed’,0)” so that
the results are reproducible.

Experiment 7.1. To get some feeling for the different extractions, we first take 100×100
matrices A2, A1, and A0 with elements taken randomly from a normal distribution over [0, 1].
Figure 7.1 shows the 200 eigenvalues. Such an eigenvalue distribution (one, or a few outliers)
is characteristic for random matrices and an interesting phenomenon in its own right (for
work on the eigenvalues of standard eigenvalue problems, see Edelman [17]). Also indicated
in Figure 7.1 are the targets τ = −5 and τ = −2.5.

We build up a four-dimensional search space U to find the eigenpair corresponding to
the eigenvalue λ = −2.69 · · · , which is the eigenvalue closest to both targets. The first basis
vector of U is taken to be u1 = x + εw, where x is the corresponding eigenvector and w is a
random vector. We complement U by three random vectors. For ε we take the values 10−j

for j = 1, . . . , 5, meaning the search space ranges from bad to good quality. Furthermore, the
two different targets τ = −5 and τ = −2.5 represent a not very accurate and a more accurate
target, respectively.
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Fig. 7.1. The eigenvalues of the 100× 100 quadratic eigenvalue problem and targets τ = −5 and τ = −2.5.

Table 7.1
Extraction results for 100 × 100 random matrices, targets τ = −5 and τ = −2.5, and search spaces of

different quality.

target ∠(U , x) 3.2e− 5 3.2e− 4 3.2e− 3 3.2e− 2 3.1e− 1
standard 1.6e− 4 1.6e− 3 1.5e− 2 1.0e− 1 4.4e− 1

−5 lin-harmonic 6.1e− 3 6.1e− 3 6.4e− 3 3.3e− 2 4.2e− 1
harmonic 3.3e− 5 3.3e− 4 3.3e− 3 3.3e− 2 3.4e− 1
refined 4.8e− 2 4.8e− 2 4.8e− 2 5.8e− 2 3.2e− 1

−2.5 lin-harmonic 1.7e− 4 3.5e− 4 3.3e− 3 3.4e− 2 1.4e− 0
harmonic 3.3e− 5 3.3e− 4 3.3e− 3 3.4e− 2 1.4e− 0
refined 6.7e− 3 6.7e− 3 7.5e− 3 3.4e− 2 3.2e− 1

Table 7.1 gives for τ = −5 and τ = −2.5 the results of the four different extraction
processes. We display ∠(U , x) (this gives the best possible approximate vector in U) and
∠(u, x), the angle of the approximate eigenvector with the exact eigenvector.

It turns out that the results of the standard extraction are independent of the tar-
get τ ; the other extraction methods do depend on τ . For an inaccurate search space, say
∠(U , x) ≈ 10−1, the refined approach is the best, having a near-optimal extraction, which
means ∠(u, x) ≈ ∠(U , x). For better search spaces, the refined approach does not improve
any longer, as already expected from the discussion after Theorem 5.1, and the harmonic and
linearized harmonic approach do the best job. “Asymptotically”, that is, for quite accurate
search spaces, the harmonic approach is the best with an almost optimal extraction, with the
standard extraction following in second place but with a clear difference.

These results suggest to combine the strengths of the different extraction methods, giving
the JDPOLY algorithm as outlined in Algorithm 1.

The “rgs” in Line 3 stands for repeated Gram–Schmidt or any other numerical stable
way to form an orthonormal basis for the search space. In Line 11/12, we have chosen v = u
in the correction equation (6.2), corresponding to looking for an orthogonal updates to an
approximate eigenvector. Table 7.2 gives an oversight of some of the available parameters
and the default value.

Experiment 7.2. We test the JDPOLY algorithm for the above problem with target
τ = −5 and the four different extraction methods. An inexact LU preconditioner for τ2A2 +
τA1 + A0 with drop tolerance 0.01 is used. Inspired by the previous experiment, we switch
from the linearized harmonic extraction and the refined extraction to the harmonic extraction
if ‖r‖ ≤ threshold; we test various values for this parameter, see Table 7.3.
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Algorithm 1 Jacobi–Davidson for the polynomial eigenvalue problem
Input: A device to compute Ax for arbitrary x, a starting vector u1, a target τ ,

a tolerance ε, and parameters threshold and fix
Output: An approximate eigenpair (θ, u) with θ ≈ τ
1: s = u1

2: for k = 1, 2, . . . do
3: rgs(Uk−1, s) → Uk

4: Extract a Ritz pair (θ, c) close to τ using:
5: harmonic (or standard) extraction (‖r‖ ≤ threshold)
6: harmonic (or refined, linearized harmonic, standard) extraction (‖r‖ > threshold)
7: u = Ukc
8: r = p(θ) u
9: Stop if ‖r‖ ≤ ε

10: Solve (approximately) an s ⊥ u from:
11:

(
I − zu∗

u∗z

)
p(θ)(I − uu∗) s = −r, z = p′(θ) u, (‖r‖ ≤ fix)

12:
(
I − zu∗

u∗z

)
p(τ)(I − uu∗) s = −r, z = p′(τ) u, (‖r‖ > fix)

13: end for

Table 7.2
Parameters of the Jacobi–Davidson method for the polynomial eigenvalue problem with their default value.

Parameter Meaning Default value

tol (absolute) tolerance for the outer iteration 10−6

maxit maximum number of outer iterations 1000
extraction extraction process harmonic
target complex number of interest largest |λ|
mindim dimension search spaces after restart 10
maxdim maximum dimension search spaces 20
maxit inner maximum number of inner iterations 10
inner tol tolerance inner iteration 0
fix fix target until ‖r‖ ≤ fix 0.01
u1 initial search space random vector
M1, M2 preconditioner M = M1M2 (possibly in factored form) M = I
Mtype left or right preconditioning left
verbosity output desired no

After extraction of an approximate eigenpair, all extraction methods except the standard
approach employ the “two-dimensional Galerkin method” [13] to determine a more accurate
eigenvalue (for the standard extraction it turns out in practice that this extra step is generally
unfavorable since a good quality vector is required).

Table 7.3
Number of iterations for a random 100× 100 matrix with target τ = −5.

Extraction threshold Iterations

Standard — 47
Lin-harmonic — —

1 20
Harmonic — 20
Refined — —

1 62
5 20
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The harmonic approach takes much fewer iterations (20) than the standard extraction
(47). The linearized harmonic and refined extraction in themselves do not converge in 100
outer iterations; indeed, this is what we expect for a fixed target as was predicted in Sections 4
and 5: using a fixed target they generally do not recognize an eigenvector that is present in
the search space.

However, if we combine them with the harmonic extraction, that is, switch to the harmonic
extraction as soon as ‖r‖ < threshold, they converge much faster. Especially for the refined
extraction we have to select a reasonably large threshold, which means that we switch to
the harmonic extraction quite early in the process; not surprisingly, the combined approaches
behave much like the harmonic extraction. As can be seen, the new (combination) approaches
converge much faster than the standard extraction.

Experiment 7.3. Using the command sprand, we create random 1000× 1000 matrices
A2, A1, and A0 with density ≈ 10% and condition numbers κ = O(105). With the threshold
value 1, target τ = 0 and an ILU preconditioner with drop tolerance δ = 0.001, JDPOLY
with harmonic extraction converges in 11 outer iterations versus the standard extraction in
12 iterations. However, if we solve the correction equation less accurately, so that a good
extraction process may become more important, the difference becomes larger: for 5 inner
iterations instead of 10, the number of outer iterations is 11 (harmonic) and 14 (standard); if
we expand the search space by the preconditioned residual (no inner iterations), the number
of outer iterations is 17 (harmonic) versus 27 (standard). This experiment indicates that
the harmonic extraction may be an important advantage if the quality of the search space
expansion is modest, for instance because a (good) preconditioner is unavailable.

Experiment 7.4. Finally, we consider an example arising from a damped gyroscopic
system as in [18]: define m×m tridiagonal matrices

B2 = tridiag(1, 4, 1)/6, B1 = tridiag(1, 0,−1),
B0 = tridiag(1,−2, 1), C1 = tridiag(1, 2, 1)

where m = 90 and the 8100× 8100 matrices

A2 = c11Im ⊗B2 − c12B2 ⊗ Im,

A1 = c21Im ⊗B1 − c22B1 ⊗ Im + 10−3(c41Im ⊗ C1 − c42C1 ⊗ Im),
A0 = c31Im ⊗B0 − c32B0 ⊗ Im,

where c11 = 1, c12 = 1.3, c21 = 0.1, c22 = 1.1, c31 = 1, c32 = 1.2, c41 = 1.05, and c42 = 0.9.
With target τ = 0, tol = 10−8, and an ILU preconditioner (δ = 0.001), the standard
extraction did not converge to the required tolerance in 100 iterations; the harmonic, lin-
earized harmonic, and refined extractions (the last two with threshold=1) took 48, 50, and
60 steps, respectively. From this experiment it seems that the harmonic extraction may
asymptotically also be more accurate than the standard extraction, as was also suggested by
Experiment 7.1.

8. Conclusions. We reviewed the harmonic Rayleigh–Ritz extraction for the standard
and generalized eigenvalue problem, and discussed the problem of subspace extraction for the
polynomial eigenvalue problem. While this paper focuses on how to extract an approximate
vector from a search space, we refer to [13] for methods to derive an approximate eigenvalue
from the approximate eigenvector.

We introduced harmonic Rayleigh–Ritz (two variants) and refined Rayleigh–Ritz for the
polynomial eigenvalue problem. The harmonic approaches are slightly more expensive than
the standard approach, but for interior eigenpairs in particular the (non-linearized) harmonic
approach is theoretically more sound and numerically gives a better subspace extraction than
the standard Rayleigh–Ritz extraction results in almost all experiments. The refined approach
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may be worthwhile for a search space of poor quality, as is typical for the beginning of the
process. To retain accuracy for the refined extraction towards the end of the process, we may
have to let the target converge to the desired eigenvalue, for instance by setting the target
equal to the Rayleigh quotient when restarting, or switch to the harmonic approach.

The linearized harmonic extraction has the advantage that we have a bound (4.5) on the
residual norm; on the other hand, an exact eigenpair does not satisfy (4.4) in general. For
the non-linearized extraction the situation is exactly opposite: there is no direct upper bound
for the residual, but an exact eigenpair satisfies (4.6). This last property may be considered
important, and numerical experiments confirm that the (non-linearized) harmonic approach
is often the most reliable.

We embedded the subspace extraction techniques in a Jacobi–Davidson method, with
resulting quadratic (exact) or linear (inexact) convergence.
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