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HARMONIC CALCULUS ON P.C.F. SELF-SIMILAR SETS

JUN KIGAMI

Abstract. The main object of this paper is the Laplace operator on a class
of fractals. First, we establish the concept of the renormalization of difference
operators on post critically finite (p.c.f. for short) self-similar sets, which are
large enough to include finitely ramified self-similar sets, and extend the results
for Sierpinski gasket given in [10] to this class. Under each invariant operator
for renormalization, the Laplace operator, Green function, Dirichlet form, and
Neumann derivatives are explicitly constructed as the natural limits of those on
finite pre-self-similar sets which approximate the p.c.f. self-similar sets. Also
harmonic functions are shown to be finite dimensional, and they are character-
ized by the solution of an infinite system of finite difference equations.

0. Introduction

Mathematical analysis has recently begun on fractal sets. The pioneering
works are the probabilistic approaches of Kusuoka [11] and Barlow and Perkins
[2]. They have constructed and investigated Brownian motion on the Sierpinski
gaskets. In their standpoint, the Laplace operator has been formulated as the
infinitesimal generator of the diffusion process.

On the other hand, in [10], we have found the direct and natural definition of
the Laplace operator on the Sierpinski gaskets as the limit of difference opera-
tors. In the present paper, we extend the results in [10] to a class of self-similar
sets called p.c.f. self-similar sets which include the nested fractals defined by
Lindstrom [13]. Several examples of p.c.f. self-similar sets are given in the fig-
ures of §8. The reader can find an exposition of the original ideas of this work
in §0 of [10].

In § 1, we study some topological properties of general self-similar sets and
define p.c.f. self-similar sets. Roughly speaking, p.c.f. self-similar sets are almost
the same concept as "finitely ramified fractals" mainly used by physicists. We
note that the Sierpinski carpet, where Barlow and Bass [1] have constructed a
diffusion process, is not a p.c.f. self-similar set.

In §2, we introduce the concept of a quasi-harmonic structure on p.c.f. self-
similar sets. It induces a sequence of the difference operators which correspond
to the discrete Laplace operators. When a quasi-harmonic structure satisfies
some condition for invariance, we call it a harmonic structure, and we will find
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722 JUN KJGAMI

explicit and simple definitions of harmonic functions, the Green function, and
the Laplace operator.

In §6, we treat the Dirichlet problem of Poisson's equation and Gauss-Green's
formula on p.c.f. self-similar sets. Further, we will see that the Dirichlet problem
of Poisson's equation is equivalent to some kind of infinite system of finite
difference equations. This fact has been pointed out by Hata-Yamaguti [6] and
Yamaguti-Kigami [15] in the simplest case.

In §7, we give an explicit and simple definition of Dirichlet forms associated
with regular harmonic structures. And then, the Green function turns out to be
the reproducing kernel of the Dirichlet form (%?, &ó).

As a whole, our approach establishes a kind of classical calculus on p.c.f. self-
similar set, and it may be more convenient to the study of harmonic functions
and the Laplace operator than the probabilistic approaches.

Finally we mention three related works. The first one and the second one are
the probabilistic approaches on a class of self-similar sets.

Lindstrom [13] has constructed the diffusion processes on nested fractals.
The readers may refer to Example 8.5 and Remarks after Definition 1.10 and
Definition 4.4.

Kusuoka [ 12] has given an explicit expression of Dirichlet forms on a class of
self-similar sets by using products of random matrices. We also use random ma-
trices As 's obtained by quasi-harmonic structure. These random matrices are
correspondent with those used by Kusuoka. We conjecture that our Dirichlet
forms and the Dirichlet forms given by Kusuoka are the same in the correspon-
dent cases.

Shima [14] and Fukushima-Shima [16] have studied the eigenvalue problem
of the Laplace operator given by [10]. They apply "the decimation method"
and determine the eigenvalues and eigenvectors completely. We conjecture that
their method can be applied to our Laplace operator on p.c.f. self-similar sets.

In this paper, we adopt the "directory" structure in numbering the lemmas,
propositions, and theorems. For example, Lemma 2.7.1 is the lemma for the
proof of Lemma 2.7. Ordinarily, Lemma I.J.K is used only for the proof of
Lemma or Proposition or Theorem I.J.

I would like to express my gratitude to Professors M. Fukushima and S.
Kusuoka. In particular, the results on Dirichlet forms would not have been
achieved without discussions with Professor M. Fukushima. I also thank Mr.
A. Kameyama for the simulating discussion on p.c.f. self-similar sets.

1. Self-similar sets

In this section, we will define self-similar sets and study their fundamental
properties.

First, we introduce the one-sided shift space and give some basic concepts
and notations.

Definition 1.1. Let S = {si, s2, ... , s^} be a finite set.
(1) The one-sided shift space 1(5) is defined by Z(5) = SN .
(2) For n > 0, the collection of words consisting of n symbols Wn(S) is

defined by Wn(S) = S" . In particular, W0(S) = {0} where 0 denotes
the empty word.

(3) W.{S) = \Jn>0Wn(S).
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(4)   1,(S) = W,(S)UZ(S).
We denote the ith symbol of w e 2,(5) by w¡ or (w)¡ and write w =

W\W2W-$
It is easy to verify that 2(5) is compact with the metric di(S) given by, for

w and v e 2(5),
oo

1=1

where
1    if a = /?,
0   otherwise.

Definition 1.2. (1) For it; e 1,(5),

5aß = |

n     if and only if w e 1^,(5),
I tul -{

oo   if w € 2(5).
(2) Let w e 2,(5), then for « > 0,

Í w if \w\ < n,
[W]n = \ 1      ~L w\w2- --wn   otherwise.

In particular, [w]0 = 0 for all w e 2,(5).
(3) Let w e 2,(5), then

{0 if w - 0,
W2W)---Wn    if w G W„(S),
w2w^w4■■■    if K7 6 2(5).

(4) Let w and v e 2,(5), then w Av = [w]k , where k = max{«|[w;]„ =

(5) Let tí; € W*(5) and i> e 2,(5), then w • v e 2,(5) is defined by
if / < I«; |,

v)i = <
I Wi-

lt» ■
otherwise.

We always identify io G ^,(5) with to:2(5) -» 2(5) defined by ii)(i>) =
if • f . In particular, 0 € Wo(S) is identified with the identity map of 2(5).

The following definition of a self-similar structure is an abstraction of topo-
logical features from the concepts of the self-similar sets studied by Hutchinson
[8] and Hata [5].
Definition 1.3. Let K be a compact metric space, 5 be a finite set, and, for
each s e 5, let FS:K^K be a continuous injection. Then (K, S, {Fs}ses) is
said to be a self-similar structure on K (or simply, K is self-similar) if there
exists a continuous surjection n:I.(S)-> K satisfying

n o s - Fs o n   for every s e S.

Further, for w e Wt(S), we define

*w = ^w\ ° ^wi ° ' ' ' ° r-w„ >

where n = \w\, and Kw = FW(K). In particular, F0 is the identity map of K .
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The following result implies that n is uniquely determined for a given self-
similar structure.
Proposition 1.4. Let (K, 5, {Pj}ses) be a self-similar structure on K. Then,
for all we 2(5), Ç\n>o^[w]n consists of a single point n(w).
Proof. For w e 2(5), we have C\n>o[w]„ - 2(5) = {w} , and the diameter of
[w]n • 2(5) —► 0 as n —► oo . As n is continuous and n([w]n • 2(5)) = K[W]n,
we have {n(w)} = C\H>QKlw]n •

Let SC = (K, 5, {Pijigs) be a self-similar structure on K. It is easy to see
that n is a homeomorphism if and only if Ck(S?) = \JS tes s^Á^-s n Kt) is
empty. Further, if Ck(S') = 0 , then each Fs is a branch of the inverse of a
well-defined map no a on~x:K -* K .

Definition 1.5. Let 2? = (K, S, {Fs}s€S) be a self-similar structure on K.
Then the critical set of S? is defined by C(5f) = n~l (CK(J¿?)), and the post
critical set of 5? is defined by P(&) = (J„>, on(C(£?)).

Examples of self-similar structures are given in §8.
Hereafter, we discuss only one fixed self-similar structure, and so we use

2, W„ , P, C, and so on instead of 2(5), Wn(S), P(S?), C(5f), and so on.
Definition 1.6. Let (K, S, {Fs}ses) be a self-similar structure on K . Then,

(1) For weW*, Bw = Fw(n(P));
(2) For m > 0, P^ = [jweWm wP and Vm = n(P^) ;
(3) K = LUo Vm and V° = Vm - V0 for m = 0, 1, ... , * .

Lemma 1.7. Let K be a self-similar set. Then, for any w and v e W„ with
w t¿ v, Kw n Kv = Bw n Bv .
Proof. As FwfKV is injective, we may assume W\ ^ V\ without loss of generality.
Then, since Kw n Kv c Ck ,

Kw n Kv c n(C n wZ) n n(C n vl).
On the other hand, C c a~x(P) = \JsiSsP. Hence, C DwI. c wP and
Cni>2 c v P and therefore KwnKv c Bw C\BV . Trivially, KWC\KV d BwnBv ,
and thus we have proved the lemma.
Lemma 1.8. If n(w) e V0, then w e P. In other words, n~l(n(P)) = P.
Proof. As Vo = n(P), there exist u e P and a word v ^ 0 such that n(w) =
n(u) and v • u e C. Then, 7t(u • w) = 7r(w • w) and so, v • w e C. Thus we
have we?.
Corollary 1.9. For m > 0, if n(w) e Fm, then w e P(m).   In other words,
7t-'(7r(P(m))) = P(m).

Proo/. As Vm - \Jv(zWm Bv , n(w) e 5„ for some v e Wm . Using Lemma 1.7,
n(w) e BvnK[w]m = BmvnB[w]m . This implies n(w) e B[w]m = F[w]m(n(P)) and
hence n(omw) e n(P). Now using Lemma 1.8, we have amw e P. Thus we
have

[w]m ■ amw = w e [w]mP c P(m).

The last three results will underlie many arguments in this paper, and fre-
quently, we may not mention using them.

Next, we introduce a class of canonical measures on self-similar sets.
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Definition 1.10. Let n = (ns)seS satisfy

(1.1) ^2 Is - !    an<*   0 < ns < 1 for each s e S.
ses

Then we denote by ¡Xy, the unique Borel measure on 2 with, for all w e Wt,

fir,(wl) = nWl nW2 ■ ■ ■ nWn,

where n = \w\. Further, let K be a self-similar set. Then the ^-self-similar
measure on K, ß,, is given by n*(fi,,), that is,

Hn(A) = fin(n-\A))
for all Borel sets A c K.

The following theorem explains why ßn is called fy-self-similar.

Theorem 1.11. Let K be a self similar set, and let r\ satisfy (1.1).  Then there
exists a unique Borel measure ß on K such that ß(K) = 1 and

s€S

for all Borel sets A c K. The unique measure ß coincides with ¡in.
Proof. See Hutchinson [8] or Falconer [3].

Now we define a post critically finite self-similar set, which is the main object
of our study.
Definition 1.12. Let K be a self-similar set. Then K is said to be post critically
finite, or p.c.f. for short, if the post critical set P is finite.

If K is p.c.f., it follows immediately by the above definition that C, P(m), Bw ,
and Vm are all finite sets and F, is countably infinite. Further, by Lemma 1.7,
Kw n Kv = Bw n Bv is finite. So a p.c.f. self-similar set may be called a finitely
ramified fractal in physicists' terminology. Nested fractals defined by Lindstrom
[13] are p.c.f. self-similar sets. The set of all essential fixed points in his termi-
nology equals n (a post critical set). Lindstrom's nesting axiom holds for p.c.f.
self-similar sets, but the axiom of symmetry is not satisfied in general.

If K is p.c.f., the self-similar measure f/.n becomes simple as follows.

Lemma 1.13. Let K be p.c.f. and let n satisfy (I.I). Then for all w e Wt,
ßn(Kw) = nWlnW2 ■ ■ ■ nWn.

where n = \w\.
Proof. It is obvious from the fact that 7r~'(.£„,) = wl. U a finite set.

Further discussion on p.c.f. self-similar sets is given in Appendix A. We show,
in short, that a p.c.f. self-similar set is determined by

sf = (S,VuV0,{Fs\Vo}seS),
which will be called the ancestor of p.c.f. self-similar set.

We will give some examples of p.c.f. self-similar sets in §8.

2. Quasi-harmonic structure

In this section, we first give the concept of a quasi-harmonic structure which
generates difference operators Hm on Vm and then introduce the notion of the
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harmonic function and quasi-harmonic function as the kernel of the difference
operators. Throughout the rest of this paper we fix a p.c.f. self-similar structure
S? = (K, 5, {P* }*<=$) and assume that K is connected.

Notations. (1) l(V) = {f\f: V -> 1}. We use (f)p or fp to denote the value
of / e l(V) at /> e V. For p e V, ep e l(V) is defined by

eKi ) = / l    ifq=p>
ep[Q)     1 0   otherwise.

When no confusion may occur, we write ep instead of ep .
In the following, U and V are finite sets.
(2) L(U, V) = {A\A:l(U) -» /(F) and A is linear}. In particular, L(V) =

L(V, V). We use (A)pq or Apq to denote (^ep)? for p e F and q e U. Note
that Y,q£UAp<if<i = (Af)p ■ For Ae L(U, V), 'At L(V, U) is the transpose
of A.

(3) If V n [/ = 0, then we use [/ + F to denote the disjoint union of U
and V . Note that l(U + V) = l(U) ® l(V), we write

/=(c/v) for/e/(c/+F),

where (/)[/ = f\v and (/)K = f\v ■
(4) For D e L(V) with 'D = Z), we define an equivalence relation ~ on F

by
(i) p ~ p for all /> e V .
(ii) For p ^ q , p ~ q if and only if there exists {/>/}£!=] C F with P\= p,

pm = q , and £>Pii,/+1 ^0 for j = 1, 2,..., m - 1.
An equivalence class is called a Z)-irreducible part. Also we say that D is

irreducible if and only if D has one irreducible part  V .
Now we define a quasi-harmonic structure.

Definition 2.1. A pair (D, r) e L(F0)x/(5) is called a quasi-harmonic structure,
or q.h.s. for short, on K if and only if

( 1 ) rs > 0 for each s € S,
(2) 'D = D,
(3) D is irreducible,
(4) Dpp < 0 and ¿ZPev0 dpq = ° for each P e vo >
(5) Z)M>0 if p/<?.

Further, for a finite set V, we define &(V) c L(K) by ¿F(F) = {£)|Z) satisfies
(2) ~ (5) where F0 is replaced by V}.

In this section we treat a fixed q.h.s. (D, r).
The bijection iv ^o -* Bw induces a natural isomorphism (Fw)*:l(V0) ~

/(5„,). By this identification, we think of D as an element of L(BW). Then
we obtain a difference operator Hm on Vm form the q.h.s. (D, r) as follows.

Definition 2.2. A difference operator Hm e L(Vm) is defined by

H m =   ¿^ r,«   • P-wDRw,
weWm
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where Rw e L(Vm, Bw) is the restriction defined by (Rwf) = f\ßw and rw =
fwjw2 ■ ■ ■ rw„ ■ Furthermore, we write, for m > 0 and p e Vm, Hmpf =
(Hmf)p , and H*f = Hi{p),pf, where i(p) = min{n\p e Vn) .
Remark. This definition of difference operators is a natural extension of those
on Sierpinski gasket given in [10] to p.c.f. self-similar sets. In fact, if we let

1-2 1       1\
D=\   Í -2     1 and   r = (l, 1, 1),

V 1 1-2/
then

Hm,Pf=    Y,   (/(9)-/(P))'
qevm¡p

where Vm<p = {q\(Hm)pq ^ 0}. This coincides with the definition of Hmpf
given in [10]. Further details are given in §8.

Lemma 2.3. For m>0, Hm e %"(Vm).
Proof. (2), (4), and (5) of Definition 2.1 can be verified immediately from the
definition of Hm . We may show that Hm is irreducible. Since D is irreducible
on Vq , DRW is irreducible on Bw . This implies that p ~ q for p and q € Bw

with w e Wm . Now let p 6 Bw and q € Bv with v, w e Wm. Then by the
fact that K is connected, there exists {tu,}f=1 c Wm with Wj = w , wk = v ,
and Ä«,,. n Kw¡+i = BWj n 5u,j+1 ̂0 for / = 1, 2, ... , k - 1. Hence, choosing
Pi G Bw¡ n 2?u,,+1, we can chain p and q \>y p ~ P\, p¡ ~ p¡+\, and Pk ~ q ■

tim rim **m

This completes the proof of the lemma.

The above lemma shows that if Hm,pf = 0, then f(p) is a kind of average
of the f(q)'s where (Hm)pq ^ 0. This observation motivates the following
definition of a harmonic function.

Definition 2.4. A continuous function / on K is said to be harmonic if and
only if (Hmf)Vo = 0 for all m > 1 .

It is unfortunate that the difference equations defining a harmonic function
are overdetermined in general, and we may scarcely expect that there exist
nontrivial harmonic functions without some further assumptions on the q.h.s.
(D, r). This problem is treated in §4. For a while, we investigate functions
satisfying some necessary conditions for being harmonic.

Definition 2.5. A continuous function / on K is said to be quasi-harmonic,
or q.h. for short, if and only if H*f = 0 for all p e V°.

Theorem 2.6. Suppose that

(1) #(PinF0)<l   for each s eS,

where #(A) is the number of elements in A. Then for each p e 1(Vq) , there
exists a unique quasi-harmonic function f with f\v0 = P ■

Note that (1) is a condition not on q.h.s. but on the self-similar structure.
The proof of Theorem 2.6 is given in Appendix B. We observe some heuristic
arguments below and will show a part of them later on.
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First we decompose Hm into

where Tm e L(K0), Jm e L(V0, V£), and Xm e L(V£). In particular, we write
T = Pi, / = 7, , and X = X{ .

Now let / be q.h., write f\v0 = fo and f\v° = f\, and consider a procedure
to express f by f,. Obviously, for p e V°, i(p) - 1 , and H*f= (JfQ +
Xfi)p. Hence, if X is invertible, we can obtain that f - -X~x Jf0 . So we
have

(/>, = (_/-i7) (/k,
where / is the identity in L(V0). Furthermore, noting that V0 = B0 , we have,
for each 5 6 5,

(2.2) (f)Bs = As(f)Bz ,

where As =Rs(_J_lJ).
Next, letting Sw = FW(V\), then the above procedure will turn out to be

effective in getting f\$w from f\pw . Here we introduce notation and observe
some facts about Bw and Sw before stating the procedure.

(1) We denote f\Bm by (f)bw or J* and also denote f\Sw by (f)sw or /¿ .
When no confusion can arise, we use /* and fs instead of f¿ and 7^ .

(2) Using the bijections FW:V0 -» Bw and Fw\v°:V° -» 5«,, we always
identity

L(ß^)~L(K0),     L(ÄM,,S^)5iI,(Ko, K,°),
L(5W , Bw) ~ L(K,°, K0),     L0S„) a L(K,°).

(3) D*; G L(BW + 5«,, Bw) and //* e L(BW + Sw , 5,,,) is defined by

Then, we can easily see that, for p e Sw ,

i(p) = \w\ + l    and   H;f=(H:,f)p.
Now applying the above procedure, we obtain that fs = -X~lJfb for a

quasi-harmonic function /. Further (2.2) becomes

(2.3) Jws = ASJW ,
for all w e Wt and s £ 5. Hence we can see that

(2.4) fbw = Aw(f)v0,

where Aw = AWnAWn_x • • • AW] .
From the preceding discussions, we next show some results about Xm .

Lemma 2.7. For each m > 1,
( 1 )   Xm is invertible and X~ ' < 0, where A < 0 means Apq < 0 for all p

and q.
(2) Let g™ = -(X-\q for p and q e V°.   Then g™ > g» for each

<?eKm°.

We will prove Lemma 2.7 by using the following fact.
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Lemma 2.7.1. Let V be a finite set and let X e L(V). Suppose that
(I)   'X = X and X is irreducible,

(II)   XpP < 0 and Y,q€v xpq <0 forany p€V,
(III) Xpq>0 ifpïq,
(IV) ¿Zq€v Xpq < 0 for some p&V.

Then we have
(1) X is invertible and X~l < 0.
(2) Let gpq = (-X~x)pq for p and q e V. Then, gpp > gpq .

Proof. Let
r Xpq      ifp^q,

Xpq-\-Xpq   ifp = q,
and let yp = Y,q9çpXpq/xpp . Then (II) implies

0 < yp < 1    for all p e V,

and (IV) becomes
(IV)'

0 < yp < 1    for some p e V.
To prove (1), it suffices to show that

(2.5) ifXf>0,    then/<0,
because (2.5) implies that Xf = 0 if and only if / = 0 and X~lf < 0 for any
/ > 0. Now assuming that Xf > 0 and maxqey fq = M > 0. Then choosing
p e V with fp = M, we have

yPfp > Y^xptlxpp^<t - fp-
q^P

Note that from fp = M>0 and fp > fq , we can see that

yp = 1    and   fp = fq if xpq ± 0.
Since X is irreducible, the above discussion implies inductively that yq = 1 for
all q e V . This contradicts (IV)'. Thus we have shown (2.5). To prove (2), fix
p e V, let dq = gpq for each q e V and assume that M = max96K dq > dp.
Then choosing r e V with ¿r — M, as g^ = (-X~l)pq , we have

Y xrqdq ~ Xrrdr = 0 ,
q.4r

and hence
dr < Y(XrqlXrr)dq < yrdr.

qir

Since dr = M > dq > 0 for q ^ r ,v/e can conclude that

yr = 1,        dq = M if xrq ^ 0,    and   xr/7 = 0.

By the fact that X is irreducible, the above discussion implies inductively that
xqp = 0 for all q / p. This contradicts to the fact that X is irreducible.
Therefore we can conclude Lemma 2.7.1.
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Proof of Lemma 2.7.  Xm can be decomposed into irreducible parts, that is,
T/o   _   y(l)    ,    y{2)_     y(im)

and
Y    _  v(l) ff, y(2) as ... ¿F, y I'm)

where V„y is an Xm-irreducible part and X$ G L(KJ,''). Then it suffices to
show that each X„ satisfies the assumptions of Lemma 2.7.1. Using Lemma
2.3 and (2.1), we can easily verify (I), (II), and (III). Since Hm is irreducible,
for each i, we can choose p» e Vm   and q* G V0 with (Hm)p,qt > 0.

Noting that ¿Zq€vm(Hm)P,q = 0, we have ¿Zq€v^(xm)P.q < -(Hm)P.q. < 0.
Therefore we can conclude that (IV) holds for each X„ .

The last lemma will play an important role in §5. We next give a result on
A,.
Lemma 2.8. For each s e S, As is a stochastic matrix, that is, As > 0 and
Ase = e, where e = zZPev0 e/> •
Proof. As X~l < 0 and J > 0, we have As > 0. Next for the q.h. function
/ = 1, (/)* = (f)y0 = e. Hence (2.2) implies As = e.

As an immediate consequence of Lemma 2.8, we have the "maximal princi-
ple" for quasi-harmonic functions as follows.

Theorem 2.9. Let f be quasi-harmonic. Then, for any x in K, we have

min f(p) < f{x) < max/(/?).
p€V0 Pev0

At the end of this section, we introduce the notion of piecewise quasi-
harmonic functions.

Definition 2.10. A continuous function / on K is said to be m-quasi-harmonic,
or w-q.h. for short, if and only if / o Fw is quasi-harmonic for all w e Wm .

3.  QUASI-HARMONIC EXPANSION

This section is devoted to the expansion of a function by a system of piecewise
quasi-harmonic functions. This is called a quasi-harmonic expansion, or q.h.
expansion for short. We always fix a p.c.f. self-similar structure (K, S, {Ps}i6s)
and a q.h. structure (D, r) on K. Further we will need sufficiently many
piecewise quasi-harmonic functions for the q.h. expansion. So, through this
section, we assume that

Assumption (2). There exists a unique q.h. function / with f\Vo = p for any
P G /(K0).

We have shown in Theorem 2.6 that (1) implies (2). Now assuming (2), we
have

Theorem 3.1. For each p € l(Vm), there exists a unique m-q.h. f with f\ym =
p. Especially, for each p G Vm, we denote the unique m-q.h. f with f\vm = ep
by y/™ . Then for any p G l(Vm), the unique m-q.h. f with f\Vm = p is given
byf = ZpeVmPpvpm.
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We will use {y/p}p^v. as the basis of the q.h. expansion, where y/p = y/p .
Using Theorem 2.9, we can obtain another important property of w-q.h. func-
tions, which is called the maximal principle.

Theorem 3.2. Let f be m-q.h. Then, for each w G IK, with \w\ > m and for
any x G Kw ,

min f(q) < f(x) < max f(q).
q£Bw qeBw

Definition 3.3. Let / G /(K,).   Then a G /(K,)  is called a quasi-harmonic
expansion of / if, for all q G K,,

Y <*PVP(q) -* f(q)   asm^oo.
peVm

When no confusion may occur, we denote y/p\v by y/p. Also, we denote
K(/\bw+sJ by H*wf.

In the following, we show that every f e l(V*) has a unique q.h. expansion.

Lemma 3.4. Let f G /(K,). If a G /(K,) is a q.h. expansion of f, then
(.{] Í olp = f(p) for each peV0,

' \asw = rwX~xH*wf  for each w G IK,.

Lemma 3.4.1. For w G Wm and p G K,,
r~lXep   ifptSyj,
0 otherwise.

Proof. First if p e Sw , then

¿to = ^'(y(^)* + X(wPY) = r~lXep.
Next, if p does not belong to Sw and /(/>) > M + 1, then i//p\bw+sw = 0.
Therefore i7£, y/p = 0. Finally, if /(p) < m , then y/p is /(p)-q.h. and therefore
KwP = o.
Proof of Lemma 3.4. Let fm — J2peVm otpy/p , then for all w e IK,,

lim //¿./^ = //^/,
m—>oo

and for each p g K0, /m(/>) = ap = f(p).
On the other hand, using Lemma 3.4.1, we have, for m > \w\ + 1,

Hwfm —  2^i aPrw XeP — rw % ¿_/ aPeP = rw Xaw.
PèSw P€SW

Letting m —► oo , we obtain asw = rwX~lHy)f as required.

The above lemma says that each f e /(K.) has at most one q.h. expansion
given by (3.1). So we define a(f) g /(K,) by

( (<*(f))p = f(j>) for p G K0,
I (a(f)Yw = rwX~xX^f   for w G IK,.

We denote  (a(/))^  by aw(f).   We also define, for all  m > 0,   Pm/ =

#,>p = S

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



732 JUN KIGAMI

Lemma 3.5. Let f £ l(K), then Pmf = Y.p€vm f(P)V? ■
Proof. Since Pmf is ra-q.h., by Theorem 3.1, we may show by induction on
m that

(3.2)m f\vm = (Pmf)\vm.
(3.2)o is obvious by definition. Now suppose (3.2)w . Note that

(3.3) Pm+if=Pmf+     £     (<*(f))PVp-
p€Vm+i-Vm

Hence, if p e Vm , then (Pm+lf)p = (Pmf)P = f(p) ■ Next for each w £¡Vm,

(Pmf)w = ~X     J(Pmf)w = ~X     J fw
This together with (3.3) shows that

(pm+jyw = (pmfyw + aw(f) = -x-lJfu) + x-x(jf* + XJ>) = fw.
This implies that (Pm+Xf)p = f(p) for any p G Km+1 - Vm .

Combining Lemma 3.4 and Lemma 3.5, we have

Theorem 3.6. Each f G /(K,) has the unique quasi-harmonic expansion a(f).

In the rest of this section, we consider q.h. expansion for continuous func-
tions. The set of all continuous functions on K is denoted by C(K), which is
equipped with the supremum norm defined by \f\x — supxeA- \f(x)\.

Since K, is dense in K, the restriction map i:C(K) -* /(K,) given by
/(/) = f\v. becomes an inclusion map. Hereafter, C(K) is regarded as a
subset of /(K,) in this manner. We also regard l(Vm) as a subset of /(K,) by
the natural map im defined by, for p G Vm , im(p) = Yjp€VmpPWpm ■ Then,
Pm- l(V*) —* ¡(Vm) defined above equals to the projection map for the inclusion
im-

Noting that l(Vm) c C(K), we have

Theorem 3.7. Let f G /(K,). Then f G C(K) if and only if Pmf is uniformly
convergent on K as m —> oo. And if f G C(K), then Pmf converges to f
uniformly on K.
Proof. If Pmf is uniformly convergent on K as m —► oc , then the limit, say,
/ is continuous on K . Therefore from

fWm = (Pmf)\vm = f\vm,

we have / = / and / G C(K).
Next if / G C(K), let

em = max   sup   \f(x)-f(y)\.

Then since / is uniformly continuous on K , limm_*oc em = 0. On the other
hand, using Theorem 3.2, we can obtain, for any x,

\Pmf(x) - f(x)\ < \Pmf(x) - f(p)\ + \f(p) - f(x)\ < 2em ,
where p is chosen so that x G Kw and p G Bw for some w g Wm . Hence
\Pmf - I\k < 2em and so Pmf converges to / uniformly on K .
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4. Harmonic structure
In this section, we introduce the concept of harmonic structure, which has

all the properties required in the further study of calculus on p.c.f. self-similar
sets. For example, under harmonic structure, each quasi-harmonic function will
turn out to be harmonic.

Definition 4.1. Let (D, r) be a quasi-harmonic structure. Then J^(D) G L(K0)
is defined by

^r(d) = T-'JX-lJ.

Harmonic structure will be defined as an eigenvector of the nonlinear trans-
formation J^r. When no confusion can arise, we drop the r of J^ and write

Lemma 4.2. For each w G IK, and any f G l(Bw + Sw),

r~x^(D)f' = D*wf-'JX-xH:f
Proof. This follows immediately by the definition of D^ and H^ in §2.

The following result will not be applied in this paper. It implies, however,
the notable fact that J^:^"(Ko) —> ̂"(V0), which may be a starting point of
some further study.

Proposition 4.3. For each quasi-harmonic structure (D, r), (J*r(D), r) is also
a quasi-harmonic structure.

For the proof of Proposition 4.3, we decompose K,° into X-irreducible parts
U\, U2, ... , Um and we define

dUi = {p\p G K0 and Jpq # 0 for some q G £/,}.
Lemma 4.3.1. For p e K0, let y/p G /(Pi) be the quasi-harmonic function with
Vp\vo = ep ■ Then, for q G K,°, y/p(q) >0if, and only if q G U¡ and p G dU¡
for some i — \ ,2, ... , m .
Proof. First if q G U¡ and p G (dU¡)c, then \¡/p\au¡ = 0 and so y/p(q) = 0.
Hence if y/p(q) > 0 then q e £/, and p G dU¡ for some i = 1, 2, ... , m .
Conversely, if q G U¡ and y/p(q) = 0, then y/p(q) - minreVl i//p(r). As
Hi,qy/P = 0, y/p(r) = 0 for all r with (Hx)qr / 0. Inductively, we can show
that y/plu.udu, = 0. Therefore p G (0£/,-)c.

Using Lemma 4.2, we have J¡r(D)ep - D^y/p, and hence, for all p and
rGK0,

(4.1) S(D)rp = hrp+Y, hrqVP(q),
gev°

where hab = (Hx)ab.

Lemma 4.3.2. For p and r e V0, if p and r e dU¡ for some i - \ ,2, ... , m,
then ^(D)rp >0.
Proof. There exists q G U¡ with hrq > 0. And by Lemma 4.3.1, y/p(q) > 0.
Hence by (4.1), Jr(D)rp>0.

Proof ofLemma 4.3. We may show that J^(D) g^(K0). Noting that -'JX~XJ
> 0 and <f(D)e = 0, where e = Y,pey ep, we can easily verify that (2), (4),
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and (5) of Definition 2.1 hold. Therefore we may show that J?(D) is irre-
ducible. Then, for p and q G Ko, as H\ is irreducible, there is a sequence
{<7,}"=1 such that q\ — p , qn = q , and hq¡q¡+i > 0 for i = 1, 2, ... , n- I. Let
{ft}?=i n K0 = {p,}f=1 where p, = <?,, with 1 = h < i2 < ■■ ■ < ik = n.

Now if ij+\ — ij + 1, then hPjPj+l > 0 and hence by (4.1) we have p¡    ~

Pj+\. If ij+i > ij + 1, then Pj and p¡+\ G dU¡ for some i and by Lemma
4.3.2, we have p¡   ~   pj+\. Therefore we have p   ~   q . This completes the

proof.
Definition 4.4. A quasi-harmonic structure (D, r) is said to be a harmonic
structure if there exists X > 0 such that

Jrr(d)=X~xD.

This X is called the characteristic exponent of the harmonic structure (D, r)
and is denoted by X = X(D, r). Further, a harmonic structure (D, r) is said
to be regular if rs < X(D, r) for each s G 5.

Remark. One may ask whether there is any harmonic structure on a given p.c.f.
self-similar set. In general, we are not ready to answer this question. In the case
of nested fractal, Lindstrom has treated essentially the same problem in [13]. In
our words, he has shown that there exists a regular symmetric harmonic structure
on every nested fractal. K. Hattori et al. [7] has also treated a similar problem
by another approach. From their discussion, we can deduce that there exists a
p.c.f. self-similar set where J^ has no eigenvector with positive eigenvalue for
some r.

Examples of harmonic structures are given in §8. We now give some remark-
able facts derived from the definition of harmonic structure.

Lemma 4.5. Let (D, r) be a harmonic structure with X = X(D, r). If f is
m-q.h., then, for each p G Vm and k>0, Hm+kpf = X~kHm,pf.
Proof. Using induction on k , we need to show only the case when k = 1. For
tí; G IK, with p G Bw , by Lemma 4.2, we have

r-x(Dti)p = X(D*wf-<JX-xH*wf)p.
As / is m-q.h., we obtain ^(Dffyp — X(Dv\Jf)p . Here, summing the above
equality for all w e IK, with p e Bw , we have Hm ,pf = XHm+\ ,pf as required.

Lemma 4.6. If (D, r) is a harmonic structure, then every quasi-harmonic func-
tion is harmonic.
Proof. If / is q.h., then Lemma 4.5 implies that for all p G K, and all m >
Up),

Hm,pf = x~^-^H;f = o.
Theorem 4.7. Let (D, r) be a harmonic structure. Then for any p G /(K0), there
exists a unique harmonic function f with f\v0 = P ■
Proof. If the assumption (1) in Theorem 2.6 is satisfied, then combining Theo-
rem 2.6 and Lemma 4.6, we can deduce the above result. In the general case, we
let S'm = (K, Sm, {Fw}weSJ , where S? = (K, S, {Fs}seS) is the original self-
similar structure and Sm = Wm(s). Also, for the original harmonic structure
(P>, r), we let W = (rw)w€Sm .
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Then, Sfm is a self-similar structure and (D, r(m)) is a harmonic structure
on £?m . Now we can easily see that Jz^, satisfies (1) for sufficiently large m .
And so, by the above discussion, there exists a unique S'm -harmonic function
/ with f\y0 — p for each p e l(Vo), where =2^-harmonic means harmonic
with respect to Sfm and (D, r(m)). We may prove that J25«-harmonic function
is ^-harmonic. Noting that

Vo(&m) = V0(&),        Vn(5?m) = Vnm(2'),    and   Hn(J?m) = Hnm(3>),

Lemma 4.6 implies that if / is 3fm-harmonic, for all n > 0,

(4.2) (Hnm(J7)f)Vnom=Q.

On the other hand, using Lemma 4.2, we can show that if

(Hk(5f)f)Vo = 0   for some k > 0,

then
(Hj(5f)f)Vo = 0   for all ; < k.

This together with (4.2) shows that / is ^-harmonic.

By the last theorem, we can use the theory of quasi-harmonic expansion in
§3 under a harmonic structure. Hereafter, if (D, r) is a harmonic structure, we
drop "quasi-" of quasi-harmonic function, m-quasi-harmonic function, quasi-
harmonic expansion and so forth.

The following two results will play an important role in §5 and §6.

Lemma 4.8. Let (D, r) be a harmonic structure with X = X(D, r). Then, for all
peVm and q eVn,

XmHm,py,ï = X»Hn,qy/™.

Proof. First if m = n , then HmiPy/^ = (Hmeq)p = (Hm)pq . Since 'Hm = Hm ,
we have Hm yP y/£ = Hn yq y/™ .

Next, if m ± n , suppose m > n , then y/q is «-harmonic and hence Lemma
4.5 implies that Hm<py/^ = X~(-m~"'>HnyPy/q . Applying the result when m = n
and noting that y/™\v„ = Wp\v„,

ij        ,..n _  "¡—(m—n)rr       ,.,n _ l—(m—n)jj       ,,,m

This completes the proof of Lemma 4.8.

Lemma 4.9. If (D, r) is a harmonic structure with X = X(D, r), then for any
m > 1, we have

T   —'I   y~i i   —)~mr>

Proof. By Theorem 4.7, for each p e l(V0), there exists a harmonic function
/ with f\vQ = p. Making use of Lemma 4.5, we have (Hmf)y0 = X~mDp.
Noting that f\v° = -X~xJmp, we obtain

(Hmf)v0 = {Tm- JmX~ Jm)p.

Consequently, we can get the required equality.

As is shown in §8, a harmonic structure is not always regular. We can see,
however, the following result.
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Theorem 4.10. If (D, r) is a harmonic structure, then rs < X(D, r) for some
seS.

Theorem 4.10 will be used for the proof of existence of "admissible" measures
in the case of nonregular harmonic structure in §5.
Lemma 4.10.1. Let Sf = (K, S, {Fs}seS) be a p.c.f. self-similar structure. If
cd G 2 is periodic, that is, on(co) = co for some n, then n~x(n(co)) = {co} .
Proof. For w G IK,, we define wk e IK, for k = 1,2,... inductively by
it;1 = w and wk+x — W'Wk. And also, we define ù; G 2 by w = w -w -w ... .
Then if co is periodic, there exists w € W* with co = w. Suppose co G
n~x(n(co)) with co ̂  co, then for each k > 1,

n(wk • co) — n(wk • co) — n(co).
Hence 7r_1(7r(a;)) contains infinitely many elements. This contradicts to the
fact that Sf is p.c.f.
Lemma 4.10.2. Let (D, r) be a harmonic structure on J? = (K, S, {Fs}ses)- If
Jz? satisfies the assumption (1) of Theorem 2.6 then, for any p g K0, (-¿f(D))pp
<(-T)PP.
Proof. Recalling (4.1), we have (S(D))PP = (-T)pp - J2q€v° ¥Pqhqp . Using
a similar discussion as in the proof of Lemma 4.3, if hpq > 0, then y/pq > 0.
Further, if (1) holds, then {q\q e V° and hpq > 0} ^ 0 and so Y^q^v° Wpq^qp >
0. This completes the proof of Lemma 4.10.2.
Lemma 4.10.3. Let (D, r) be a harmonic structure. If w g P for w G IK,,
then rw < X(D, r)\w\.
Proof. Recalling H\ - Y,szs r7X ' lRsDPs, we have

(4.3) Tpp=    Yl    r^D««>
(q,s)eQp

where Qp = {(q, s)\q G K0 and Fs(q) = p} . Let w = wxw2 ■ ■ ■ wm with w¡ G 5
and let p¡ = n(a'(w)) for /' = 1, 2, ... , m . Then by Lemma 4.10.1, we obtain,
for i=\,2, ... ,m, QPj = {(pM , w¡)} , where pm+l = px . Hence by (4.3),

T      — r~x D
JP,Pi   —  'Wi ^Pi+iPi+f

Now suppose the assumption (1) of Theorem 2.6 holds, then using Lemma
4.10.2, we have TPiPi <Xr~}TPMPM , and so TPlPi <X^r-xTPiPl . Consequently
rw < XW .

In the general case, we change the self-similar structure 21 by ^, as in the
proof of Theorem 4.7. We choose m so that S?m can satisfy (1). Then, by
Lemma 4.9, X(D, r(m)) = Xm . Therefore the above arguments will imply that
C < ¿WH . Hence we have rw < X^ .
Proof of Theorem 4.10. By the definition of P, if ¿¿f is p.c.f., then P contains
a periodic element w. By Lemma 4.10.3, rw < ¿H . And so, rs < X for at
least one s £ S.

5. Green's function

In this section, we introduce the Green function g associated with a har-
monic structure. And, for some appropriate measure ß, we define the Green
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operator Gß as an integral operator whose kernel is g . -Gp will turn out to
be the inverse of the Laplace operator in §6. We always fix a harmonic structure
(D,r) with X = X(D, r).
Definition 5.1. (1) For to g IK, and x G K, we define y/w(x) G l(Sw) by
(¥w(x))p = y/p(x) for each p G Sw .

(2) For m > 1, 4*m and gm: K x A" —► R are defined by

tu6Wm-l

and
m

gm(x,y) = YJ^~kxvk(x,y).
k=\

By the above definition, we can easily see the following facts.
Lemma 5.2. (1) ¥m >0,

(2) supp^ c \Jweivm-i KwxKw,
(3) t¥m\vm_ixv„-l =0,
(4) for some C > 0,  l^kx* < C(R/X)m, for all m > 0, wAere P =

maxi65 rs.

Definition 5.3. For (x, y) G K x A , we define
f limw^oo ,em(x, y)   if the limit exists and is finite,

g(x,y) = < ...
L oo if gm(x, y) diverges to oo as m —> oo.

By Lemma 5.2—(1), we can see that gm(x, y) is monotonically increasing as
m 1 oo . Hence, the preceding definition is well defined. Making use of Lemma
5.2, we can also verify the following results.
Proposition 5.4. gm converges to g, as m -> oo, uniformly on each compact
subset of K x K - {(x, x)\x G K) . Furthermore, if (D, r) is regular, then gm
converges to g, as m -> oo, uniformly on K x K.

We next state the assumptions on measures under which the Green operator
can be defined.
Definition 5.5. A measure ß is said to be admissible with respect to (D, r) if

(1) ß is a regular Borel measure on K and ß(K) - 1,
(2) ß(0) > 0 for each open set 0 c K ,
(3) p(V0) = 0,
(4) limm^oo ¡K g% dß < oo , where g% is defined by g%(x) = gm(x, x).

Remark. Using some usual discussion on measures and integration, we can see
that (4) is equivalent to

(4')   gDeLx(K,ß),
where go is defined by gD(x) = g(x, x).

The assumptions (l)-(3) in the above definition are not so restrictive, for
example, they hold for the self-similar measures ßn introduced in § 1. If (D, r)
is regular, then (4) becomes trivial because g% converges to go uniformly on
K x K. In this case, every measure with (l)-(3) is admissible with respect to
(D,r). On the other hand, if (D, r) is nonregular, then (4) is not trivial. In
this case, however, we can see that
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Proposition 5.6. There exists a self-similar measure ßn which is admissible with
respect to (D, r).

Lemma 5.6.1. Let ßn be a self-similar measure.

If y^ rstis < X,     then   lim   / g% dß < oo.
*—' m—»oo ]v
ses JK

Proof. Note that C = supxeKw(-'y/w(x)X~x y/w(x)) is independent of w e IK,.
By Lemma 1.13, we can see that

(\ m-l

ses      /

Hence,
fe-i

{ g^dß<CX-xY^(x-xY^rsrh\
Jk k=i \      ses      I

This completes the proof of Lemma 5.6.1.

Proof of Proposition 5.6. By Theorem 4.10, rs < X for some s e S. Hence
we can choose n - (r\s)ses so that ^2seSrsns < X. So, by Lemma 5.6.1, ßn
satisfies (4) and therefore ß is admissible.

Now we are concerned with the Green operator GM associated with (D, r).
In the rest of this section, ß is always an admissible measure with respect to
(D,r).

Definition 5.7. For / G C(K) and x G K , we define

(Gp"f)(x)= I gm(x,y)f(y)ß(dy),
JK

for all m > 0, and

(G,f)(x)= I g(x,y)f(y)ß(dy).
Jk

In the course of later discussion, we can show that G™f converges to G^f
uniformly on K and therefore Gpf is continuous on K. As a result we will
obtain the following main theorem of this section.

Theorem 5.8. (1) Por any f G C(K), Gßf G C(K) and

\Gßf\K<(J gDdß\\f\K.
(2) For any m>0 and any p G Vm ,

'-fytffd/i ifp&V°,
XmHm,p(Gßf) = \     7

-/ (wP-WP)fdß   ifpeVo.
y   jk

In the following we prove the above theorem step by step.
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Lemma 5.8.1. For any w G Wm,

g(Fw(x), Fw(y)) - gm(Fw(x), Fw(y)) = X~mrwg(x,y).

Proof. Recalling the definition of y/w and Fw , we can easily see that

y/v   if u = w • v ,
, 0     otherwise.

Therefore for w G IKm ,

g(Fw(x), Fw(y)) - gm(Fw(x), Fw(y))

Vu°Fw = \

= -£¿-(«+0    £    ru'y/u(Fw(x))X-xyyu(Fw(y))
;'=1 u6Wm+¡-i

= X-mrw[-Y^X~i   Y,   rv'Wv(x)X-xy/v(y)
\    1=1       vew¡_{

= X~mrwg(x,y).

Lemma 5.8.2. For any m>0 and any p e Vm,

X™H     ^ = /-^m(x) forp€Vm,
m'pg       \-Vp»(x) + yfp(x)   forpGVo,

where gx is defined by gx(y) = g(x, y).
Proof. Using Lemma 4.8, we can verify that

XmHm,p¥w=XW+xH¿yy™.

Hence
oo

XmHm,pgx = -Y-^'   E   rw'y/w(x)X-x(XmHm^w)
i=\ toe^i

= - E ty/w(x)aw(y/lpn)
wew.

= -y,?(x) + (P0ypm)(x).

Next, we define Gm G L(V°) by (Gm)pq = g(p, q)  (= gm(p, q)) for p and
q G V°. Then we have

Lemma 5.8.3.  Gm = X~m(-Xmyx.
Proof. Lemma 5.8.2 implies that, for p and q e V°, (XmXmg»)q = -y/™(q).
Hence we have XmXmGm = -/, where / is the identity. This implies the
required equality.

Lemma 5.8.4. For all x and y e K, g(x, y) < g(y, y).
Proof. We let x ^ y because this lemma is trivial if x = y . Choosing w G 2
so that n(w) = y, then

gm(y,y)=  £  gm(P,P)(v?(y))2.
P£Blw]m
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Hence
min gm(p,p) <gm(y,y).

P£B[w]m

And so, we can choose pm G B[W]m so that

limsup£w(pm , pm) < g(y,y).
m—>oo

On the other hand, we can choose qm e Vm so that

qm —> x   as m —» oo,

and
lim gm(qm,pm) = g(x,y).

m—»oo

Now combining Lemma 2.7 and Lemma 5.8.3, we have, for all m > 1,

gm(Qm,Pm) < gm(Pm,Pm)-

Letting m —* oo , we obtain g(x, y) < g(y, y) as required.

Lemma 5.8.5. For all x and y G K,
g(x, y) - gm(x, y) < g(y, y) - gm(y, y).

Proof. If g(x, y) - gm(x, y) > 0, then by Lemma 5.2(2), there exists w G Wm
such that x = Fw(x) and y = Fw(y)  for some x and y e K.   Hence by
Lemma 5.8.1,

g(x, y) - gm(x, y) = X~mrwg(x,y),

and
g(y, y) - gm(y, y) = x~mrwg(y, y).

Therefore by Lemma 5.8.4, we can obtain the required inequality.

Proof of Theorem 5.8. (1) For any / g C(K), by Lemma 5.8.4 and Lemma
5.8.5, we have, for all m > 0,

l*(*. y)f(y) - gm(x, y)f(y)\ < (gD(y) - gg(y))\f\x,
where go = 0. Hence, for all x e K, (Gßf)(x) is a finite value and

(5.1) \(GJ)(x)-(G™f)(x)\< ^j{gD-g$)di^\f\K.

Therefore G^f converges to GMf uniformly on K, and so Gpf G C(K). Also
letting m = 0 in (5.1), we have \Gpf\K < (¡K godß)\f\K ■

(2) We can easily see that

XmHm,p(Gßf) = [ (XmHm,pgy)f(y)ß(dy).
JK

Hence by Lemma 5.8.2, we have the required results.

6. The Laplace operator
The object of this section is to study the Laplace operator A^ associated

with a harmonic structure (D, r) and an admissible measure ß . In §6 and §7,
(D, r) is always a harmonic structure with X = X(D, r) and p is an admissible
measure with respect to (D, r).

The Laplace operator is defined as a limit of difference operators AJf as
follows.
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Definition 6.1. (1) A™:/(Km) -» l(V°) is defined by, for each p g V°, (A*/), =
kmPmXpHm,Pf', where /¿Wj/, = /^ y/j? dß. When no confusion may occur, we
also denote A* o Pm: C(A") - l(V°) by A™ .

(2) Let / be a continuous function on K. If there exists <p e C(K) such
that

max \(Apf)p - <p(p)\ -► 0   as m -> oo,

then we let Aßf - cp . The domain of Aß is denoted by 3ß .

By Theorem 6.9 and Corollary 6.10, we will see that the above definition of
the Laplace operator justifies the terminologies such as "harmonic function" or
"Green function" in the usual sense.

We next introduce the Neumann derivatives at a point of K0 .

Definition 6.2. For / g C(K) and p G K0 , we let

(df)p= lim -XmHm,pf,
m—»oo

if the limit of the right-hand side exists and is finite.

As ß is fixed throughout this section, we often use A, and 3 instead of A^
and 31 ß.

Lemma 6.3. Let u G C(K) and v G 3. Then, as m-»oo,

Xm Y u(P)Hm,Pv -> / uAvdß.
pev¿ Jk

Proof. We let
fm(x) =XmY (u(p)ß-\pHm,pV)y,™(x),

pev¿
and

f(x) = u(x)Av(x).
Then we may show that, as m —» oo ,

(6.1) / fmdp^ f fdß.
JK JK

By the definition of A, similar discussions as in the proof of Theorem 3.7 imply
that, as m —» oo, fm converges to / uniformly on each compact set in K -
K0 . Also, the fm 's are equibounded. Therefore, by the Lebesgue convergence
theorem, we can prove (6.1).

Applying the last lemma, we can verify that the Neumann derivatives exist
for any f e3.
Lemma 6.4. Let f £ 3 and p G K0. Then

(df)p = -(Df)p+ [ yspAfdß.
JK

Lemma 6.4.1. For p G K0,

(Df)p = XmHm,pf + Xm Y Wp(Q)Hm,qf.
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Proof. By Lemma 4.9,
T   —tT   Y~x 1   —i~mn
1 m        Jmyím   Jrn — A       lJ-

Hence,
(6.2) Df = Xm(Hmf)yü - Xm - <JmX-x(Hmf)v°.

On the other hand, (Hmy/P)v° = 0 implies -X~xJmep — (wP)v° ■ And so, we
have
(6.3) (-X-xJm)qp = Wp(q).

Combining (6.2) and (6.3), we can complete the proof.

Proof of Lemma 6.4. Using Lemma 6.3, we have, as m -» oo,

¿m X y/p^a)Hm,qf-' I vAfdß.
qev° Jk

Hence by Lemma 6.4.1, we obtain

lim -kmHm,pf=-{Df)p+ [ wAfdß
m^oo " JK

as required.

Next we establish Gauss-Green's formula, that is,

Theorem 6.5. Let u and v G 3 . Then
(1) ¡K(uAv - vAu) dß = EPev0(u(P)(dv)p - v(p)(du)p).
(2) JkAudß = Zp€Vo(du)p.
To prove Theorem 6.5, we need some results on symmetric forms i?m on

l(Vm).
Definition 6.6.   %m is a symmetric form on l(Vm) defined by

gm(u,v) = -XmtuHmv.

For ease of notation, we write, for u and v G /(K,),

fm(M, V) = %m(PmU, Pmv).

By this manner, we frequently regard §*m as a symmetric form on l(V,).

By the above definition, we can immediately see that

Lemma 6.7.
%m(u,v) = -Xm Y »(P)Hm,pV

pevm

= ̂ £ E*f»-«(#(p)-»(î)).
pevmqevm

where h™ = (Hm)pq.

Lemma 6.8. Let u G C(K) and v e 3 . Then

lim %m{u, v) = y^ u(p)(dv)p - / uAvdß.
m—»oo L—' ]v
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Proof. By Lemma 6.7,

rm(«, »)= Y, u(p)(-XmHm,pv)-Xm Y u(p)Hm,pv.
p&Vo pev°

Hence Lemma 6.3 and Lemma 6.4 imply the required equality.

Proof of Lemma 6.5. Obviously Bm(u, v) = Bm(v , u). Therefore by Lemma
6.8, we can prove (1). And letting u = 1 in (1), we can prove (2).

Next, we are concerned with the Dirichlet problem of Poisson's equation as
follows.

Theorem 6.9. For given cp g C(K) and given p G /(K0), there exists a unique
f £3 such that

l f\v0 = P,
and this f is given by f = T,Pev0 PP¥P-Gßcp.

Corollary 6.10.  / is harmonic if and only if f e3 and A/ = 0.
For the proof of Theorem 6.8, we need further results on the symmetric

forms %m given in the following.

Definition 6.11. (l)For w e W*, (•, •)„, is a symmetric form on /(K.) defined
by

(u, v)w = -rwx •/a1i)(u)A'a!U,(t;).

(2) Om(», •) is a symmetric form on /(K,) defined by

(<bm{u,v) = 'Zw€lVm_i(u,v)w   form>\,

\ (¡>o(u,v) = io(u,v).

Lemma 6.12.  (/, f)w > 0 and the equality holds if and only if aw(f) = 0.
Proof. Using Lemma 2.7, we can see that -X is positive definite. This implies
Lemma 6.12.

The following is a remarkable fact about the symmetric forms Wm. It is a
key result for studying the Dirichlet form áf, the limit of Wm in §7.

Lemma 6.13. For m > 0,
m

ÏÏm(u,v) = Y.xk<S>kiu,v).

Lemma 6.13.1. For each w e Wt, let (u, v)w = -r~x '^Dv0. Then

gm(u, v)=Xm  Y (". v)w-
wewm

Proof. Obvious by the definition of Hm .

Lemma 6.13.2. For each w e Wt,

X("> v)ws-X~x(u, v)w = (u, v)w.
ses
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Proof. First recalling

aw(f) = r-xXH*wf=r-xX-x(J   X) (-|) ,

then we have

(6.5) (u,v)w = -r-x(<ubwluy

We also obtain

(6.6) (u,v)w = -r- '('<'"«) 1 0    0 J Uf
,.-l/-r,,¿> /„i \ i "j«

"w .

and

(6.7) E<M'v>^ = -^1(,"-'0(j    'x)(ll)-
Now since (D, r) is a harmonic structure, we have T-'JX~XJ = X~XD. This
together with (6.5), (6.6), and (6.7) completes the proof of Lemma 6.13.2.
Proof of Lemma 6.13. Using Lemma 6.13.2, we see that

*m   E   E^'^-^-1   E   (u,v)w=XmOm(u,v).
i»eif„-i ses wew,„_¡

Applying Lemma 6.13.1, this implies
gm{u, v) -%m-\(u, v) = XmQ>m(u, v).

Hence we can obtain the required result.

Corollary 6.14. For each m > 0, £?m(u, u) < %n+\(u, u). And %?m(u, u) =
lim¿_>00£3t(M> u) if and only if u is m-harmonic.
Proof. By Lemma 6.12, Wm+X(u, u) -%m(u, u) = Am+1<Dm+1(u, u) > 0. And
we can see that Wm(u, u) = lim^_00^:(M, u) if and only if 4>„(m, u) = 0 for
all n > m. Hence by Lemma 6.12, aw(f) = 0 for w G IK, - IKm_i . This is
equivalent to the statement that / is m-harmonic.

Proof of Theorem 6.9. For the uniqueness, let tp = 0 and p = 0 and show that
/ = 0. If f\v0 = 0 and A/ = 0, then Lemma 6.8 implies that

lim rm(/,/) = o.
m—»oo

Using Corollary 6.14, we can see that / is harmonic. Therefore by f\ y0 = 0,
we obtain / = 0. Now, we may prove that if / = -Gßcp , then Af - cp . By
Theorem 5.8,

Pm,pK"Hm,Pf= ßm\p  \   V™<pdß.
JK

Noting that cp is uniformly continuous on K and

max(diameter of supp y/™) —► 0   as m —► oo,

we can verify that

IT
P<

Therefore A/ = cp .

max\XmßmxpHm,pf-tp(p)\ — 0   as m — oo.
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Finally we remark that the Dirichlet problem for Poisson's equation (6.4) is
equivalent to the following infinite system of finite difference equations on K,,

f\v0 = P,
X'^H*f = JK y/pcp dp   for each p G K,.

Such an equivalence was obtained in [15] and [10] for simple cases.

7. Dirichlet form

In this section, we construct a Dirichlet form 0? associated with a regular
harmonic structure as a limit of symmetric forms %m on l(Vm). In the present
paper, we will not introduce the detailed study on Dirichlet forms. The reader
may refer to Fukushima [4] for the definition and the results on Dirichlet forms.

Throughout this section, we fix a regular harmonic structure (D, r) with
X = X(D, r) and an admissible measure ß with respect to (D, r). We remark
that under a regular harmonic structure, Green's function g is continuous on
K x K and every self-similar measure is admissible.

By Corollary 6.14, we can see that limm^00i^!(/, /) exists for each / G
/(K,) if we let the value of limit be oo. We define a symmetric form W as
follows.

Definition 7.1. A subspace y c /(K,) is defined by

y = {f\f e l(K) and   lim r„I(/,/)<ooj.
L m—»oo )

And a symmetric form a? on y is defined by (o(u, v) = limm_00<§^!(M, v).

Obviously, I? is nonnegative definite and %m(u, v) = W(Pmu, Pmv). Now,
Corollary 6.14 shows that

Proposition 7.2.  l(Vm) c y for all m > 0.   And f G l(Vm)  if and only if
*m(f,f) = *(f,f).

Also by Lemma 6.8, we can obtain

Proposition 7.3. Let ß be admissible. Then 3ß c y and

%>(u, v) = V] u(p)(dv)p - / uAßvdß,

for u G C(A") n y and v e3ß.

Here we state the main results of this section.

Theorem 7.4. Let ß be admissible. Then,
(i) y cc(K),
(2) (y, 1?) ¿s a regular local Dirichlet space on L2(K, p),
(3) iV, **) = /(*) - (Po/)M /or all fe^ and all x £ K,
(4) (y, ¿?) ¿s í/ze minimal closed extension of (3ß , f),
(5) ü^ is dense in C(K).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



746 JUN KIGAMI

In the following, we prove the above theorem step by step.
For ease of notation, we let

[Am = y/?m(f, f)    and    [f] = y/g{f, f).
First we observe some facts immediately obtained by the preceding defini-

tions.

Lemma 7.4.1. Let u and v £^r. Then,
(1) [Pmu] = [u]m,
(2) [u]m î [u] as m î oo,
(3) [Pmu - Pnu]2 = [u]2„ - [u\l for m>n,
(4) \g(u,v)\<[u][v).

Lemma 7.4.2. Let f £ /(K,) and x £ K. Then

W,gx) = (Pmf)(x)-(Pof)(x).
Proof. By the definition of g and aw , we can see that

aw(gx) = -X~^\+X)rwX-xyyw(x).

Hence (/, gx)w = A~(N+1). 'aw(f)y/w(x). Therefore by Lemma 6.13,
m

S»(/, **) = $>*<&*(/,£*) =    E   '<*w(AVw(x).
fe=i wewm

This implies the required result.

It follows immediately from the last lemma that

Lemma 7.4.3. For any x £ K, gx c y, and ïï(gx , gx) = g(x, x).

Lemma 7.4.4. // / G y, then f £ C(K) and for all x £ K,
&(f, gx) = f(x) - (Pof)(x).

Proof. By Lemma 3.7, we may show that Pmf converges uniformly on K.
Using Lemma 7.4.1(4), we have

\%(Pmf-Pnf, gX)\< [Pmf-PnA[gX],
for all x £ K and m> n . Applying Lemma 7.4.1(3), we obtain

\pmf(x) - pnf(x)\ < ([Ai - [Al)i/2gD(x).
Hence

\Pmf-Pmf\K < ([Ai -[Al)1/2\gD\K.
Again using Lemma 7.4.1(2), this implies that Pmf converges uniformly on K.

We let, for u and v £ 9~,

g'*(u,v) = ^(u,v)+ f uvdß.
JK

Also, ^o is defined by

^ = {/l/eyandP0/ = 0}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CALCULUS ON SELF-SIMILAR SETS 747

Lemma 7.4.5. y is a Hubert space with the inner product %>*.
Proof. By Lemma 7.4.4, if / g &q , then

(7.1) \f\K < [A\gD\K-
Hence there exists C > 0 such that for all / G y,

[A<(^(f,A)l,2<C[A-
Therefore, we may show that y is a Hilbert space by the inner product £?. Let
{fm}m>i be a Cauchy sequence in (y, W), that is, there exists {em}m>i such
that limm^oo em = 0 and [fm - fn] < e„ for all m> n . Then, for each k > 0,
{Pkfm}m>i is a Cauchy sequence in l(Vk) and hence there exists / G /(K,)
satisfying that, for each k > 0, Pkfm -> P^/ as m —» oo in /(K¿). Now, for
m > «,

Wfc/m - Pkfn] = [fm ~ fn]k < [fm - fn] < 6„.
Hence, letting m —► oo, we obtain [Pfc/- P¿A] = [/- ./ñk < e« • Again letting
k —► oo, we can see that / G y and [/-/«]< £„ . Hence /„ converges to /
in (^,r).
Lemma 7.4.6. y /s a Hilbert space with the inner product %*.
Proof. Note that y = y © /(K0) and use Lemma 7.4.5.

Proof of Theorem 1A. We have shown (1) and (3) in the course of the above
arguments.

(2) By Lemma 7.4.6, we see that If is a closed form on L2(K, ß).
(i) Regularity. Recalling Proposition 7.2, we can verify that Uot>o^(^m) is a

core.
(ii) Markov property. For u G y, we define û G /(K,) by

{w(x)   if 0 < w(x) < 1,
1 if 1 < u(x),
0        if u(x) < 0.

Then, for each p and <? G K,,

(ïï(/>)-ïï(<z))2 <(«(/>)-u(<7))2.

Using Lemma 6.7, we have ^(ïï, ïï) < &m(u, u). Therefore ü G y and
^(w, ") < <?(«, m) . Thus, f is stable under the unit contraction.

(iii) Local property. Let f\ and f2£3r with supp /i n supp f2 — 0. Then,
for sufficiently large m , there exists t/, c IKW such that

supp/ C  U 4   and        (J A«,    n     (J Ä«,    = 0.
wet/, \i»e[/i      /      \weUj      j

Hence using Lemma 6.7, we can see that %(f\, f2) = 0.
Thus we have shown that (y, W) is a regular local Dirichlet space on

L2(K,ß).
(4) Since y = y ®/(K0) and /(K0) c ^ , we may prove that .®b = &óri3 is

a dense subset of the Hilbert space (y, f). For p g K,, we let cp™ = ßm\pW™ ■
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Then, using Proposition 7.3, Lemma 7.4.3, and Lemma 7.4.4,

[Gßcp™ - g"]2 = [Gß<Pp"]2 - 2^(Gß9p" , g») + g(p, p)

g(x,y)y>pn(x)<ppn(y)ß(dy)ß(dx)i   .
JKxK

-2 [ g(p,y)<Pp"(y)ß(dy) + g(p,p).
JK

By a similar discussion as in the proof of Theorem 6.9, we can see that

[GrfP - gp]-+0   asm^oc.

On the other hand, by Lemma 5.8.2, - Y,qeVm hpqgq = y/™ . Hence,

g, ( - E h>7 ] - wT
q€Vm

0   as m —> oo.

Therefore, c\(30) in (&q,%) contains every y/™ . Note that \Jm>\^(vm) is
dense in (y, I?), we can conclude that 30 is dense in (y, W).

(5) Note that Um>o^(^) is dense in C(K). Using (7.1), we can show that
3 is dense in C(K).

Examples

This section is devoted to five examples of p.cf. self-similar sets and har-
monic structures on them.

First in item (I), we describe 5, C, q for each q g 7t~'(C), P and p for
each p £ n~x(P). According to the discussion in Appendix A, item (I) gives
complete information about n and determines the equivalence class of the self-
similar structure.

Secondly in item (II), we give some harmonic structures.
Finally in item (III), we describe the concrete self-similar structure, where

each self-similar set is immersed in C and each Fs is the contracting similitude
of C.

In each example, we use s for s £ S which is defined by (s)¡■ = s for all
i> 1.

Example 8.1. Interval.

(II) 5= {1,2}.
C = {12,2i}, q = n(l2) = n(2l),
P={i,2}, Pl=n(\), p2 = 7i(2).

1     1
(II) D -

r = (a, 1 - a) for 0 < a < 1,  X = 1.
When q = i ,  (y, I?*) equals the //'-Sobolev spaces.
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(III)p,=0, p2=\, q = \
Fx(z) = \z,  F2(z)

Pi=0
Figure 1

Pi

Example 8.2. Sierpinski gasket.

(I) 5 = {1,2, 3}.
C = {23, 32, 13, 3Í, 12, 2i},  qx = tt(12) = n(2Ï),
q2 = n(l3) = n(3l), <?3 = n(l2) = n(2\).
P = {i,2,3}, ps = n(s) for s =1,2, 3.

1-2     1       1
(II) D =      1     -2     1

V 1      1     -2t
r = (l, 1, 1), X=\.

(Ill) P\,p2, and P3 are the vertices of regular triangle.

Q\ = j(P2Pi), qi = \(P\Pi), #3 = {-(P1P2),
where \(p,Pj) is the midpoint of p¡ and p¡.

Fs(z) = {-(z-ps)+ps.

Q\ = j(PiPi)

Figure 2
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Example 8.3.

(I) 5 = {1,2, 3}.
C = {12,2i, 3i},  q = n(\2) = n(2l) = n(3l).
P = {Í,2}; Pi=n(i), p2 = n(2).

(n)D=(-1  \),
r = (a, 1 - a, ß) for 0 < a < 1 and ß > 0. X = 1.
If ß > 1, then this harmonic structure is not regular.

(111)^=0, p2=l, q = \.
Fx(z) = \z, F2(x) = \z-\, Fz(z) = ^z + \.

,\.,.\.À.,.\A.i.\A.lA.,\

Hiv^T

J.I ,.1.,.l. ,1.,.!.,.1...1...1.,.!.,.T., .1 l„i!i,J ■ 1...1...1.

Pi=0
Figure 3

P2= 1

Example 8.4. Hata's tree-like set.
This tree-like self-similar set was found by Hata [5].

(I) 5 = {1,2}.
C = {112,2i}, ? = jr(112) = re(2i).
P = {i,2, 12}; ps = n(s) for s £ S, p3 = n(l2).
This self-similar structure does not satisfy (1).

(II) D =
') a

-1       0
0     -a-1

r = (a, 1 - a2) for 0 < a < 1,  X = 1.
(Ill) Pi = 0, p2 = l, p3 = ß, q = \ß\2.

Fl(z) = ßz, F2(z) = (l-\ß\2)z + \ß\2,
where \ß\ < 1,  |1 - ß\ < 1 and Imß / 0.
In Figure 4,  yS = 0.4 - OJv^.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CALCULUS ON SELF-SIMILAR SETS 751

v.tiWh^M^-'

0 = 0.4-0.3^
Q = \ß\2 = \

Pi = ß

Figure 4

Example 8.5. Nested fractal.
5 = {1,2, ... , N}. Each Fs is a ^-similitude of R", that is, |P5(x) -

Fs(y)\ = i/|jc - y| for all x, y g R" .
K0 is the subset of the fixed points of Fs 's. An element of K0 is called an

essential fixed point by Lindstrom.
Let P be the matrix of invariant transition probabilities of random walk

on K0 given by Lindstrom. Then (P - I, (u, ... ,v)) is a regular harmonic
structure on the nested fractal, where / is the identity matrix. We conjecture
that our Dirichlet forms and the Dirichlet forms associated with the diffusion
processes given by Lindstrom [13] are the same.

Appendix A
We begin with some obvious facts.

Lemma A.l. Let (K, S, {Fs}s€S) be a p.c.fi self-similar structure. Then,

(!)   H=U,6sW).
(2) // K0 ¿ 0, then for all s£S, FS(V0) - K0 ¿ 0.

Definition A.2. Let 5, V, and U be finite sets with V d U and let Gs: U ~* V
be an injection for each s £ S. Then sf = (5, V, U, {GS}S€S) is called an
ancestor if

(1) V = {JseSGs(U).
(2) If U ¿ 0 , then for all s£S, GS(U) ~U^0.

In particular, for a p.c.f. self-similar structure £f = (K, 5, {P^^s), si (5?) =
(S, V\, K0, {PilKoLfEs) is called the ancestor of S?.

By the following procedure, we can construct a p.c.f. self-similar structure
from a given ancestor.

Definition A.3. Let sf = (5, V, U, {Gs}s€S) be an ancestor. Then, for each
x £  V,  s/x c 2(5)  is the collection of all  w  satisfying that there exists
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{JC/}/>i C U such that GWt(x\) = x and GWí(x¡) = xt-\ for all / > 2. Further
a relation ~ on 2(5) is defined by

s/

w ~ v if and only if w = v or there exist x £ V, w*, v* £ sfx
and u £ IK, (5) satisfying w = u-w* and v = u • v* .

Lemma A.4. Lei sf = (S, V, U, {Gs}s€g) be an ancestor. Then,
( 1 )   ~ is an equivalence relation on 2(5).
(2) If w ~ v, then s -w ~ s -v for all s £ S.

s/ sí
(3) Ktf = 2(5)/ ~ equipped with the quotient topology from 2(5) ismetriz-

sf
able.

(4) For each s £S, Ff = n^oson^} is a well-defined continuous injection,
where n^ : 2(5) —» K& is the natural projection.

(4) of the last lemma follows from results in Kameyama [9]. The other parts
follow immediately from Definition A. 3.

Theorem A.5. Let sf = (5, K, U, {Gs}seS) be an ancestor. Then Sf(sf) =
(Ktf , S, {Ff/}seS) is a p.c.f. self-similar structure.

It is natural to expect that Sf(si(5?)) ~ 2C for every p.c.f. self-similar
structure S?.   Before stating the results, we may give the exact meaning of

Definition A.6. Let S? = (K, 5, {Fs}s€S) and 3f = (L, T, {G,}t€T) be two
self-similar structures. Then, Sf < 3? if and only if there exist a bijection
t:5 —> T and a continuous surjection h:K^L such that G^S) oh = h oFs for
any 5 g 5. Sf ~ 3f if and only if Sf > JT and Sf < Jf .
Definition A.7. Let sf = (S, V, U, {Gs}seS) and SB = (T, W, X, {Ht}teT)
be two ancestors. Then sf < 3§ if and only if there exist a bijection x:S —> T
and an injection h:V —► IK such that h(U) c X and WT(í) o h = h o Gs for
each j g 5.

Finally, we can give the main result of Appendix A.

Theorem A.8. Let sf and 3§ be ancestors and let Sf and Jf be p.c.f self-
similar structures. Then,

(1) If Sf <ïï, then sf(Sf)<sf(X).
(2) If sf <33, then Sf(sf) < Sf(3S).
(3) Sf(sf(Sf))~Sf.
(4) sf(Sf(sf))<sf.

The proof is straightforward and left to the reader.

Appendix B

This appendix is devoted to the proof of Theorem 2.6.

Theorem 2.6. Suppose that

(1) #(PinK0)<l   for each s £ S.
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Then, for each p g /(K0), there exist a unique quasi-harmonic function f with
f\v0 = P-

In the following, we let K0 = {1, 2, ... , M} and l(V0) = RM for ease of
notation.

Before starting the discussion, we summarize the results of the heuristic ar-
guments in §2.

Lemma B.l. Let As = Rs(_xI-tJ) for each s £ S. Then As is a stochastic
matrix and for every quasi-harmonic function f and any w £ IK,,

(ft=Aw(f)v0,
where Aw = AWmAWm_l ■■■AWl  if w = wxw2 ■••wm.

Now, for f £ /(K0), we define v(f) = maxi<, j<m \fi - f\.
Lemma B.2. For any f £ /(K0) with v(f) ^ 0, v(Asf) < v(f) for each s.
Proof. As v(f) t¿ 0, we have

Lx = max fj > L2 = min/,.
jev,1 jev0JJ

We extend / to a function on  Vx  by f\v° = -X~xJf.  Then, Asf = Rsf
and, for all s £S,

L2 < min/, < max/, < Lx.
jeBs jeBs

Now, if v(f) = v(As), then there exist p and q £ Bs such that f(p) = Lx
and f(q) = L2. By the assumption (1), p or q £ V° and so, without loss of
generality, we may assume p £ Vx°. As D is irreducible, hence we can choose
{Q\, Qi, ■■■ , Qn+\) C Bs so that

(i)    Q\ =P,   Qn+l =1,
(ii)   {qx,q\,...,qn}C V°,

("i)   ¿V'WrW) > 0 for / = 1, 2, ... , « .
Then, by the definition of Hx,

(HX)q¡qM > ^/r-'(í/)í-r'(?/+1) >0.

On the other hand, if f(r) = Lx for r G V°, then f(r') = Lx for all r' with
(Hx)rr> ̂  0 because

Hl>rf=Y,mrr>(f(r')-f(r)) = 0.
r'

Therefore, applying the above discussion inductively, we can show that f(q¡) =
Lx for / = 1, 2, ... , n + 1. This contradicts the fact that f(qn+\) - f(q) =
L2< Lx . Hence we have v(Asf) <v(f).
Lemma B.3. There exists a constant C with 0 < C < 1 such that, for all
f £ /(K0) and weW., v(Awf) < Öwh(f).
Proof. We define K = {f\f g l(V0) and ££, / = 0} and Q:l(V0) - V by,
for each i, {Qf)¡ =f¡- M~x j£l / . Then, it follows that v(AQf) = v(Af)
and v(f) = v(Qf). Hence, we have

max v(Asf)/v(f)=     max     v(Asf)/v(f).
v(ftf0 fev,v(f)=i
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Now, as {/|/ G K, v(f) = 1} is compact, using Lemma B.2, we have Cs =
max„(/),io v(Asf)/v(f) < 1 . Therefore, let C = maxi€s Cs, then 0 < C < 1
and v(Awf) < Öw\v(f) for all / G l(V0) and w g IK,.

Next, for given /? G /(K0), we define / G /(K,) by, for each w; G IK,,
An = Aw p .
Lemma B.4. Let {Pn}^L\ C K, a«6? pn —> p as n —► oo ybr some p £ K.
Then {f(pi)}%x is convergent as n —► oo.
Proo/. Let Am>p = IXe^.petf* K™ > then ^«.p d Km+\,P and Am>/7 is a
neighborhood of p . Hence, for given e > 0, we can choose m and «o so that
2Cmv(p) < e and, if n> n0, pn £ Km^p .

Recalling that As is a stochastic matrix, we have

min    f(q) < f(pn) <     max    f(q).
qeKm,pnvm qeKm,pnvm

And so, using Lemma B.3, we can see that, if kx,k2> no, then

\f(Pk,)- f(Pk2)\ < 2     max     v(Awf) < e.
wewm,PeKw

Hence {f(pn)}n<Lx is a Cauchy sequence.

Using the above Lemma, we can extend / G /(K,) to a continuous function
/ on K. In fact, if {pn}n<Lx , {Qn}%Lx C K, and both sequences converges to
the same point p £ K , let

~ __ { Pm   if n = 2m + 1,
\ #m    if n = 2m.

Then using Lemma B.4, {f(pn)} is convergent and so we can show that

lim f(p„) = lim f(qn).
n—»oo n—»oo

Thus, this / is the harmonic function with f\Vo = p. Uniqueness is obvious
because f\v. is uniquely determined as is observed in Lemma B.4.
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