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HARMONIC CALCULUS ON FRACTALS—A MEASURE
GEOMETRIC APPROACH II

M. ZÄHLE

Abstract. Riesz potentials of fractal measures µ in metric spaces and their
inverses are introduced. They define self–adjoint operators in the Hilbert space
L2(µ) and the former are shown to be compact.

In the Euclidean case the corresponding spectral asymptotics are derived
with Besov space methods. The inverses of the Riesz potentials are fractal
pseudodifferential operators. For the order two operator the spectral dimension
coincides with the Hausdorff dimension of the underlying fractal.

Introduction

In part I of this paper [7] the Laplace operator ∆µ with respect to an atomless
finite Borel measure µ on an interval (a, b) is introduced by

∆µ =
(

d

dµ

)2

.

Then g ∈ L2(µ) solves ∆µg = f for f ∈ L2(µ) with boundary conditions g(a) = ga

and g(b) = gb if and only if

(1) g(x) = gb

µ
(
(a, x)

)
µ
(
(a, b)

) + ga

µ
(
(x, b)

)
µ
(
(a, b)

) −
∫ b

a

Gµ(x, y) f(y) µ(dy),

where

Gµ(x, y) :=

{
µ
(
(a, x)

)
µ
(
(y, b)

)
if x ≤ y,

µ
(
(a, y)

)
µ
(
(x, b)

)
if x ≥ y

is the corresponding Green’s function for the Dirichlet boundary problem. In [24]
it is indicated that the properties of ∆µ and an associated Dirichlet form may be
derived from those of the Euclidean case, where µ = λ for the Lebesgue measure λ
on (a, b), by a suitable scaling of the space according to the measure µ. In particular,
Weyl’s spectral exponent µk � k2 of the eigenvalues µk of −∆µ obtained in part I
for Cantor–type measures µ remains valid for arbitrary µ.

Freiberg [6] extended the approach of part I to the operators

(2) ∆µν :=
d

dµ

d

dν
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for a second measure ν of the above type. Here the analogue of (1) reads

(3) g(x) = gb

ν
(
(a, x)

)
ν
(
(a, b))

+ ga

ν
(
(a, x)

)
ν
(
(a, b))

−
∫ b

a

Gν(x, y) f(y) µ(dy)

with Green’s function

Gν(x, y) :=

{
ν
(
(a, x)

)
ν
(
(y, b)

)
if x ≤ y,

ν
(
(a, y)

)
ν
(
(x, b)

)
if x ≥ y.

The special case of Cantor measures µ and ν = λ was considered in Fujita [8] in
connection with quasidiffusions on the real line. Strichartz [21], §2, demonstrates
how Fujita’s operator fits into the model of Kigami [12], who constructed the Lapla-
cian −∆µλ by means of limits in finite difference schemes on the prefractals in the
self–similar model.

In Kigami’s higher–dimensional approach and the well–known equivalent sto-
chastic constructions the spectral dimension of the Laplace operator and the Haus-
dorff dimension of the fractal support of µ differ. (References to part of the numer-
ous literature on this topic may be found in part I.) By physical reasons it makes
sense to ask for variants of the Laplace operator in a suitable metric where this
difference disappears (Berry conjecture; see the discussion in Kigami and Lapidus
[13]). In the case of the line it turns out that for these purposes the Lebesgue differ-
entiation d

dν = d
dλ = d

dx in (2) is to be replaced by a certain fractional differentiation(
d
dx

)α
for suitable α.

In the present paper we start to treat the case of R
n with n > 1 instead of the

line. Some measure geometric motivations for our approach may be found in the
survey paper [25]. Part of the theory will be developed in section 1 for general
metric spaces. For the Euclidean case and Ahlfors d–regular finite Borel measures
µ with compact support Γ, where 0 < d < n, we interpret the fractal d–set Γ as
the boundary of the closure of its open complement. As in differential geometry
of manifolds we postulate that this boundary has no boundary. Therefore we will
deal with boundary free problems, and the father of our ‘Laplacian’ is the Euclidean
boundary free variant ∆ with Green’s functions G(x, y) = const |x − y|−(n−2) for
−∆. It is well known that the fractional powers (−∆)−σ/2 =: Iσ, σ > 0, possess
the Green’s functions Gσ(x, y) = const |x − y|−(n−σ), i.e.,

Iσ f(x) := const
∫

|x − y|−(n−σ) f(y) dy .

These are the Riesz potentials of order s which have been studied, e.g. in Adams
and Hedberg [1], Rubin [18] and Samko, Kilbas and Marichev [19] (see also the
references therein). By Fourier transformation methods Iσ may be extended to
σ ∈ R and distributions f .

If we consider a certain trace in the sense of Jonsson and Wallin [11], Jonsson
[10] and Triebel [22] of a modification Ĩσ of Iσ on the fractal d–set Γ, we arrive at
the Riesz potential of order s with respect to the measure µ:

(4) Is
µ f(x) := const

∫
|x − y|−(d−s) f(y) µ(dy),

f ∈ L2(µ), where σ = s + n − d and n − d is the fractal defect (Theorem 3.1).
The modification Ĩσ is chosen such that its kernel coincides with the Riesz kernel
on Γ and with a Bessel type kernel at infinity. By means of the trace property we
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infer that the image Is
µ

(
L2(µ)

)
lies in the fractal Besov space Bs

2,∞(Γ). The Fourier
analytic background from the measure theoretic side is closely related to the papers
of Strichartz [20] and Lau [14].

Moreover, Is
µ is invertible and positive (Theorem 3.2). Thus, considering Is

µ :
L2(µ) → Ls

2(µ) as an isometry, the space Ls
2(µ) of Riesz potentials of order s

becomes a Hilbert space. The inverses Ds
µ := (Is

µ)−1 may be interpreted as nonlocal
fractal pseudodifferential operators.

Using a method of Triebel [22] developed for other operators, we obtain the
spectral asymptotics k−s/d for the Riesz potentials Is

µ (Theorem 3.3). In particular,
for the eigenvalues µk of D2

µ the Berry conjecture µk � k2/d holds true.
Note that (4) is a boundary free higher dimensional variant of (3) where ν

(
(x, y)

)
:= y − x is to be replaced by (y − x)α for certain α.

In distinction to approaches with boundaries (see, e.g., Metz [16], Kigami and
Lapidus [13] and Denker and Sato [2]) the unique harmonic function with respect
to the Laplace operator is identically zero. This simplifies the study of related
(nonlinear) pseudodifferential equations. (See Falconer [4] and Falconer and Hu [5]
for the Laplace operators on the variational fractals of Mosco [17].) According to the
above definitions, in our case such fractal differential equations may be transformed
into traditional integral equations, and existence of a solution can be proved by
compactness arguments. This, as well as the existence of associated Dirichlet forms
and Markov processes in the sense of Fukushima, Oshima and Takeda [9], will be
shown elsewhere. In order to obtain Laplace type operators of this kind, one has
to change the metric in the Euclidean case.

In sections 1 and 2 we investigate the more general case of s–potentials,

(5) Ps
µ f(x) :=

∫
�(x, y)−s f(y) µ(dy), f ∈ L2(µ),

for Ahlfors (upper) d–regular finite measures µ in metric spaces (X, �), where 0 <
s < d. Riesz potentials and ‘pseudofifferential’ operators are derived notions. In
particular, we show that Ps

µ is a self–adjoint compact operator in the Hilbert space
L2(µ).

Recall that the s–potential functions Us
µ(x) :=

∫
�(x, y)−s dµ(y) play an im-

portant role in fractal dimension theory. Furthermore, straightforward calculation
shows that the Riesz potential function of order α considered by Maly and Mosco
[15] in the spirit of Lagrangian theory for d–regular measures µ is equivalent to
our Ud−α

µ . Thus, we obtain close relationships to former approaches to problems
of analysis on fractals.

1. s–potentials of Borel measures in metric spaces

Throughout this paper let (X, �) be a metric space, let d > 0, and let µ be a
finite Borel measure on X. For simplicity we frequently assume that µ(X) = 1 .

Definition. µ is said to be Ahlfors upper d–regular if there is a constant c1 > 0
such that

(1.1) µ
(
B(x, r)

)
≤ c1 rd

for any r > 0 and x ∈ supp µ, where B(x, r) denotes the closed ball with centre x
and radius r. If

(1.2) c2 rd ≤ µ
(
B(x, r)

)
≤ c1 rd
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3410 M. ZÄHLE

for some constants c1, c2 > 0, any 0 < r < r0 (for some r0) and x ∈ supp µ, then µ
is called Ahlsfors d–regular (briefly a d–measure).

The upper density comparison theorem implies that any d–measure µ is equiv-
alent to Hausdorff measure Hd restricted to the support of µ. (This is well known
from the Euclidean case and proved by Edgar [3], 1.5.14, for metric spaces.)

Proposition 1.1. If µ is Ahlfors upper d–regular and 0 ≤ s < d, then we have∫
�(x, y)−s µ(dy) ≤ 2 + c1 s(d − s)−1 =: c(s)

for all x ∈ supp µ.

The proof is well known from the Euclidean case. For completeness we will
repeat it here:

For x as above consider mx(r) := µ(B(x, r)) as the distribution function of a
normed measure on (0, +∞) and decompose∫

�(x, y)−s µ(dy) =
∫ ∞

0

r−s dmx(r)

=
∫ 1

0

r−s dmx(r) +
∫ ∞

1

r−s dmx(r) ≤
∫ 1

0

r−s dmx(r) + 1

= r−s mx(r)
∣∣∣∣1
0

+ s

∫ 1

0

r−s−1 mx(r) dr + 1

(by Fubini)

≤ 1 − lim
r↘0

r−s mx(r) + s

∫ 1

0

r−s−1 c1 rd dr + 1

(by (1.1))

= 2 − 0 + c1 s(d − s)−1 rd−s

∣∣∣∣1
0

= 2 + c1 s(d − s)−1.

�

Remark. In capacity theory and fractal geometry

Us
µ(x) =

∫
�(x, y)−s µ(dy)

is called an s–potential function and its mean value

Es
µ :=

∫
Us

µ(x) µ(dx) =
∫∫

�(x, y)−s µ(dy) µ(dx)

an s–energy of the measure µ.

Thus, we have proved that the s–potential functions of µ are bounded. Moreover,
we infer the following uniform integrability of the kernel �(x, ·)−s:

Proposition 1.2. Under the conditions of Proposition 1.1 we have for any Borel
set A ⊂ X ∫

A

�(x, y)−s dµ(y) ≤ c(sp)1/p µ(A)1/q

at (µ–almost) all x ∈ supp µ, if p, q ≥ 1, 1
p + 1

q = 1 and sp < d.
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Proof. The Hölder inequality implies∫
A

�(x, y)−s µ(dy) ≤
(∫

�(x, y)−sp µ(dy)
)1/p

µ(A)1/q.

Then Proposition 1.1 yields the assertion. �

Finally, the s–potentials are continuous:

Proposition 1.3. If µ is upper d–regular and 0 < s < d, then we have

lim
�(x,z)→0

∫ ∣∣ �(x, y)−s − �(z, y)−s
∣∣ µ(dy) = 0

uniformly in (x, z).

Proof. For fixed δ > 0 we obtain∫ ∣∣�(x, y)−s − �(z, y)−s
∣∣ µ(dy)

=
∫
{�(x,y)>δ}∩{�(z,y)>δ}

∣∣�(z, y)s − �(x, y)s
∣∣

�(x, y)s �(z, y)s
µ(dy)

+
∫
{�(x,y)≤δ}∪{�(z,y)≤δ}

∣∣ �(x, y)−s − �(z, y)−s
∣∣ µ(dy) .

The first summand tends to 0 as �(x, z) → 0 uniformly in x, z. The second summand
does not exceed∫

{�(x,y)≤δ}

(
�(x, y)−s + �(z, y)−s

)
µ(dy)

+
∫
{�(z,y)≤δ}

(
�(x, y)−s + �(z, y)−s

)
µ(dy)

≤ const
(
µ {y : �(x, y) ≤ δ}1/q + µ {y : �(z, y) ≤ δ}1/q

)
≤ const δd/q

for any x, z by Proposition 1.2 and the upper d–regularity of µ. Letting δ → 0 we
conclude the assertion. �

Propositions 1.1–1.3 enable us to study properties of the integral operator

(1.3) Ps
µf(x) :=

∫
�(x, y)−s f(y) µ(dy)

on the Hilbert space L2(µ) of square integrable, real functions f on X with scalar
product 〈f, g〉µ :=

∫
fg dµ. It turns out that for µ and s as before Ps

µ is a bounded
map from L2(µ) into L2(µ). Moreover, we have the following.

Theorem 1.4. If µ is upper d–regular and 0 < s < d, then Ps
µ is determined, and

the image set of the unit ball Bµ in L2(µ) under the mapping Ps
µ is in L2(µ)

(i) equibounded,
(ii) equiintegrable,
(iii) equicontinuous if X = R

n.
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Proof. For f ∈ Bµ and any Borel set A ⊂ X we get by the Cauchy–Schwarz
inequality applied to the normed measure Us

µ(x)−1 �(x, y)−s µ(dy):

∫
A

(∫
f(y) �(x, y)−s µ(dy)

)2

µ(dx)

≤
∫

A

∫
f(y)2 �(x, y)−s µ(dy) Us

µ(x) µ(dx)

=
∫

f(y)2
∫

A

�(x, y)−s Us
µ(x) µ(dx) µ(dy)

≤
∫

f(y)2 µ(dy) sup
x

Us
µ(x) sup

y

∫
A

�(x, y)−s µ(dx)

≤ c(s) c(sp)1/p µ(A)1/q

in view of Propositions 1.1 and 1.2.
This proves (i) and (ii). For (iii) we similarly estimate∫ (∫

f(y) |x − y|−s µ(dy) −
∫

f(y) |x − u − y|−s µ(dy)
)2

µ(dx)

=
∫ (∫

f(y)
(
|x − y|−s − |x − u − y|−s

)
µ(dy)

)2

µ(dx)

≤
∫∫

f(y)2 k(x, u)
∣∣|x − y|−s − |x − u − y|−s

∣∣ µ(dy) µ(dx)

≤ 2 sup
x

Us
µ(x) sup

y

∫ ∣∣|x − y|−s − |x − u − y|−s
∣∣ µ(dx)

∫
f(y)2 µ(dy),

where k(x, u) =
∫ ∣∣|x− y|−s − |x−u− y|−s

∣∣ µ(dy) ≤ Us
µ(x)+Us

µ(x−u). According
to Proposition 1.1, Us

µ is bounded by c(s). It remains to apply Proposition 1.3 as
u → 0. �

For higher order integrable functions the following uniform continuity property
holds true.

Proposition 1.5. If µ is upper d–regular, 0 < s < d, and f ∈ Lr(µ) with 1
r + 1

t =
1, st < d, then the image function Ps

µf is everywhere determined and uniformly
continuous on supp µ.

Proof. The Cauchy–Schwarz inequality and Proposition 1.1 yield the first part of
the assertion. Similarly, one obtains for any x ∈ supp µ∣∣∣∣∫ �(x, y)−s f(y) µ(dy) −

∫
�(z, y)−s f(y) µ(dy)

∣∣∣∣
≤

(∫ ∣∣�(x, y)−s − �(z, y)−s
∣∣t µ(dy)

)1/t

‖f |Lr(µ)‖ .

Thus, it remains to apply the arguments of the proof of Proposition 1.3 with st
instead of s when using Proposition 1.2. �
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One of the basic related properties of the s–potential Ps
µ is its compactness:

Theorem 1.6. For upper d–regular µ and 0 < s < d the operator

Ps
µ : L2(µ) → L2(µ)

is compact.

Proof. We have to show that any sequence Ps
µ fn with fn from the unit ball Bµ

contains a subsequence converging in L2(µ). Since L2(µ) is a Hilbert space it is
locally sequentially weakly compact. Choosing a subsequence we may assume that

lim
n→∞

〈fn, g〉µ = 〈f, g〉µ , g ∈ L2(µ) ,

for some limit function f ∈ Bµ. In order to prove that Ps
µ fn converges to P s

µ f in
L2(µ) we estimate for any δ > 0,(∫ (∫

(fn(y) − f(y)) �(x, y)−s µ(dy)
)2

µ(dx)

)1/2

≤
∫ ( ∫

�(x,y)>δ

(
(fn(y) − f(y)) �(x, y)−s µ(dy)

)2
µ(dx)

)1/2

+

(∫ ∫
�(x,y)≤δ

(
(fn(y) − f(y)) �(x, y)−s µ(dy)

)2
µ(dx)

)1/2

.

For fixed δ the first summand on the right–hand side tends to zero as n → ∞, since
the inner integral does so by assumption and is bounded in x and n by 2δ−s in view
of the Cauchy–Schwarz inequality. Similar to the proof of Theorem 1.4 the second
summand may be estimated by(∫

Us
µ(x)

∫
1{�(x, y) ≤ δ} (fn(y) − f(y))2 �(x, y)−s µ(dy) µ(dx)

)1/2

≤ const
(∫

(fn(y) − f(y))2
∫

1{�(x, y) ≤ δ}�(x, y)−s µ(dx) µ(dy)
)

≤ const
∫

(µ{x : �(x, y) ≤ δ})1/q
µ(dy) ≤ const δd/q

according to Proposition 1.2 and (1.1). Letting δ → 0 we obtain the L2(µ)–
convergence stated above. �

By construction, the operator Ps
µ under the above conditions is self–adjoint.

Thus, we can apply the general theory of self–adjoint compact operators in Hilbert
spaces (see, e.g., Yosida [23]) in order to conclude a point spectrum of real eigenval-
ues with finite multiplicities and at most zero as an accumulation point. Moreover,
there exists an orthonormal sequence of corresponding eigenvectors which is com-
plete in the image space.

2. Riesz potentials of d-regular measures in metric spaces

Recall that the upper d–regularity (1.1) of the measure µ implies that for 0 < s <
d the function Us

µ(x) =
∫

�(x, y)−s µ(dy) is bounded by some constant c(s). Hence,
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the s–energy Es
µ does not exceed c(s). In this section we additionally assume that

d is optimal, i.e.,

(2.1) d = sup
{

s :
∫

�(x, y)−s µ(dy) < ∞
}

at µ–almost all x ∈ supp µ. Then d will be called the Riesz dimension of µ.
Obviously, the correlation dimension of µ given by

sup
{

s :
∫∫

�(x, y)−s µ(dy)µ(dx) < ∞
}

does not exceed such a d. Moreover, by (1.1) the lower pointwise dimensions

lim inf
r↘0

log µ(B(x, r))
log r

at all x ∈ supp µ are not less than d. Therefore, given (1.1) a sufficient condition
for (2.1) is

lim sup
r↘0

log µ(B(x, r))
log r

≤ d

at almost all points. In this case µ is dimension regular and d agrees with its
Hausdorff, packing and correlation dimensions. Note that the d–regularity (1.2)
may be considered as a special case.

In analogy to the Euclidean case (see, e.g., [1], [18], [19]) we now introduce the
Riesz potentials Is

µ of order s for measures µ as before with Riesz dimension d:

Is
µ f(x) :=

∫
�(x, y)−(d−s) f(y) µ(dy) ,

f ∈ L2(µ), 0 < s < d. These are nothing but the operators Pd−s
µ from above.

In order to determine an inverse operator we have to eliminate the kernel N(Is
µ)

of the Riesz potential. Recall that L̃s
2(µ) denotes the orthogonal complement of

N(Is
µ) in L2(µ). Then N(Is

µ) and L̃s
2(µ) are closed subspaces of L2(µ) and we have

L2(µ) = N(Is
µ) ⊕ L̃s

2(µ) .

Moreover, Is
µ is a bijection from L̃s

2(µ) onto the space of Riesz potentials

Ls
2(µ) := Is

µ (L2(µ)) .

Denote the inverse operator by Ds
µ, i.e.,

Ds
µ : Ls

2(µ) → L̃s
2(µ) .

In Theorem 3.2 below we will show that in the Euclidean case L̃s
2(µ) agrees with

the whole L2(µ), i.e., Is
µ is invertible.

According to the arguments at the end of section 1 the operator Is
µ on L̃s

2(µ) has
a countable complete orthonormal system of eigenvectors corresponding to nonzero
eigenvalues. Therefore Ls

2(µ) is dense in L̃s
2(µ).

For s := 1 < d we denote
∇µ := D1

µ.

∇µ may be interpreted as a nonlinear variant of a gradient operator if it is locally
defined. The mapping

∆µ := − (∇µ)2
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with domain dom(∆µ) :=
{
f ∈ L1

2(µ) : ∇µ f ∈ L1
2(µ)

}
may be called a (boundary

free) Laplace operator with respect to the measure µ if it is a local operator. By con-
struction, dom(∆µ) is dense in L̃1

2(µ) and ∆µ is a nonpositive self–adjoint operator
in this Hilbert space. We have

(2.2) 〈∆µf, g〉µ = −〈∇µf,∇µg〉µ ,

f ∈ dom(∆µ) , g ∈ L1
2(µ).

The eigenvalues of ∆µ are nonpositive, countable with finite multiplicities and
at most −∞ as an accumulation point.

3. Riesz potentials, Bessel potentials and spectral properties

on d-sets in Euclidean space

Throughout this section we suppose that X = R
n with the Euclidean metric and

Γ is a compact d–set, i.e., there is a d–regular finite Borel measure µ with support
Γ. Recall that all such measures are equivalent to Hd |Γ. Therefore the theory of
Besov spaces on compact d–sets of R

n is available. These spaces were introduced
by Jonsson and Wallin [11] as natural traces of associated Besov spaces on R

n. In
subsequent papers they studied properties of these fractal Besov spaces. Recent
developments may be found in Triebel [22]. For definitions, notations and more
details we refer to this monograph. In particular, we will use the Besov spaces
Bα

p,q(Ω) for Ω = R
n or Ω = Γ. The latter are introduced for s > 0, 0 < p ≤ ∞,

0 < q ≤ ∞ by

Bs
p,q(Γ) = trΓ

(
B

s+ n−d
p

p,q (Rn)
)

for the trace operator trΓ mapping a distribution from B
n−d

p

p,1 (Rn) to an element of
L2(Γ) = L2(µ), where 1 < p < ∞. (In [22] the reference measure is µ := Hd|Γ.)

The corresponding norm is given by

‖f |Bs
p,q(Γ)‖ = inf ‖g |Bs+ n−d

p
p,q (Rn)‖,

where the infimum is taken over all g ∈ B
s+ n−d

p
p,q (Rn) with trΓ f = g.

It is well known that for σ > 0 the classical Besov space Bσ
2,2(Rn) via norm equiv-

alence agrees with the Hilbert space Hσ(Rn) = Iσ (L2(Rn)), where the operator
Iσ(σ ∈ R) is determined by the distributional Fourier transform F :

Iσ = F−1
(
(1 + |ξ|2)−σ/2F

)
,

i.e.,
Iσ = (id−∆)−σ/2

for the Euclidean Laplacian ∆ and the identity map id. The scalar product in
Hσ(Rn) is introduced by

〈f, g〉Hσ(Rn) =
∫

Rn

I−σf(x) I−σg(x) dx .

Hence, Iσ acts as an isometry:

〈Iσf, Iσg〉Hσ(Rn) = 〈f, g〉L2(Rn) .
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For σ > 0 the operators Iσ and I−σ may be realized by means of Bessel potentials
and hypersingular integrals of order σ, respectively (up to certain exceptional orders
for I−σ; cf. [19]). In general, one obtains the mapping property

(3.1) Iσ
(
Bs

p,q(R
n)

)
= Bs+σ

p,q (Rn),

s, σ ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, in the sense of equivalent quasinorms (cf. the
references in [22]).

Similarly, for the fractional powers of minus the Euclidean Laplacian we have

(−∆)−σ/2 = F−1
(
|ξ|−σF

)
, σ ∈ R,

and in the case σ > 0,

(−∆)−σ/2ϕ(x) = γn(σ)−1

∫
Rn

|x − y|−(n−σ) ϕ(y) dy

with γn(σ) = 2σπn/2 Γ(σ/2)/Γ
(

n−σ
2

)
for all Schwartz functions ϕ. These are the

classical Riesz potentials Iσ of order σ in R
n. The Riesz (or Bessel) potentials of

µ in the sense of section 2 may be obtained by traces of associated potentials in
R

n. The mapping properties (3.1) of Iσ are an essential tool for these purposes.
Unfortunately, the Riesz potentials Iσ do not share this behavior because of the
worse asymptotics of the Riesz kernel at infinity. Therefore we introduce the mod-
ified Riesz potentials Ĩσ, σ > 0, as follows: Let gσ

R : (0, +∞) → R be any smooth
function such that the Fourier transform of the function Gσ

R(x) := gσ
R(|x|) on R

n,
which depends only on |ξ|, satisfies

(3.2) c′
(
1 + |ξ|2

)−σ/2 ≤ FGσ
R(ξ) ≤ c′′

(
1 + |ξ|2

)−σ/2

for some constants c′, c′′ > 0 and

(3.3) Gσ
R(x) = γn(σ)−1 |x|−(n−σ) if |x| ≤ diam Γ .

This means that the kernel Gσ
R(x) behaves like the Bessel kernel Gσ

B(x) and co-
incides with the Riesz kernel on a ball containing Γ. For the existence of such
functions cf. the Appendix.

We now define for σ ∈ R

(3.4) Ĩσ := F−1 (F(Gσ
R)sgnσ · F)

in the sense of distributions, in particular,

Ĩσ f(x) =
∫

Rn

Gσ
R(x − y) f(y) dy , f ∈ L2(Rn) ,

if σ > 0. An advantage of Ĩσ is that it has the same mapping properties between the
Besov spaces as Iσ in (3.1). This can be proved by the same Fourier transformation
methods for the quasinorms in Bα

p,q(Rn). Moreover, in the Hilbert space structure
in Hσ(Rn) mentioned above the operator Iσ may be replaced by Ĩσ.

Recall that trΓ is a bounded operator from Bσ
p,q(Rn) onto B

σ−n−d
2

p,q (Γ) if σ >
n−d

2 . On the other hand, up to norm equivalence, L2(µ) agrees with the space

B
−n−d

2 ,Γ
2,∞ (Rn) of distributions from B

−n−d
2

2,∞ (Rn) vanishing on Schwartz functions
with zero trace on Γ. This is realized by the identification idµ of f ∈ L2(µ) with
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the distribution fµ given by fµ(ϕ) :=
∫

ϕ f dµ for any Schwartz function ϕ. The
latter extends to a mapping

trµ : B
n−d

2
2,1 (Rn) → B

−n−d
2

2,∞ (Rn)

via the same integrals

trµ f(ϕ) :=
∫

ϕ f dµ .

(For details see [22], Theorems 18.2 and 18.6. Note that H. Triebel always uses the
superscript Γ choosing µ = Hd |Γ. For purposes of application to quasidiffusion
processes on fractals in the present paper we distinguish between different equivalent
measures µ.)

We are now ready to state the trace property of the Riesz potentials Is
µ normalized

by the constant factor γn(s + n − d)−1 and the Bessel potentials defined by

Is
µ f(x) :=

∫
Gs+n−d

B (x − y) f(y) µ(dy)

at µ–almost all x.

Theorem 3.1. For any d–regular Borel measure µ in R
n with compact support Γ

and 0 < s < d < n we have
(i) trΓ ◦ Ĩs+n−d ◦ idµ = Is

µ,

(ii) trΓ ◦ Is+n−d ◦ idµ = Is
µ

acting as bounded operators from L2(Γ) into Bs
2,∞(Γ).

Proof. The arguments are the same for all potentials whose kernel is equivalent to
the Bessel kernel in the sense of (3.2). Therefore we consider only the case (i).

In terms of integrals the assertion means that the trace on Γ of the function h
defined at Lebesgue almost all x by

h(x) :=
∫

Gs+n−d
R (x − y) f(y) µ(dy)

agrees with Is
µ f , where f ∈ L2(µ) by assumption and h ∈ Bα

2,∞(Rn) with α =
−n−d

2 + s + n − d = s + n−d
2 by the above mapping properties. (Observe that for

any Schwartz function ϕ we have by Fubini

Ĩs+n−d fµ(ϕ) = fµ
(
Ĩs+n−dϕ

)
=

∫∫
Gs+n−d

R (y − x) ϕ(x) dx f(y) µ(dy)

=
∫

ϕ(x)
∫

Gs+n−d
R (y − x) f(y) µ(dy) dx .)

Further, for Schwartz functions the trace on Γ is defined pointwise and norm esti-
mates w.r.t. L2(µ) and B

n−d
2

2,1 (Rn) are shown. Then for arbitrary functions from

B
n−d

2
2,1 (Rn) the trace operator is determined by continuous extension (cf. [22], The-

orem 18.6). Let κε(x) = εκ(εx) be standard smoothing kernels with respect to
Lebesgue measure converging to the δ–function as ε → 0. We approximate h by
the smooth functions h ∗ κε, i.e.,

lim
ε→0

∥∥∥h ∗ κε − h |Bs+ n−d
2

2,∞ (Rn)
∥∥∥ = 0 .
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Since s > 0, convergence holds also in B
n−d

2
2,1 (Rn). Then it suffices to show that

lim
ε→0

‖h ∗ κε − hΓ |L2(µ)‖ = 0,

where

hΓ(x) =
∫

Gs+n−d
R (x − y) f(y) µ(dy)

=
∫

γn(s + n − d)−1|x − y|−(d−s) f(y) µ(dy)

= Is
µ f(x)

at µ–almost all x, since by construction the kernel Gσ
R(x−y) for x, y ∈ Γ agrees with

the Riesz kernel γn(σ)−1 |x− y|−(n−σ) and for σ = s+n−d we have n−σ = d− s.
For, we estimate∫

(h ∗ κε − hΓ)2 dµ

=
∫ (∫

(Gσ
R(x − u) − Gσ

R(x)) κε(u) du

)2

µ(dx)

≤
∫∫

(Gσ
R(x − u) − Gσ

R(x))2 κε(u) du µ(dx)

=
∫∫

(Gσ
R(x − u) − Gσ

R(x))2 µ(dx) κε(u) du .

Theorem 1.4(iii) implies

lim
u→0

∫
(Gσ

R(x − u) − Gσ
R(x))2 µ(dx) = 0 .

(In that assertion the original Riesz kernel may be replaced by the modified version.
It also follows directly, because the latter may be replaced by the former as u → 0.)
Therefore the above expression tends to zero as ε → 0. �

For the rest of the paper we will restrict ourselves to Riesz potentials. The
arguments for Bessel potentials are completely analogous. Recall the notation
Ls

2(µ) = Is
µ (L2(µ)) .

Theorem 3.2. Under the conditions of Theorem 3.1 the mapping Is
µ : L2(µ) →

Ls
2(µ) is invertible and 〈Is

µ f, f〉µ ≥ 0, i.e., Is
µ is positive. Moreover,

〈Is
µ f, g〉µ = 〈I s+n−d

2 (fµ), I
s+n−d

2 (gµ)〉L2(Rn)

for any f, g ∈ L2(µ).

Proof. We use the convolution property of the Riesz kernel

γn(σ)−1|x − y|−(n−σ) = (γn(σ/2))−2
∫

Rn

|x − z|−(n−σ/2) |y − z|−(n−σ/2) dz

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARMONIC CALCULUS ON FRACTALS II 3419

for 0 < σ < n (see, e.g., [19], (25.38)). Again setting σ = s + n − d we infer by
Fubini that

〈Is
µf, g〉µ =

∫
γn(σ)−1

∫
|x − y|−(n−σ) f(x) µ(dx) g(y) µ(dy)

=
∫∫

f(x) g(y) γn(σ/2)−2

∫
|x − z|−(n−σ/2) |y − z|−(n−σ/2)dz µ(dx) µ(dy)

=
∫

γn(σ/2)−1

∫
|x − z|−(n−σ/2) f(x) µ(dx)

γn(σ/2)−1

∫
|y − z|−(n−σ/2) g(y) µ(dy) dz

=
∫

Iσ/2(fµ)(z) Iσ/2(gµ)(z) dz = 〈Iσ/2(fµ), Iσ/2(gµ)〉L2(Rn) .

For f = g this means

〈Is
µ f, f〉µ =

∫
γn(σ/2)−2

(∫
|x − z|−(n−σ/2) f(x) µ(dx)

)2

dz ≥ 0 .

Therefore 〈Is
µ f, f〉µ = 0 implies

h̃(z) :=
∫

γn(σ/2)−1 |x − z|−(n−σ/2) f(x) µ(dx) = 0

at Lebesgue almost all z. Since

F(h̃)(ξ) = |ξ|−σ/2 F(fµ)(ξ)

we get F(fµ) = 0, i.e. f(x) = 0 at µ–almost all x. In particular, Is
µ f = 0 yields

f = 0 in L2(µ). �

Denote the inverse operator of Is
µ by Ds

µ . Considering Is
µ as an isometry between

L2(µ) and Ls
2(µ) the latter is provided with a Hilbert space structure according to

(3.5) 〈f, g〉Ls
2(µ) := 〈Ds

µf, Ds
µg〉µ .

It will be called the space of Riesz potentials of order s w.r.t. the measure µ.
In order to derive spectral properties of Is

µ (and hence, of Ds
µ) we first consider its

restriction to the Hilbert space Hs/2(Γ). The latter agrees with B
s/2
2,2 (Γ) provided

with the scalar product induced by the norm in H
s
2+ n−d

2 (Rn) (see [22], 25.1). The
proof of the following spectral result uses a method of Triebel developed for another
operator. In our case we need no dimension bounds.

Theorem 3.3. For 0 < s < d < n the Riesz potential Is
µ is a positive self–adjoint

compact operator in the Hilbert space Hs/2(Γ). There are positive constants C1 and
C2 such that the eigenvalues λ1 ≥ λ2 ≥ . . . repeated according to multiplicity satisfy

C1 k−s/d ≤ λk ≤ C2 k−s/d .

Proof. Self–adjointness is obvious. By the arguments at the end of section 1 and
Theorem 3.2 the eigenvalues of the operator Is

µ on L2(µ) are countable and positive.
In case of compactness of Is

µ in Hs/2(Γ) this implies its positivity.
The remaining arguments are the same as in the proof of Theorem 28.6 in [22]

when replacing the exponent κ by (s + n − d)/2, the bounded domain Ω by the
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whole R
n, and the operator A−κ/m for m = 1 by our modified Euclidean Riesz

potential Ĩ2κ . This is justified by Theorem 3.1 above and the construction of Ĩ2κ .
The arguments at some places are simpler, since we can work with the whole R

n

as an embedding space. In particular, we need no dimension restrictions in order
to apply duality results for Besov spaces. The desired inequality κ > (n − d)/2 is
automatically fulfilled.

We will briefly summarize the main steps:
One first proves that the operator B := Ĩs+n−d ◦ trµ has the null space

N(B) =
{

f ∈ H
s
2+ n−d

2 (Rn) : trΓ f = 0
}

and satisfies

〈trΓf, trΓg〉µ = 〈Bf, g〉
H

s
2 + n−d

2 (Rn)

for f, g ∈ H
s
2+ n−d

2 (Rn), where the Hilbert space structure of the last space is
generated by Ĩs+n−d instead of Is+n−d (cf. steps 1 and 2 in [22], 28.6).

Then by (25.6) in [22] one obtains the decomposition

H
s
2+ n−d

2 (Rn) = N(B) ⊕ H
s
2 (Γ) .

Therefore the eigenvalues of the operator trΓ ◦ B restricted to Hs/2(Γ) coincide
with those of B. Further, trΓ ◦B on Hs/2(Γ) agrees with Is

µ by Theorem 3.1 above.
Using the relationship between eigenvalues and approximation numbers of self–

adjoint compact operators in Hilbert spaces and the above isometry property of√
B one infers the lower estimate λk ≥ C1 k−s/d. Here the d–regularity of µ and

localization properties in Besov spaces on R
n play a central role. (See step 4 in

[22], 28.6. Compactness of B will be indicated below.)
Further, Is

µ : Hs/2(Γ) → Hs/2(Γ) may be factorized by

Is
µ = id2 ◦trΓ ◦ Ĩs+n−d

µ ◦ idµ ◦ id1,

where

id1 : Hs/2(Γ) → L2(µ),

idµ : L2(µ) → B
−n−d

2
2,∞ (Rn),

Ĩs+n−d : B
−n−d

2
2,∞ (Rn) → B

s+ n−d
2

2,∞ (Rn),

trΓ : B
s+ n−d

2
2,∞ (Rn) → Bs

2,∞ (Γ),

id2 : Bs
2,∞ (Γ) → Hs/2 (Γ) .

Both the embeddings id1 and id2 are compact with k-th entropy numbers equiv-
alent to k−s/2d (see [22], Theorem 20.6). The remaining operators are bounded.
Therefore Is

µ is compact on Hs/2 (Γ) and its k-th entropy numbers do not exceed
const k−s/d. The known upper estimate of the eigenvalues by

√
2 times the entropy

numbers yields λk ≤ C2 k−s/d (cf. [22], 28.6, step 3).
Finally, compactness of the above operator B follows from that of id1. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARMONIC CALCULUS ON FRACTALS II 3421

If λk is an eigenvalue of Is
µ on the whole space L2(µ) with eigenvector ek ∈ L2(µ),

then Theorem 3.1 implies ek ∈ Bs
2,∞ (Γ), hence ek ∈ Hs/2 (Γ). Consequently, the

eigenvalues of Is
µ on L2(µ) agree with those given in Theorem 3.3 and we obtain

the following.

Corollary 3.4. For any d–regular µ with compact support and 0 < s < d < n, the
operator Ds

µ inverse to the Riesz potential Is
µ is self–adjoint and positive in L2(µ)

with domain Ls
2(µ). Its eigenvalues are given by µk = λ−1

k for the eigenvalues
λ1 ≥ λ2 ≥ . . . of Is

µ on L2(µ) repeated according to multiplicities and satisfy

C−1
2 ks/d ≤ µk ≤ C−1

1 ks/d .

Appendix—Construction of Riesz-Bessel potentials

In order to construct a Riesz-Bessel kernel Gσ
R on R

n with the properties (3.2)
and (3.3) first note the following: For any continuous function G which coincides
on the ball B(0, R) with the Riesz kernel of order σ, i.e. satisfies (3.3), and rapidly
decreases at infinity, one obtains by standard arguments the Fourier transform
estimates (3.2), i.e.,

c′(1 + |ξ|2)−σ/2 ≤ FG(ξ) ≤ c′′(1 + |ξ|2)−σ/2

for sufficiently small and sufficiently large ξ. In order to get these inequalities for all
ξ (with modified constants) it is enough to find such a G = Gσ

R, where FG(ξ) > 0,
ξ ∈ R

n.
We use the polar coordinates representation of the Fourier transform of a rapidly

decreasing continuous radial function G(x) = g(|x|) in R
n. Observe that FG is also

a radial function and may be evaluated at ξ = (0, . . . , 0, |ξ|):

(2π)n/2FG(ξ) =
∫ ∞

−∞
e−i|ξ|xn

∫
Rn−1

g(|x|) dx1 . . . dxn

= |Sn−2|
∫ ∞

−∞
ei|ξ|r

∫ ∞

0

g(
√

t2 + r2)tn−2 dt dr

= 2|Sn−2|
∫ ∞

0

cos(|ξ|r)
∫ ∞

r

ug(u)(u2 − r2)(n−3)/2 du dr

= 2|Sn−2|
∫ ∞

0

cos(|ξ|r)rn−1

∫ ∞

1

vg(vr)(v2 − 1)(n−3)/2 dv dr

= 2|Sn−2|
∫ ∞

1

v(v2 − 1)(n−3)/2

∫ ∞

0

rn−1g(vr) cos(|ξ|r) dr dv

= (2π)n/2|Sn−2|
∫ ∞

1

v−(n−1)(v2 − 1)(n−3)/2(f̂(
|ξ|
v

) + f̂(−|ξ|
v

)) dv,

where |Sn−2| is the surface area of the unit sphere Sn−2 and f(s) = fσ
R(s) :=

sn−1
+ gσ

R(s) with

fσ
R(s) =


0 , s ≤ 0,

γn(σ)−1sσ−1 , 0 < s < R,

rapidly decreasing at infinity.
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Thus, it suffices to choose fσ
R in such a way that its one-dimensional Fourier trans-

form f̂σ
R is nonnegative. Taking

hσ
R(s) :=


0 , s ≤ 0,

γn(σ/2)−1sσ/2−1 , 0 < s < R,

rapidly decreasing at infinity,

we obtain this property for fσ
R := hσ

R ∗ hσ
R, since in this case f̂σ

R = |ĥσ
R|2.

Note added in proof

Relationships of the above operators to Dirichlet forms and Markovian jump
processes on d-sets are considered in [25], and the corresponding Laplace operators
and diffusions are considered in a subsequent paper.
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