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HARMONIC CALCULUS ON P.C.F. SELF-SIMILAR SETS

JUN KIGAMI

ABSTRACT. The main object of this paper is the Laplace operator on a class
of fractals. First, we establish the concept of the renormalization of difference
operators on post critically finite (p.c.f. for short) self-similar sets, which are
large enough to include finitely ramified self-similar sets, and extend the results
for Sierpinski gasket given in [10] to this class. Under each invariant operator
for renormalization, the Laplace operator, Green function, Dirichlet form, and
Neumann derivatives are explicitly constructed as the natural limits of those on
finite pre-self-similar sets which approximate the p.c.f. self-similar sets. Also
harmonic functions are shown to be finite dimensional, and they are character-
ized by the solution of an infinite system of finite difference equations.

0. INTRODUCTION

Mathematical analysis has recently begun on fractal sets. The pioneering
works are the probabilistic approaches of Kusuoka [11] and Barlow and Perkins
[2]. They have constructed and investigated Brownian motion on the Sierpinski
gaskets. In their standpoint, the Laplace operator has been formulated as the
infinitesimal generator of the diffusion process.

On the other hand, in [10], we have found the direct and natural definition of
the Laplace operator on the Sierpinski gaskets as the limit of difference opera-
tors. In the present paper, we extend the results in {10] to a class of self-similar
sets called p.c.f. self-similar sets which include the nested fractals defined by
Lindstrem [13]. Several examples of p.c.f. self-similar sets are given in the fig-
ures of §8. The reader can find an exposition of the original ideas of this work
in §0 of [10].

In §1, we study some topological properties of general self-similar sets and
define p.c.f. self-similar sets. Roughly speaking, p.c.f. self-similar sets are almost
the same concept as “finitely ramified fractals” mainly used by physicists. We
note that the Sierpinski carpet, where Barlow and Bass [1] have constructed a
diffusion process, is not a p.c.f. self-similar set.

In §2, we introduce the concept of a quasi-harmonic structure on p.c.f. self-
similar sets. It induces a sequence of the difference operators which correspond
to the discrete Laplace operators. When a quasi-harmonic structure satisfies
some condition for invariance, we call it a harmonic structure, and we will find
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722 JUN KIGAMI

explicit and simple definitions of harmonic functions, the Green function, and
the Laplace operator.

In §6, we treat the Dirichlet problem of Poisson’s equation and Gauss-Green’s
formula on p.c.f. self-similar sets. Further, we will see that the Dirichlet problem
of Poisson’s equation is equivalent to some kind of infinite system of finite
difference equations. This fact has been pointed out by Hata-Yamaguti [6] and
Yamaguti-Kigami [15] in the simplest case.

In §7, we give an explicit and simple definition of Dirichlet forms associated
with regular harmonic structures. And then, the Green function turns out to be
the reproducing kernel of the Dirichlet form (£, %) .

As a whole, our approach establishes a kind of classical caiculus on p.c.f. self-
similar set, and it may be more convenient to the study of harmonic functions
and the Laplace operator than the probabilistic approaches.

Finally we mention three related works. The first one and the second one are
the probabilistic approaches on a class of self-similar sets.

Lindstrem [13] has constructed the diffusion processes on nested fractals.
The readers may refer to Example 8.5 and Remarks after Definition 1.10 and
Definition 4.4.

Kusuoka [12] has given an explicit expression of Dirichlet forms on a class of
self-similar sets by using products of random matrices. We also use random ma-
trices A;’s obtained by quasi-harmonic structure. These random matrices are
correspondent with those used by Kusuoka. We conjecture that our Dirichlet
forms and the Dirichlet forms given by Kusuoka are the same in the correspon-
dent cases.

Shima [14] and Fukushima-Shima [16] have studied the eigenvalue problem
of the Laplace operator given by [10]. They apply “the decimation method”
and determine the eigenvalues and eigenvectors completely. We conjecture that
their method can be applied to our Laplace operator on p.c.f. self-similar sets.

In this paper, we adopt the “directory” structure in numbering the lemmas,
propositions, and theorems. For example, Lemma 2.7.1 is the lemma for the
proof of Lemma 2.7. Ordinarily, Lemma I.J.K is used only for the proof of
Lemma or Proposition or Theorem 1.J.

1 would like to express my gratitude to Professors M. Fukushima and S.
Kusuoka. In particular, the results on Dirichlet forms would not have been
achieved without discussions with Professor M. Fukushima. I also thank Mr.
A. Kameyama for the simulating discussion on p.c.f. self-similar sets.

1. SELF-SIMILAR SETS

In this section, we will define self-similar sets and study their fundamental
properties.

First, we introduce the one-sided shift space and give some basic concepts
and notations.

Definition 1.1. Let S = {s;, 5;, ..., sy} be a finite set.

(1) The one-sided shift space X(S) is defined by Z(S) = SN.

(2) For n > 0, the collection of words consisting of n symbols W, (S) is
defined by W, (S) = S". In particular, W,(S) = {@} where @ denotes
the empty word.

(3) Wi(S) = Unso Wa(S).
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CALCULUS ON SELF-SIMILAR SETS 723
(4) Z.(S) = W (S)UZX(S).

We denote the ith symbol of w € Z.(S) by w; or (w); and write w =
WiwrwWs .- .
It is easy to verify that X(S) is compact with the metric dys) given by, for
w and v € Z(S),
dysy(w, v) = Z 271 = buy,) s

i=1

{1 ifa=p,

0 otherwise.

where

Oop =

Definition 1.2. (1) For w € Z.(S),
w| = { n if and only if w € W,(S),
Tl oo ifweX(S).
(2) Let w € Z,(S), then for n >0,
if lw| < n,
[wln = { wyw, - --w, otherwise.

In particular, [w]o = @ for all w € Z.(S).
(3) Let w € Z.(S), then

/%] ifw=a,
aw:{w2w3-~w,, if w e W,(S),
whwswy -+ if w e Z(S).

(4) Let w and v € Z.(S), then w Av = [w],, where k = max{n{[w],

[v]n} .
(5) Let w € W,.(S) and v € Z,(S), then w-v € £,(S) is defined by

(w-v) = {

w; if i <|w|,
Vi_jp| Otherwise.

We always identify w € W, (S) with w:Z(S) — Z(S) defined by w(v) =
w - v. In particular, @ € Wy(S) is identified with the identity map of X(S).

The following definition of a self-similar structure is an abstraction of topo-
logical features from the concepts of the self-similar sets studied by Hutchinson
[8] and Hata [5].

Definition 1.3. Let K be a compact metric space, S be a finite set, and, for
each s € §, let F;: K — K be a continuous injection. Then (K, S, {F;}ses) 18
said to be a self-similar structure on K (or simply, K is self-similar) if there
exists a continuous surjection 7:X(S) — K satisfying

mos=F;om foreverysesS.
Further, for w € W,(S), we define
Fy=Fy o0Fy0-0F,,
where n = |w|, and K,, = F,,(K). In particular, F, is the identity map of X .
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724 JUN KIGAMI

The following result implies that n is uniquely determined for a given self-
similar structure.

Proposition 1.4. Let (K, S, {F;}ses) be a self-similar structure on K. Then,
Jor all weX(S), N,>o K, consists of a single point n(w).

Proof. For w € X(S), we have (,so[w], - Z(S) = {w}, and the diameter of
[w], - Z(S) - 0 as n — oo. As = is continuous and n([w], + Z(S)) = K,
we have {n(w)} =50 Kfw, -

Let £ = (K, S, {F;}ses) be a self-similar structure on K. It is easy to see
that n is a homeomorphism if and only if Cx(Z) = U ,c5 su(Ks N Ky) is
empty. Further, if Cx(Z) = @, then each F; is a branch of the inverse of a
well-defined map nocgon : K - K.

Definition 1.5. Let .¥ = (K, S, {F;}scs) be a self-similar structure on K.
Then the critical set of . is defined by C(¥) = n~1(Cx(Z)), and the post
critical set of 2 is defined by P(Z) =U,5, 0"(C(¥)).

Examples of self-similar structures are given in §8.
Hereafter, we discuss only one fixed self-similar structure, and so we use
Xz, W,, P, C,and so on instead of X(S), W,(S), P(Z), C(Z), and so on.

Definition 1.6. Let (K, S, {F;}ses) be a self-similar structure on K. Then,
(1) For w € W., By = F,(n(P));
(2) For m>0, P™ =), ey, wP and V,, = n(P™);
3 Va=UpsoVm and V3=V, —Vy for m=0,1,...,x.

Lemma 1.7. Let K be a self-similar set. Then, for any w and v € W, with
w#v, KynNK,=B,NBhB,.
Proof. As Fy,a, isinjective, we may assume w, # v; without loss of generality.
Then, since K, N K, C Cx,

Ko N K, C 1(C N wE) N 7(CNE).
On the other hand, C C ¢7!'(P) = U,cgsP. Hence, CNwZ C wP and

CnvX c vP and therefore K,,NnK, Cc By,NB, . Trivially, K, NK, > B,NB,,
and thus we have proved the lemma.

Lemma 1.8. If n(w) € Vy, then w € P. In other words, n='(n(P))=P.
Proof. As Vy = n(P), there exist u € P and a word v # @ such that z{w) =
n(u) and v-u € C. Then, n{v-u) = n(v-w) and so, v-w € C. Thus we
have w € P.

Corollary 1.9. For m > 0, if n(w) € Vy,, then w € P™ . In other words,
a1l (n(PmM)) = pim)
Proof. As Vim = U,ew, Bv, n(w) € By for some v € W,,. Using Lemma 1.7,
n(w) € By N Kw),, = By N By, - This implies n(w) € By, = Fuw), (7(P)) and
hence n(6™w) € n(P). Now using Lemma 1.8, we have ¢”w € P. Thus we
have

[W]m - 6"w = w € [w],P C P,

The last three results will underlie many arguments in this paper, and fre-
quently, we may not mention using them.
Next, we introduce a class of canonical measures on self-similar sets.
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CALCULUS ON SELF-SIMILAR SETS 725

Definition 1.10. Let 7 = (7,);es satisfy

(1.1) Zns=1 and O< ;<1 foreachseS.
SES
Then we denote by /i, the unique Borel measure on X with, for all w € W, ,

Py (WE) = Mg, M, * Ny »

where n = |w|. Further, let K be a self-similar set. Then the 5-self-similar
measure on K, u, is given by m,(fi,), that is,

Hn(A) = fiy(n~1(4))
for all Borel sets 4 C K.
The following theorem explains why u, is called #-self-similar.

Theorem 1.11. Let K be a self-similar set, and let n satisfy (1.1). Then there
exists a unique Borel measure i on K such that u(K)=1 and

w(A) =" nsu(F7' (AN K))
SES
for all Borel sets A C K. The unique measure u coincides with py .
Proof. See Hutchinson [8] or Falconer [3].

Now we define a post critically finite self-similar set, which is the main object
of our study.

Definition 1.12. Let K be a self-similar set. Then K is said to be post critically
finite, or p.c.f. for short, if the post critical set P is finite.

If K isp.c.f., it follows immediately by the above definition that C, P"™ B, ,
and V,, are all finite sets and V, is countably infinite. Further, by Lemma 1.7,
K, NnK, = B, N B, is finite. So a p.c.f. self-similar set may be called a finitely
ramified fractal in physicists’ terminology. Nested fractals defined by Lindstrem
[13] are p.c.f. self-similar sets. The set of all essential fixed points in his termi-
nology equals 7 (a post critical set). Lindstrem’s nesting axiom holds for p.c.f.
self-similar sets, but the axiom of symmetry is not satisfied in general.

If X is p.c.f,, the self-similar measure u, becomes simple as follows.

Lemma 1.13. Let K be p.c.f. and let n satisfy (1.1). Then for all w e W,,
Un(Kw) = N, T, *** N, -

where n = |w|.

Proof. It is obvious from the fact that 77 !(K,) = wX U a finite set.

Further discussion on p.c.f. self-similar sets is given in Appendix A. We show,
in short, that a p.c.f. self-similar set is determined by

M = (S, I/l9 I/()5 {EF'V()}SES)’

which will be called the ancestor of p.c.f. self-similar set.
We will give some examples of p.c.f. self-similar sets in §8.

2. QUASI-HARMONIC STRUCTURE

In this section, we first give the concept of a quasi-harmonic structure which
generates difference operators H,, on V,, and then introduce the notion of the
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harmonic function and quasi-harmonic function as the kernel of the difference
operators. Throughout the rest of this paper we fix a p.c.f. self-similar structure
Z = (K, S, {F}ses) and assume that K is connected.

Notations. (1) (VY= {f|f:V — R}. We use (f), or f, to denote the value
of fellV)atpeV.ForpeV, e,el(V) is defined by

1 ifg=p
Vv _ ’
¢ ()= { 0 otherwise.

When no confusion may occur, we write e, instead of e} .

In the following, U and V' are finite sets.

(2) LU, V)= {A4]A:l(U) = (V) and A4 is linear}. In particular, L(V) =
L(V,V). Weuse (4),, or Ay, todenote (Ae,), for pe V and g € U. Note
that 3y Apgfy = (Af)p. For A€ L(U, V), 'A€ L(V, U) is the transpose
of 4.

3)If ¥nU = @, then we use U + V' to denote the disjoint union of U
and V. Note that /(U + V) =I(U)® (V), we write

f= (E%;’) for fel(U+V),
where (f)uv = flv and (f)y = flv .

(4) For D € L(V) with 'D = D, we define an equivalence relation ~ on V
by
(1) pyp forall peV.

(i) For p#q, p ~ g if and only if there exists {p;}/2, C V' with p; =p,

Pm=q,and Dy, #O0fori=1,2,..., m—-1.

An equivalence class is called a D-irreducible part. Also we say that D is
irreducible if and only if D has one irreducible part V.

Now we define a quasi-harmonic structure.

Definition 2.1. A pair (D, r) € L(¥,)x/(S) is called a quasi-harmonic structure,
or q.h.s. for short, on K if and only if

(1) r; >0 foreach se§,

(2) ‘D=D,

(3) D is irreducible,

(4) Dy, <0 and 3,y Dpg =0 for each p € Vg,

(5) Dpg>0if p#gq.
Further, for a finite set V', we define Z (V) C L(V) by Z(V) = {D|D satisfies
(2) ~ (5) where ¥} is replaced by V}.

In this section we treat a fixed q.h.s. (D, r).

The bijection F,: ¥y — B, induces a natural isomorphism (Fy).:/(Vp) =~
[(By,). By this identification, we think of D as an element of L(B,). Then
we obtain a difference operator H,, on V,, form the q.h.s. (D, r) as follows.

Definition 2.2. A difference operator H,, € L(V},) is defined by
H, = Z rJl -'RyDRy,

WEW,
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where Ry, € L(V,,, By) is the restriction defined by (R, f) = f|p, and r, =
Tw,Tw, *** Tw, . Furthermore, we write, for m > 0 and p € V,,,, Hy ,f =
(Hmf)p,and H; f = Hy,) ,f, where i(p) = min{n|p € V,,}.

Remark. This definition of difference operators is a natural extension of those
on Sierpinski gasket given in [10] to p.c.f. self-similar sets. In fact, if we let

-2 1 1
D= 1 -2 1 and r=(1,1,1),
1 1 =2

then
Hpn,of = > (fla)- f(p)),
q4EVmp
where Vi, , = {q|(Hm)pq # 0}. This coincides with the definition of H,, ,f
given in [10]. Further details are given in §8.

Lemma 2.3. For m>0, Hy, € Z(V,).

Proof. (2), (4), and (5) of Definition 2.1 can be verified immediately from the
definition of H,, . We may show that H,, is irreducible. Since D is irreducible
on V3, DR, isirreducible on B,, . This implies that p I g for p and g € B,

with w € W,,. Nowlet p € B, and g € B, with v, w € W,,. Then by the
fact that K is connected, there exists {w,»}f"zl C W, with wy=w, w,=v,
and Ky, N Ky, = By, NBy,, #@ for i=1,2,..., k- 1. Hence, choosing
pi € By, N By, , we can chain p and ¢ by p ~ pi, pi ~ piv1,and p ~g.

This completes the proof of the lemma.

The above lemma shows that if H,, ,f =0, then f(p) is a kind of average
of the f(q)’s where (H,)p, # 0. This observation motivates the following
definition of a harmonic function.

Definition 2.4. A continuous function f on K is said to be harmonic if and
only if (H;,f)ye =0 forall m>1.

It is unfortunate that the difference equations defining a harmonic function
are overdetermined in general, and we may scarcely expect that there exist
nontrivial harmonic functions without some further assumptions on the q.h.s.
(D, r). This problem is treated in §4. For a while, we investigate functions
satisfying some necessary conditions for being harmonic.

Definition 2.5. A continuous function f on K is said to be quasi-harmonic,
or q.h. for short, if and only if H; f =0 forall pe V.

Theorem 2.6. Suppose that
(1) #B;NVy)<1 foreachseS,

where #(A) is the number of elements in A. Then for each p € I(Vy), there
exists a unique quasi-harmonic function f with fly, =p.

Note that (1) is a condition not on q.h.s. but on the self-similar structure.
The proof of Theorem 2.6 is given in Appendix B. We observe some heuristic
arguments below and will show a part of them later on.
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First we decompose H,, into

_ Tm ’Jm (f)Vo
(21) Hmf— (Jm Xm) ((f)V,j) ’
where T,, € L(Vy), Jm € L(Vy, V,2), and X,, € L(V,;). In particular, we write
T=T1, J=J1,and X=X|.
Now let f be q.h., write f|y, = fo and f|y> = fi, and consider a procedure
to express f; by fy. Obviously, for p € V°, i(p) = 1, and H;f = (Jfo +
X fi)p - Hence, if X is invertible, we can obtain that fj = —X~1J f5. So we

have
I

(= _yhry ) s

where [ is the identity in L(V,). Furthermore, noting that V5 = By, we have,
foreach se€ S,

(2.2) ()8, = As()Bs »

where 4, =R(_,".,).

Next, letting S, = F,,(V}°), then the above procedure will turn out to be
effective in getting f|s, from f|p, . Here we introduce notation and observe
some facts about B,, and S,, before stating the procedure.

(1) We denote f|g, by () or f% and also denote f|s, by (f)S, or f.
When no confusion can arise, we use f? and f* instead of f2 and f3.

(2) Using the bijections F,:Vy — By and Fylpe: VP — Sy, we always
identity

L(By) =~ L(V), L(Bw,Sw)=~L(W, V),
L(Sy, By) ~ L(V?, Vo), L(Sw) = L(VY).
(3) D, € L(By + Sw, By) and H;, € L(By, + Sy, Sy) is defined by

D\ _ (T I\ (1
Hy ) v \J X S )
Then, we can easily see that, for p € Sy, ,

l(p) = |'LU| + 1 and H f ( wf)p‘

Now applying the above procedure, we obtain that f* = —X~1Jf? for a
quasi-harmonic function f. Further (2.2) becomes

(2.3) = Asfu, ,
forall we W, and s€S. Hence we can see that
(24) f ur f Vo ’

where A4, = Ay, Au,_, - Aw, -
From the preceding discussions, we next show some results about X, .
Lemma 2.7. For each m > 1,

(1) X, is invertible and X' <0, where A <0 means Ap, <0 forall p
and q.

(2) Let gy, = —(X;Ypq for p and q € V. Then gy, > gy for each
qeV,.

We will prove Lemma 2.7 by using the following fact.
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Lemma 2.7.1. Let V be a finite set and let X € L(V). Suppose that

(I) 'X =X and X is irreducible,
(D) Xpp <0 and ¥ oy Xpg <0 forany peV,

(II) Xpq >0 ifp#gq,
(IV) 3 ev Xpg <0 for some pe V.

Then we have
(1) X is invertible and X~' < 0.
(2) Let gpg=(—X"Y)py for p and q €V . Then, g,p > gy, -
Proof. Let
[ { qu ifp#gq,
b -X,;, ifp=gq,
and let y, =3, , Xpq/Xpp . Then (1I) implies
O0<y, <1 forallpeV,
and (IV) becomes
(Ivy
O0<y,<1 forsomepelV.

To prove (1), it suffices to show that
(2.5) if Xf>0, then f<0,

because (2.5) implies that X f =0 if and only if f =0 and X~!f < 0 for any
f > 0. Now assuming that X f > 0 and max,ey f; = M > 0. Then choosing
p eV with f, =M, we have

Yolp 2 Z(qu/xpp)fq 2 Jp-

q#p

Note that from f, =M >0 and f, > f;, we can see that
yp=1 and f, = f;if x,4 #0.

Since X is irreducible, the above discussion implies inductively that y, = 1 for
all g € V. This contradicts (IV)'. Thus we have shown (2.5). To prove (2), fix
pEV,let d; = gy for each g € V' and assume that M = maxgey d; > d, .
Then choosing r € V with d, = M, as g,, = (-X~!),,, we have

Z xrqdq - -xrrdr =0 s
q#r

and hence

dy <Y " (Xrg/Xrr)dg < yrd;.
q#r

Since d, =M >d,; >0 for g # r, we can conclude that
yv=1, dg=Mif x,, #0, and x, =0.

By the fact that X is irreducible, the above discussion implies inductively that
xgp = 0 for all ¢ # p. This contradicts to the fact that X is irreducible.
Therefore we can conclude Lemma 2.7.1.
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Proof of Lemma 2.7. X,, can be decomposed into irreducible parts, that is,

Vo=V + P e v

m

and _
Xn=XVoxPe. oxim,

where V,f,i) is an X,,-irreducible part and X ,(,f) € L(V,f,i)). Then it suffices to

show that each X ,(,{) satisfies the assumptions of Lemma 2.7.1. Using Lemma
2.3 and (2.1), we can easily verify (I), (II), and (III). Since H,, is irreducible,

for each i, we can choose p, € V,E,') and ¢, € gy with (Hy)p,4 > 0.
Noting that }° . (Hm)p.q = 0, we have quyn?(Xm)p_q < —(Hm)p.q. <0.

Therefore we can conclude that (IV) holds for each X, o

The last lemma will play an important role in §5. We next give a result on
Ay .

Lemma 2.8. For each s € S, A, is a stochastic matrix, that is, A; > 0 and

Ase=e, where e=3 . €.

Proof. As X~1 <0 and J > 0, we have 4, > 0. Next for the g.h. function
f=1, (/) =(f)y, = e. Hence (2.2) implies 4; =e.

As an immediate consequence of Lemma 2.8, we have the “maximal princi-
ple” for quasi-harmonic functions as follows.

Theorem 2.9. Let f be quasi-harmonic. Then, for any x in K, we have
i < < .
Ir’rg;oxf(p) <flx) < max f(p)

At the end of this section, we introduce the notion of piecewise quasi-
harmonic functions.

Definition 2.10. A continuous function f on K issaid to be m-quasi-harmonic,
or m-q.h. for short, if and only if f o F,, is quasi-harmonic for all w € W, .

3. QUASI-HARMONIC EXPANSION

This section is devoted to the expansion of a function by a system of piecewise
quasi-harmonic functions. This is called a quasi-harmonic expansion, or q.h.
expansion for short. We always fix a p.c.f. self-similar structure (K, S, {F;s}ses)
and a q.h. structure (D, r) on K. Further we will need sufficiently many
piecewise quasi-harmonic functions for the q.h. expansion. So, through this
section, we assume that

Assumption (2). There exists a unique q.h. function f with f}y, = p for any
p€l(W).

We have shown in Theorem 2.6 that (1) implies (2). Now assuming (2), we
have

Theorem 3.1. For each p € l(V,,), there exists a unique m-q.h. f with fly, =
p . Especially, for each p € V,,, we denote the unique m-q.h. [ with fly, =e,
by w;". Then for any p € l(Vy), the unique m-q.h. f with fly, = p is given
by f=3%pev, Po¥y -
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We will use {y,},er. as the basis of the g.h. expansion, where ¥, = y 7.

Using Theorem 2.9, we can obtain another important property of m-q.h. func-
tions, which is called the maximal principle.

Theorem 3.2. Let f be m-q.h. Then, for each w € W, with |\w| > m and for
any x € K,

min f(g) < f(x) < max f(q).
q€By

gEBy,

Definition 3.3. Let f € /(V.). Then a € I[(V.) is called a quasi-harmonic
expansion of f if, forall g€ V,,

3" apun(q) = f(g) asm — co.
PEVm

When no confusion may occur, we denote y,|y, by w,. Also, we denote

H’L’r}(lew'FSw) by H’l’;}f‘
In the following, we show that every f € /(V,) has a unique q.h. expansion.

Lemma 34. Let f€l(V.). If a€l(V.) is a q.h. expansion of f, then
{ & = f(p) for each p € ¥y,
oS, =rp, X"'H f for each w € W,.
Lemma 34.1. For we W,, and peV,,
r-'Xe, ifpeSy,
H* — w 14
w¥ { 0 otherwise.
Proof. Firstif p € S, , then
Hywy =y (J () + X (,)°) = 1y Xe,.

Next, if p does not belong to S, and i(p) > |w|+ 1, then y,|p s, = 0.
Therefore Hjy, = 0. Finally, if i(p) < m, then y, is i(p)-q.h. and therefore
Hyy, =0.

Proof of Lemma 3.4. Let f,, =3,

Tim_ Hj f = H f

(3.1)

v, O ¥p > then for all w € W, ,

and for each p € 1y, f,,,( )=ap, = f(p).
On the other hand, using Lemma 3.4.1, we have, for m > |w| + 1,

-1 -1 -1
H} fm = Z apty Xe, =1 X Z apep =ry, Xaj,.
PESy PESy
Letting m — oo, we obtain o, = r, X" Hj; f as required.

The above lemma says that each f € /(V.) has at most one q.h. expansion
given by (3.1). So we define o(f) € /(V,) by

{ (a(N)p = f(p) forpe W,
(@(N), =reX ' Xsf forw e W,.

We denote (a(f))i, by a,(f). We also define, for all m > 0, P,f =
Yopev, (@ ))p¥p.
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Lemma 3.5. Let f€l(V.), then Ppf =3,y f(D)Y,.
Proof. Since P, f is m-q.h., by Theorem 3.1, we may show by induction on

m that

(3.2)m v = (P )l

(3.2)¢ is obvious by definition. Now suppose (3.2),,. Note that
(3.3) Puiif =Puf+ > (al)p¥p.

PEVi1—Vm

Hence, if p € V;,, then (Ppy1f)p = (Puf)p = f(p). Next for each w € W,,,

(Puf)y = =X T (Puf )ty = =X "I £,
This together with (3.3) shows that

(Prs1 /Ny = (P f Vo + ew(f) = =X fo + X' fo + X 13) = £
This implies that (P, f), = f(p) forany p € Vi1 — Vi
Combining Lemma 3.4 and Lemma 3.5, we have
Theorem 3.6. Each f € l(V.) has the unique quasi-harmonic expansion a(f).

In the rest of this section, we consider q.h. expansion for continuous func-
tions. The set of all continuous functions on K is denoted by C(K), which is
equipped with the supremum norm defined by |f|x = sup,ck | f(x)].

Since V., is dense in K, the restriction map i:C(K) — [(V.) given by
i(f) = flv. becomes an inclusion map. Hereafter, C(K) is regarded as a
subset of /(V.) in this manner. We also regard /(V,,) as a subset of /(V,) by
the natural map i, defined by, for p € Vi, in(p) = X,y po¥," - Then,
P,:l[(V.) = I(V,,) defined above equals to the projection map for the inclusion

Im

Noting that /(V,,) Cc C(K), we have

Theorem 3.7. Let f € [(V,). Then f € C(K) if and only if P, [ is uniformly
convergent on K as m — oco. And if f € C(K), then P, f converges to f
uniformly on K .

Proof. If Py f is uniformly convergent on K as m — oo, then the limit, say,
f is continuous on K . Therefore from

A = PNy = flvi s
we have f = f and f e C(K).
Next if f e C(K), let

em = max sup |f(x) - f(y)
'IUGme,yeKu.

Then since f is uniformly continuous on K, lim,;—oc &m = 0. On the other
hand, using Theorem 3.2, we can obtain, for any x,

[P f(x) = SO <P f(x) = S(D) + 1/ (P) = f(X)] < 28,

where p is chosen so that x € K,, and p € B, for some w € W,,. Hence
|Pmf — flk < 2¢, and so P,f converges to f uniformly on K.
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4. HARMONIC STRUCTURE

In this section, we introduce the concept of harmonic structure, which has
all the properties required in the further study of calculus on p.c.f. self-similar
sets. For example, under harmonic structure, each quasi-harmonic function will
turn out to be harmonic.

Definition 4.1. Let (D, r) be a quasi-harmonic structure. Then .%(D) € L(Vp)
is defined by
Fd)=T-'JX" .

Harmonic structure will be defined as an eigenvector of the nonlinear trans-
formation % . When no confusion can arise, we drop the r of % and write
F.

Lemma 4.2. For each w € W, and any f € [(By, + Sy),
ra' F(D)fL =Dy f - JX "' Hf.
Proof. This follows immediately by the definition of D}, and H;, in §2.

The following result will not be applied in this paper. It implies, however,
the notable fact that .%: # (V) — #Z(Vy), which may be a starting point of
some further study.

Proposition 4.3. For each quasi-harmonic structure (D, r)y, ((D), r) is also
a quasi-harmonic structure.

For the proof of Proposition 4.3, we decompose V}° into X-irreducible parts
U, U, ..., U, and we define

oU; = {p|p € Vp and J,; # O for some q € U;}.

Lemma 4.3.1. For p € V,, let y, € [(V1) be the quasi-harmonic function with
Wplv, =e,. Then, for g € V°, w,(q) >0 if, and only if q € U; and p € U,

forsome i=1,2,...,m.
Proof. First if ¢ € U; and p € (0U;)°, then wplsy, = 0 and so y,(q) = 0.
Hence if w,(q) > 0 then g € U; and p € 9U; forsome i =1,2,...,m.

Conversely, if ¢ € U; and y,(q) = 0, then y,(q) = min,ey, Y,(r). As
Hy vy, =0, y,(r) =0 forall r with (H,), # 0. Inductively, we can show
that y,|y,usy, = 0. Therefore p € (OU;).

Using Lemma 4.2, we have .#(D)e, = D} v,, and hence, for all p and
reh,

(4.1) FD)p=hrp+ > hrgwp(q),

qevy?
where hab = (Hl)ab‘
Lemma 4.3.2. For p and reVy, if p and r € 0U; forsome i=1,2,..., m,
then (D), > 0.
Proof. There exists ¢ € U; with h,; > 0. And by Lemma 4.3.1, y,(q) > 0.
Hence by (4.1), £ (D),, > 0.

Proofof Lemma 4.3. We may show that % (D) € # (V). Noting that —'JX~'J
>0 and #(D)e =0, where e =}, e,, we can easily verify that (2), (4),
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and (5) of Definition 2.1 hold. Therefore we may show that .7 (D) is irre-
ducible. Then, for p and g € V,, as H; is irreducible, there is a sequence
{a:}_, suchthat ¢ =p, g =q,and hyq,, >0 for i=1,2,...,n—1. Let
{a:}Y, N Vo ={p:}s, where p;=g¢; with 1 =i <) < <ip=n.

Now if i;;; = i;+ 1, then A,, > 0 and hence by (4.1) we have p, S
pj+1. If ijy1 > ij+1,then p; and pj, € OU; for some i and by Lemma

4.3.2, we have p; ~ p;;1. Therefore we have p ~_ ¢ . This completes the
FD) Z(D)
proof.

Definition 4.4. A quasi-harmonic structure (D, r) is said to be a harmonic
structure if there exists A > 0 such that

F(d)=A1"'D.

This A4 is called the characteristic exponent of the harmonic structure (D, r)
and is denoted by A = A(D, r). Further, a harmonic structure (D, r) is said
to be regular if r; < (D, r) foreach s€ S.

Remark. One may ask whether there is any harmonic structure on a given p.c.f.
self-similar set. In general, we are not ready to answer this question. In the case
of nested fractal, Lindstrem has treated essentially the same problem in [13]. In
our words, he has shown that there exists a regular symmetric harmonic structure
on every nested fractal. K. Hattori et al. [7] has also treated a similar problem
by another approach. From their discussion, we can deduce that there exists a
p.c.f. self-similar set where .% has no eigenvector with positive eigenvalue for
some r.

Examples of harmonic structures are given in §8. We now give some remark-
able facts derived from the definition of harmonic structure.

Lemma 4.5. Let (D, r) be a harmonic structure with A = A(D,r). If f is
m-q.h., then, for each p € Viy and k >0, Hpi pf =A% Hp pf .

Proof. Using induction on k, we need to show only the case when k = 1. For
w € W, with p € B, , by Lemma 4.2, we have

ra (DfY) =MDy f =" JTX ™' Hy ).
As f is m-q.h., we obtain r;'(Df2), = A(D,f), . Here, summing the above
equality for all w € W, with p € By, ,wehave H,, ,f = AH;y1 ,f asrequired.
Lemma 4.6. If (D, r) is a harmonic structure, then every quasi-harmonic func-
tion is harmonic.
Proof. If f is q.h., then Lemma 4.5 implies that for all p € V, and all m >

i(p), )
Hy pf = A~m=10V > £ = 0.

Theorem 4.7. Let (D, r) be a harmonic structure. Then for any p € [(Vy), there
exists a unique harmonic function f with fly, = p

Proof. If the assumption (1) in Theorem 2.6 is satisfied, then combining Theo-
rem 2.6 and Lemma 4.6, we can deduce the above result. In the general case, we
let %, = (K, Sm, {Fu}wes,), where & = (K, S, {F}ses) is the original self-
similar structure and S,, = W, (s). Also, for the original harmonic structure
(D, r), welet r'™ = (ry)yes, -
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Then, ., is a self-similar structure and (D, r(™) is a harmonic structure
on .%,. Now we can easily see that .%, satisfies (1) for sufficiently large m .
And so, by the above discussion, there exists a unique .%,-harmonic function
f with fly, = p for each p € I(Vp), where .%,-harmonic means harmonic
with respect to %, and (D, r™). We may prove that .%,-harmonic function
is .Z-harmonic. Noting that

WiZm) =W(Z),  ValZnm)=Vam(ZL), and Hy(Zn) = Him(Z),
Lemma 4.6 implies that if [ is .%,-harmonic, for all n > 0,
(4.2) (Hum (L) v, = 0.
On the other hand, using Lemma 4.2, we can show that if
(Hi(Z)f)ve =0 for some k >0,

then

(Hj(Z)f)ys =0 forall j <k.
This together with (4.2) shows that f is .#-harmonic.

By the last theorem, we can use the theory of quasi-harmonic expansion in
§3 under a harmonic structure. Hereafter, if (D, r) is a harmonic structure, we
drop “quasi-” of quasi-harmonic function, m-quasi-harmonic function, quasi-
harmonic expansion and so forth.

The following two results will play an important role in §5 and §6.

Lemma 4.8. Let (D, r) be a harmonic structure with A = A(D, r). Then, for all
peVy, and qeV,,
A"Hm pYq = A"Hy g,

Proof. Firstif m = n, then Hy ,y] = (Hney)p = (Hn)pq - Since 'Hy = Hp, ,
we have Hy ,¥; = Hp oy, .

Next, if m # n, suppose m > n, then y is n-harmonic and hence Lemma
4.5 implies that H,, ,y; = A-(m-mH, p¥, . Applying the result when m = n
and noting that |y, = |y, ,

Hm,p‘//; — A—(m—n)Hn‘q,/,: — l_—(m—n)Hn,q‘//,;n-
This completes the proof of Lemma 4.8.

Lemma 4.9. If (D, r) is a harmonic structure with . = A(D, r), then for any
m > 1, we have
T — "I Xy Iy = A7™D.

Proof. By Theorem 4.7, for each p € [(Vp), there exists a harmonic function
f with fly, = p. Making use of Lemma 4.5, we have (H,f)y, = A""Dp.
Noting that fly. = —X;!J,,p , we obtain

(Hmf)Vo = (Tm - ’JmX,;lJm)p-
Consequently, we can get the required equality.

As is shown in §8, a harmonic structure is not always regular. We can see,
however, the following result.
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Theorem 4.10. If (D, r) is a harmonic structure, then r; < A(D, r) for some
sES.

Theorem 4.10 will be used for the proof of existence of “admissible” measures
in the case of nonregular harmonic structure in §5.

Lemma 4.10.1. Let & = (K, S, {F;}ses) be a p.c.f self-similar structure. If
w € X is periodic, that is, ¢"(w) = w for some n, then n~!(n(w)) = {w}.
Proof. For w € W,, we define wk € W, for k = 1,2,... inductively by
w! =w and w**! = w-w*. And also, we define w eZ by w=w-w-w....
Then if w is periodic, there exists w € W, with @ = 1w . Suppose @ €
n~(n(w)) with @ # w, then for each k > 1,

k k

r(w” - &) = n(w* - ) = n(w).

Hence n~!(n(w)) contains infinitely many elements. This contradicts to the
fact that .& is p.c.f.

Lemma 4.10.2. Let (D, r) be a harmonic structureon & = (K, S, {Fs}ses). If
Z satisfies the assumption (1) of Theorem 2.6 then, for any p € Vi, (=5 (D))pp
<(=T)pp-

Proof. Recalling (4.1), we have (—F(D))pp = (=T)pp — quylo Wpqhgp - Using
a similar discussion as in the proof of Lemma 4.3, if h,; > 0, then y,, > 0.
Further, if (1) holds, then {g|q € V° and h,, > 0} # @ and so quylo Wpqhgp >
0. This completes the proof of Lemma 4.10.2.

Lemma 4.10.3. Let (D, r) be a harmonic structure. If w € P for w € W,,
then ry < A(D, r)lv!,

Proof. Recalling Hy =Y s 7;! - 'R¢DR;, we have

(4.3) Tpp = Z 1! Dyg s

(g,5)€Qp
where Q, = {(q, s)lqg € Vo and Fi(q) = p}. Let w = w w; - - wy, with w; € §
and let p; = n(c’(w)) for i=1,2, ..., m. Then by Lemma 4.10.1, we obtain,
for i=1,2,...,m, Qp = {(pit1, wi)}, where p,.1 = p1. Hence by (4.3),

TPiPi = Ty, Dp,,\pps-

Now suppose the assumption (1) of Theorem 2.6 holds, then using Lemma
4. 102’ we have Tpipi < 'I’E,-l TP1+1P,'+1 ? and so TPIPI < llwl’Jl TPlPl . Consequently
rw < Alwl,

In the general case, we change the self-similar structure .%° by %, as in the
proof of Theorem 4.7. We choose m so that %, can satisfy (1). Then, by
Lemma 4.9, A(D, r') = A™ . Therefore the above arguments will imply that
rm < Amvl | Hence we have r,, < Al

Proof of Theorem 4.10. By the definition of P, if % is p.c.f., then P contains
a periodic element @ . By Lemma 4.10.3, r, < Al*!. And so, r; < A for at
least one s € S.

5. GREEN’S FUNCTION

In this section, we introduce the Green function g associated with a har-
monic structure. And, for some appropriate measure u, we define the Green
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operator G, as an integral operator whose kernel is g. —G, will turn out to
be the inverse of the Laplace operator in §6. We always fix a harmonic structure
(D, r) with A=A(D, r).

Definition 5.1. (1) For w € W, and x € K, we define w,(x) € /(Sy) by
(Ww(x))p = ¥p(x) foreach pe S, .
(2)For m>1, ¥, and g,:K x K — R are defined by

(X, ) == > r'vX)X w(y),
WEW,,
and
m
gm(X, V) =Y AT W(x, ).
k=1

By the above definition, we can easily see the following facts.
Lemma 5.2, (1) ¥,, >0,
(2) supp¥m C Uyew,_ , Kw x Ku,
(3) lele—IXVm~l = 0’
(4) for some C > 0, |Wulgkxxk < C(R/A)™, for all m > 0, where R =
maxses rs.

Definition 5.3. For (x, y) € K x K, we define

x’ = . .
g(x, ) { 00 if g..(x, y) diverges to oo as m — oc.

By Lemma 5.2—(1), we can see that g,,(x, y) is monotonically increasing as
m 1 o . Hence, the preceding definition is well defined. Making use of Lemma
5.2, we can also verify the following results.

lim,,; o gm(x, y) if the limit exists and is finite,

Proposition 5.4. g, converges to g, as m — oo, uniformly on each compact
subset of K x K — {(x, x)|x € K}. Furthermore, if (D, r) is regular, then g,
converges to g, as m — oo, uniformly on K x K .

We next state the assumptions on measures under which the Green operator
can be defined.

Definition 5.5. A measure u is said to be admissible with respect to (D, r) if

(1) u is a regular Borel measure on K and u(K)=1,

(2) u(0) >0 for each open set 0 C K,

(3) u(M) =0,

(4) limpy_.o [ g du < 0o, where g is defined by gf'(x) = gm(x, X).

Remark. Using some usual discussion on measures and integration, we can see
that (4) is equivalent to

(4) gne LYK, p),
where gp is defined by gp(x) = g(x, x).

The assumptions (1)-(3) in the above definition are not so restrictive, for
example, they hold for the self-similar measures u, introduced in §1. If (D, r)
is regular, then (4) becomes trivial because g/ converges to gp uniformly on
K x K. In this case, every measure with (1)-(3) is admissible with respect to
(D, r). On the other hand, if (D, r) is nonregular, then (4) is not trivial. In
this case, however, we can see that
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Proposition 5.6. There exists a self-similar measure u, which is admissible with
respect to (D, r).

Lemma 5.6.1. Let u, be a self-similar measure.

If erns</l, then lim/gg'd,u<oo.
SES mmeeJK

Proof. Notethat C = supxeKw(—’y/w(x)X‘ly/w(x)) is independent of w € W, .
By Lemma 1.13, we can see that

m—1
/K‘I‘m(x,x)u,,(dx)sC > rwu,,(Kw)gc(Zm) .

WEWp,_ SES
Hence,

m k-1
/ grdu<Ci'y (2»“ me) :
K k=1

SES
This completes the proof of Lemma 5.6.1.

Proof of Proposition 5.6. By Theorem 4.10, r; < A for some s € §. Hence
we can choose 1 = (75)ses S0 that ) crins < A. So, by Lemma 5.6.1, uy
satisfies (4) and therefore u is admissible.

Now we are concerned with the Green operator G, associated with (D, r).
In the rest of this section, u is always an admissible measure with respect to
(D, r).

Definition 5.7. For f € C(K) and x € K, we define
(GEN) = [ &nlx, )/ )utdy),

forall m >0, and

(Guf)(x) = /K g(x, »)f()u(dy).

In the course of later discussion, we can show that G} f converges to G, f
uniformly on K and therefore G, f is continuous on K. As a result we will
obtain the following main theorem of this section.

Theorem 5.8. (1) For any f e C(K), G,f € C(K) and

Gy flx < ( [ du) .

(2) Forany m >0 and any p € V,,

- [ vy rdu itpevg,
lmHm,p(G/tf) = K
- [ —vrdn itpen.

In the following we prove the above theorem step by step.
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Lemma 5.8.1. Forany w e W,
8(Fu(x), Fu(¥)) — gm(Fu(x), Fu(¥)) = A "rug(x, y).
Proof. Recalling the definition of w,, and F, , we can easily see that
v, ifu=w-v,
E, =
Vu o fu { 0 otherwise.

Therefore for w € W,,,,
g(Fw(x) » Fw(y)) - gm(Fw(x) s Fw(y))

=—Zﬂ._(m+i) Z rut‘//u(Fw(x))X_qu(Fw(y))
i=1

UEWn iy

=A""ry _Zi—i Z ro' W (X)X~ ()
i=1 veEW,_,

=A""rug(x, y).

Lemma 5.8.2. Forany m>0 and any p € V,,,
-y, (x) forpeVy,
¥ (X) + wp(x) forpely,
where g* is defined by g*(y) = g(x, y).
Proof. Using Lemma 4.8, we can verify that

A" Hpy oy = AU H .

A«mHm’pgx = {

Hence

A Hp pg* == =27 > ' w (X)X (A" Hy, p )

i=1 weW,_,

=— Y pu(x)aw(y)
weW,

==y, (x) + (Poy," )(x).

Next, we define G, € L(V,;) by (Gm)pg = 8P, q) (= &m(p, q)) for p and
g € V,; . Then we have
Lemma 583. G, =A""(—-X,,)" "
Proof. Lemma 5.8.2 implies that, for p and g € V,;, (A" Xn8%)q = —v,"(q) .
Hence we have A™X,,G,, = —I, where I is the identity. This implies the
required equality.
Lemma 5.84. Forall x and ye K, g(x,y)<g(y,y).

Proof. We let x # y because this lemma is trivial if x = y. Choosing w €
so that n(w) =y, then

Emy,¥)= > &m(p, D)Wl
PEB),,
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Hence

min gm(p, p) S gm(y, y)'
PEB),,

And so, we can choose p,, € B, so that

lim sup gm(Pm, Pm) < (¥, ¥).

m—o0
On the other hand, we can choose ¢, € V,, so that
gm — X asm — oo,
and
lim gm(Qm s pm) = g(x’ y)-
m—oo
Now combining Lemma 2.7 and Lemma 5.8.3, we have, forall m > 1,

8m(dm > Pm) < &m(Dm s Pm)-
Letting m — oo, we obtain g(x, y) < g(y, y) as required.

Lemma 5.8.5. Forall x and y €K,

8(x,p)—8gm(x,y) <8, ¥)— &m(y, y).
Proof. If g(x,y)—gm(x,y) >0, then by Lemma 5.2(2), there exists w € W),

such that x = F,(X) and y = F,(y) for some X and ¥y € K. Hence by
Lemma 5.8.1,

g(x,y)—gm(x,y)=24"ry8(x,¥),
and

gV, y)—8&m(y,y) =4""r,g(¥y, 7).
Therefore by Lemma 5.8.4, we can obtain the required inequality.

Proof of Theorem 5.8. (1) For any f € C(K), by Lemma 5.8.4 and Lemma
5.8.5, we have, forall m >0,

1g(x, ¥)S(¥) — 8m(x, ¥)SW) < (8p(¥) — &5 WIS Ik
where go =0. Hence, forall x € K, (G,f)(x) is a finite value and

(5.1) (Guf)(x) — (G ()] < ( /K (g0 - g{)")d/i> k.

Therefore G} f converges to G, f uniformlyon K, andso G,f € C(K). Also
letting m =0 in (5.1), we have |G, flk < (fy gpdu)|flk -
(2) We can easily see that

A"Hy (G f) = /K (A" Hm &) f(y)u(dy).

Hence by Lemma 5.8.2, we have the required results.

6. THE LAPLACE OPERATOR

The object of this section is to study the Laplace operator A, associated
with a harmonic structure (D, r) and an admissible measure 4. In §6 and §7,
(D, r) is always a harmonic structure with A = A(D, r) and u is an admissible
measure with respect to (D, r).

The Laplace operator is defined as a limit of difference operators A as
follows.
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Definition 6.1. (1) AJ:(V,,) — [(V};) is defined by, foreach p € V3, (A} f), =
Ampst Hy of , where pm,, = [ ¥'du. When no confusion may occur, we
also denote A} o P,,: C(K) — I(V3) by A}

(2) Let f be a continuous function on K. If there exists ¢ € C(K) such
that

lr,relz;;gl(A,’?f)p - ¢@)|—0 asm— oo,

then we let A, f = ¢ . The domain of A, is denoted by &, .
By Theorem 6.9 and Corollary 6.10, we will see that the above definition of
the Laplace operator justifies the terminologies such as “harmonic function” or

“Green function” in the usual sense.
We next introduce the Neumann derivatives at a point of 5.

Definition 6.2. For f € C(K) and p € V;, we let
(df)p = r&% —A"Hy o f
if the limit of the right-hand side exists and is finite.

As u is fixed throughout this section, we often use A, and < instead of A,
and Z,.

Lemma 6.3. Let ue C(K) and ve <& . Then, as m — o,

AT Z u(p)Hp pv —»/ uAvdu.
pEV,S K

Proof. We let

Snx) =25 (D) Him, pv) W (X)
PEVR

and
f(x) = u(x)Av(x).

Then we may show that, as m — oo,
(6.1) [ fmdu— [ sdu.
K K

By the definition of A, similar discussions as in the proof of Theorem 3.7 imply
that, as m — o, f, converges to f uniformly on each compact set in K —
Vo. Also, the f,’s are equibounded. Therefore, by the Lebesgue convergence
theorem, we can prove (6.1).

Applying the last lemma, we can verify that the Neumann derivatives exist
forany fe€ 9.

Lemma 64. Let f€ < and peVy. Then
(AN =Dy + [ votfdn
Lemma 6.4.1. For p € 1},
(Df)p = A"Hum pf + 2" 3 wp(@)Hm o f.

q€Vn
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Proof. By Lemma 4.9,
T — "' I X Iy = A7 D.

Hence,

(6.2) Df = A"(Huf)vy = A" T X (Hm f)ve.

On the other hand, (Hpny,)ve = 0 implies X ey = (¥p)ve . And so, we
have

(6.3) (=X Im)ap = ¥p(@)-

Combining (6.2) and (6.3), we can complete the proof.
Proof of Lemma 6.4. Using Lemma 6.3, we have, as m — o,
S wp(@)Hm o — / wpAfdp.
qevy K

Hence by Lemma 6.4.1, we obtain

lim —A"H,, ,f = —(Df),,+/Ky/,,Afdu

m-—oo
as required.
Next we establish Gauss-Green’s formula, that is,

Theorem 6.5. Let u and v e 2 . Then
(1) [e(udv —vAu)du =3,y (u(p)(dv), — v(p)(du)p).
(2) [eAudp =3,y (du)p.

To prove Theorem 6.5, we need some resuits on symmetric forms &, on
(V).

Definition 6.6. &, is a symmetric form on /(V,,) defined by
En(u, v) = —A" 'uH,v.
For ease of notation, we write, for u and v € /(V,),
Em(u, v) = &p(Pnu, Pyv).
By this manner, we frequently regard &, as a symmetric form on /(V.).
By the above definition, we can immediately see that
Lemma 6.7.

gm(u’ v) =-A" Z u(p)Hm,pU

PEVm

=" 33 i (u(p) - u(g@)(v(p) - v(q)),

PEVM g€V,
where hjy = (Hpy)pq -
Lemma 6.8. Let ue€ C(K) and v e Z . Then
lim &,(u, v) = > u(p)(dv), —/KuAv du.

PEV
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Proof. By Lemma 6.7,
Gn(t, 0) = UP)(—A"Hp pv) = A" Y u(p)Hp, pv.
reW peVy
Hence Lemma 6.3 and Lemma 6.4 imply the required equality.

Proof of Lemma 6.5. Obviously &,(u, v) = &y(v, u). Therefore by Lemma
6.8, we can prove (1). And letting ¥ =1 in (1), we can prove (2).

Next, we are concerned with the Dirichlet problem of Poisson’s equation as
follows.

Theorem 6.9. For given ¢ € C(K) and given p € [(Vy), there exists a unique
f € such that
Af =9,
(6.4) {
=0,
and this f is given by f = >y Pr¥p — Gup .
Corollary 6.10. f is harmonic ifand only if f € Z and Af =0.

For the proof of Theorem 6.8, we need further results on the symmetric
forms &, given in the following.

Definition 6.11. (1) For w € W,, (-, ) is a symmetric form on /(V,) defined
by
(U, V) = =1y Ly (1) X oy (V).

(2) ®p(-, +) is a symmetric form on /(¥,) defined by

Op(u, V) =3 yew,_ (U, V) form>1,
Do(u, v) = &(u, v).

Lemma 6.12. (f, f)y > 0 and the equality holds if and only if a,(f)=0.

Proof. Using Lemma 2.7, we can see that —X is positive definite. This implies
Lemma 6.12.

The following is a remarkable fact about the symmetric forms &,,. It is a
key result for studying the Dirichlet form & , the limit of &, in §7.

Lemma 6.13. For m >0,

m

Em(u,v)= Z/I"<Dk(u, v).
k=0

Lemma 6.13.1. For each w € W, let (u, v}y, = —r;' 'u?Dv®. Then

Em(u, v)y=A" z (u, V).

we Wm
Proof. Obvious by the definition of H,, .

Lemma 6.13.2. For each w € W,
Z(u, V)ws — '1_1<u’ V) = (U, V).

SES
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Proof. First recalling
b
anl$) =g XHf = x70 0 (f))
w

then we have

_ D Gl AN AW S
(6.5) vy =t ) (V) ().
We also obtain
_ D 0\ (vt
and
_ T tJ b
(6.7) %(u,vm:—rw‘('uz,’uz,)( 7))
Y

Now since (D, r) is a harmonic structure, we have T —‘JX~!J = 1-!D . This
together with (6.5), (6.6), and (6.7) completes the proof of Lemma 6.13.2.

Proof of Lemma 6.13. Using Lemma 6.13.2, we see that
NN, Vs = AN (u, 0) = AP (u, v).
WEW,,_, sES weW,,_,
Applying Lemma 6.13.1, this implies
Em(u, v)—&pn_1(u,v) =A"D,(u, v).
Hence we can obtain the required result.

Corollary 6.14. For each m > 0, &,(u,u) < &, (u, u). And &,(u, u) =
limy_, o, & (u, u) if and only if u is m-harmonic.

Proof. By Lemma 6.12, &, (u, u) — &,(u, u) = A"1®,, (v, u) > 0. And
we can see that &, (u, u) = limy_, & (u, u) if and only if ®,(u, u) =0 for
all n > m. Hence by Lemma 6.12, «a,,(f) =0 for w € W, - W,,_;. This is
equivalent to the statement that f is m-harmonic.

Proof of Theorem 6.9. For the uniqueness, let ¢ =0 and p = 0 and show that
f=0.1If fly, =0 and Af =0, then Lemma 6.8 implies that

Jlim &.(f, ) =0.

Using Corollary 6.14, we can see that f is harmonic. Therefore by f];, =0,
we obtain f = 0. Now, we may prove that if f = —-G,¢, then Af = ¢. By
Theorem 5.8,

pim' A Hyy o f = u,;‘,,,/KW,Z"w du.
Noting that ¢ is uniformly continuous on K and

m;li/x(diameter of supp y,") - 0 as m — oo,
pev,

we can verify that

max (A" ., Hin pf = 9(p)] = 0 as m — cc.
peEV, ’

Therefore Af =¢.
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Finally we remark that the Dirichlet problem for Poisson’s equation (6.4) is
equivalent to the following infinite system of finite difference equations on V, ,

{flVo :
AMPHs f = [ wppdu foreachp € V..

Such an equivalence was obtained in [15] and [10] for simple cases.

7. DIRICHLET FORM

In this section, we construct a Dirichlet form & associated with a regular
harmonic structure as a limit of symmetric forms &, on /(V,,). In the present
paper, we will not introduce the detailed study on Dirichlet forms. The reader
may refer to Fukushima [4] for the definition and the results on Dirichlet forms.

Throughout this section, we fix a regular harmonic structure (D, r) with
A= A(D, r) and an admissible measure u with respect to (D, r). We remark
that under a regular harmonic structure, Green’s function g is continuous on
K x K and every self-similar measure is admissible.

By Corollary 6.14, we can see that lim,,_.., &,(f, f) exists for each f €
[(V,) if we let the value of limit be co. We define a symmetric form & as
follows.

Definition 7.1. A subspace ¥ C /(V.) is defined by
= {/1f ety and lim &1, 1) <o}

And a symmetric form & on % is defined by & (u, v) = lim,, .o &,(u, v).

Obviously, & is nonnegative definite and &,(u, v) = &(Pynu, P,v). Now,
Corollary 6.14 shows that

Proposition 7.2. [(V,,) C & forall m > 0. And f € [(V,y) if and only if
Enlf. N=&(. f).

Also by Lemma 6.8, we can obtain

Proposition 7.3. Let u be admissible. Then 2, C # and

Eu,v) =Y up)dv), —/KuA#vdu,

peYy
Jorue C(KYN¥ and ve4,.
Here we state the main results of this section.

Theorem 7.4. Let u be admissible. Then,
(1) & cC(K),
(¥, &) is a regular local Dirichlet space on L*(K , 1),

)
Y &, 85 = f(x)—(Rf)(x) forall fe€F andall x €K,
) (9" &) is the minimal closed extension of (2, , &),

) D, isdensein C(K).

(2
(
(
(
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In the following, we prove the above theorem step by step.
For ease of notation, we let

[fIm=/&n(f, /) and [f1=&(f, /).

First we observe some facts immediately obtained by the preceding defini-
tions.

Lemma 74.1. Let u and v € # . Then,

(1) [Pmu] = [Ulm,

(2) [Ulm T([u] as m1 oo,

(3) [Pnu — Pyul? = [ul2, — [u]2 for m > n,
(4) |&(u, v)| < [ulfv].

Lemma 7.4.2. Let f€l(V.) and x € K. Then
En(f, &) = (PnS)(x) — (Pof)(x).
Proof. By the definition of g and «,, , we can see that
o (g¥) = —A~ WD X1y (x).
Hence (f, g%)w = A=W . q (f)wy(x) . Therefore by Lemma 6.13,

Enlf, &%) =) MO, &)= Y "au(NWw(x).

k=1 WEW,,
This implies the required result.
It follows immediately from the last lemma that
Lemma 7.4.3. Forany x€ K, g*C ¥ ,and &(g*, g*) = g(x, Xx).
Lemma 744. If f€ % ,then f € C(K) and forall x € K,
&S, &) = f(x)— (Pof)x).

Proof. By Lemma 3.7, we may show that P, f converges uniformly on X.
Using Lemma 7.4.1(4), we have

|&(Pmf = Puf, &) < [Pmf — Pufllg7],
for all x € K and m > n. Applying Lemma 7.4.1(3), we obtain
[P f(x) = Pof(x)] < (/T — [f12) 280 (x).
Hence ‘
|Pmf = Puflx < (UTh = 1/12) gDk

Again using Lemma 7.4.1(2), this implies that P,, f converges uniformly on K.

We let, for u and v € &F,

é’*(u,v)=8’(u,'v)+/ uvdu.

K
Also, % is defined by

FH={fIf€F and Py f = 0}.
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Lemma 7.4.5. % is a Hilbert space with the inner product &* .
Proof. By Lemma 7.4.4, if f € %, then

(7.1) |flx < [f11&plk-
Hence there exists C > 0 such that for all f € %,

1< @& (f, N <CUAL

Therefore, we may show that .%; is a Hilbert space by the inner product & . Let
{fm}m>1 be a Cauchy sequence in (5%, &), that is, there exists {&n}n>; such
that lim,,.o. €, =0 and [f,, — fu] < &, for all m > n. Then, for each k >0,
{Pcfm}m>1 is a Cauchy sequence in /(V;) and hence there exists f € /(V,)
satisfying that, for each k > 0, P.f,, — P.f as m — oo in [(V}). Now, for
m>n,

[Petfm = Peful = Um — fale S m — ful < €n.

Hence, letting m — oo, we obtain [P, f — P, fu] = [f — fulk < &, . Again letting
k — oo, we can see that f € % and [f - f,] < ¢&,. Hence f,, convergesto f
in (%, &).

Lemma 7.4.6. % is a Hilbert space with the inner product &* .
Proof. Note that F =% @ [(Vp) and use Lemma 7.4.5.

Proof of Theorem 7.4. We have shown (1) and (3) in the course of the above
arguments.

(2) By Lemma 7.4.6, we see that & is a closed form on L?(K, u).

(1) Regularity. Recalling Proposition 7.2, we can verify that {J,,5o/(Vis) is a
core.

(ii) Markov property. For u € ¥ , we define 4 € [(V,) by

u(x) ifo<ulx)<l,
{ 1 if 1 <u(x),
0 if u(x)<0.

u(x) =

Then, for each p and g € V,,

(#(p) — u(q))* < (u(p) — u(q))>.
<

Using Lemma 6.7, we have &,(i, %) < &,(u, u). Therefore # € F and
&(u,u) < &(u,u). Thus, &€ is stable under the unit contraction.

(iii) Local property. Let fi and f, € & with supp fi Nsupp 5 = @. Then,
for sufficiently large m, there exists U; C W, such that

supp fi C U K, and (U Kw>n(U Kw)=z.

weU; wel, wel;

Hence using Lemma 6.7, we can see that &(f,, f,) =0.

Thus we have shown that (¥, &) is a regular local Dirichlet space on
LXK, u).

(4) Since F = FH (V) and [(Vy) C &, we may prove that Gy = HNY is
a dense subset of the Hilbert space (%, &). For p € V., welet o7 = u,.! wr.
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Then, using Proposition 7.3, Lemma 7.4.3, and Lemma 7.4.4,
[Guoy — 8V = [Gupy'Y — 28 (G, 87) + 8(p, p)
= [ etrepmep»m@yudz)

- 2/ g, y)o, (v)udy)+ g, p).
K

By a similar discussion as in the proof of Theorem 6.9, we can see that
[Gup, —8°1—0 asm — oc.

hm

On the other hand, by Lemma 5.8.2, — quVm e

g7 =y,". Hence,

G, (—Zh{,’;gp;”)—y/[ﬁ"} —0 asm— oc.

q€EVm

Therefore, cl(Zp) in (%, &) contains every y,". Note that |J,,-, [(Vy) is
dense in (%, &), we can conclude that & is dense in (%, &).

(5) Note that |J,,~o/(Vm) is dense in C(K). Using (7.1), we can show that
Z is dense in C(K).

EXAMPLES

This section is devoted to five examples of p.c.f. self-similar sets and har-
monic structures on them.

First in item (I), we describe S, C, ¢ for each ¢ € n~!(C), P and p for
each p € n7!(P). According to the discussion in Appendix A, item (I) gives
complete information about 7z and determines the equivalence class of the self-
similar structure.

Secondly in item (II), we give some harmonic structures.

Finally in item (III), we describe the concrete self-similar structure, where
each self-similar set is immersed in C and each F; is the contracting similitude
of C.

In each example, we use § for s € .S which is defined by (§); = s for all
i>1.

Example 8.1. Interval.
(I S = {1, 2}.
C ={12,2i}, g =n(12) = n(21),
P={i,2}, pp=n(l), p»=n(2).

mo-(3" ).

r={(a,l—-a)forO<a<l1, A=1.
When o = 4, (¥, &*) equals the H'-Sobolev spaces.
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() py=0, pp=1, g=3,
Fi(z) =3z, Fz(z)=%z—%.
=0 q=73 p2=1

FIGURE 1

Example 8.2. Sierpinski gasket.

@M S={1,2,3}.
C ={23,32,13,31, 12, 21}, q, = n(12) = n(21),
¢ =n(13)=n31), g3 =n(12) = n(21).
P={i,2,3}, py=n(s)fors=1,2, 3.
-2 1 1

abp=|1 -2 1},
11 -2

r=(1,1,1), A=3.
(II1) py, p>», and p3 are the vertices of regular triangle.
g1 = 3(p203), @2 =3(0ip3), 43 = 1(01p2),
where 3(p;p;) is the midpoint of p; and p;.
Fi(z) = %(Z = Ds) + Ds.

FIGURE 2
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Example 8.3.

(HS={1,2,3}.
C={12,2i, 31}, g =n(12) = n(21) = n(31).
P={i,2}; pr=n(i), po=n().

wmo-(7 ).
r=(a,l-a,B)forO<a<land §>0.4=1.
If > 1, then this harmonic structure is not regular.

Iy p=0, po=1, g=4.
F(z2)=1iz, Bh(x)=1z-1, R(z)=Y%1z4+1

1+iv-1
S
:4.‘144%‘4.‘1.4l .1.4.4%44« Ailtl"l{l‘l%l{A‘jl‘!l .4&&%.4&14.
pi=0 q:% P =1
FIGURE 3

Example 8.4. Hata’s tree-like set.
This tree-like self-similar set was found by Hata [5].

(HS=A{1,2}.
C ={112,2i}, q=n(112) = n(21).
P={i,2,12}; p;=n(s) forse S, p;=mn(12).
This self-similar structure does not satisfy (1).

(—(1+a“) 1 a7l )
(I) D = 1 -1 0 ,
a”! 0 -o!

r=(a,1-a®)for0<a<l1, A=1.

(I) py =0, po=1, p3=4, g=|B1"
Fi(z)= Bz, Fx(z)= (1= |p"Z+|BP,
where |f| <1, |[l-f]<1landImp #0.
In Figure 4, f=0.4-0.3vV-1.
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B =04-0.3vV-1
g=1|B1*=1
p3=p
FiGURE 4

Example 8.5. Nested fractal.

S ={1,2,...,N}. Each F; is a v-similitude of R”, that is, |F;(x) —
EF(y)|=v|x—y| forall x,yeR".

Vo is the subset of the fixed points of F;’s. An element of ¥V, is called an
essential fixed point by Lindstrem.

Let P be the matrix of invariant transition probabilities of random walk
on FV, given by Lindstrem. Then (P - I, (v, ..., v)) is a regular harmonic
structure on the nested fractal, where I is the identity matrix. We conjecture
that our Dirichlet forms and the Dirichlet forms associated with the diffusion
processes given by Lindstrem [13] are the same.

APPENDIX A
We begin with some obvious facts.

Lemma A.1. Let (K, S, {F;}ses) be a p.c.f self-similar structure. Then,

(1) Vi = Uses Fs(V0) -
2y If Vo£ o, thenforall se€ S, F,(V)) -V # 2.

Definition A.2. Let S, VV,and U be finite sets with V' D U andlet G;:U — V
be an injection for each s € S. Then & = (S, V, U, {Gs}ses) 1s called an
ancestor if

(1) V =Uses Gs(U).
(2) f U#@,thenforall seS, G(U)-U#2.

In particular, for a p.c.f. self-similar structure & = (K, S, {Fi}ses), & (Z) =
(S, Vi, Vo, {Fslw}ses) is called the ancestor of & .

By the following procedure, we can construct a p.c.f. self-similar structure
from a given ancestor.

Definition A.3. Let & = (S, V, U, {G;}scs) be an ancestor. Then, for each
x € V, o C XZ(S) is the collection of all w satisfying that there exists
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{xi}i>1 € U such that Gy, (x;) =x and G, (x;) = x;_; forall i > 2. Further
a relation ~ on Z(S) is defined by
w; v ifand only if w = v orthereexist x € V, w., v. € %%
and u € W,(S) satisfying w =u-w, and v =u-v,.
Lemma Ad. Let &/ =(S,V, U, {Gs}ses) be an ancestor. Then,
(1) ~ is an equivalence relation on X(S).
(2) Ifw;v, then s-w ~S-v forall seS.
(3) Ky =Z(S)/ ~ equipped with the quotient topology from Z(S) is metriz-

able.
(4) Foreach s€ S, F¥ = nyoson_, isa well-defined continuous injection,
where my:X(S) — K, is the natural projection.

1

(4) of the last lemma follows from results in Kameyama [9]. The other parts
follow immediately from Definition A.3.

Theorem A.S. Let & = (S, V, U, {G;}ses) be an ancestor. Then £ (&) =
(Ker, S, {F¥ Yses) is a p.c.f self-similar structure.

It is natural to expect that (¥ (&) ~ .Z for every p.c.f. self-similar
structure .%. Before stating the results, we may give the exact meaning of

“N”

Definition A.6. Let .2 = (K, S, {F;}ses) and & = (L, T, {Gi}1e1) be two
self-similar structures. Then, . < % if and only if there exist a bijection
7:§ — T and a continuous surjection 4: K — L such that G 0h = hoF; for
any s€S. X ~% ifandonlyif ¥ >.% and .¥ <% .

Definition A.7. Let & = (S, V, U, {Gs}ses) and & = (T, W, X, {H }ier)
be two ancestors. Then &/ < % if and only if there exist a bijection 7:5 —» T
and an injection A:V — W such that A(U) C X and Hysoh = hoG; for
each s S.

Finally, we can give the main result of Appendix A.

Theorem A.8. Let &¥ and % be ancestors and let X and # be p.cf self-
similar structures. Then,

() If L <T, then ¥ (L) <A ().
2) If & <&, then L(¥) < L (FB).
3) P(H () ~Z.
(4) (X (X)) <H.

The proof is straightforward and left to the reader.

APPENDIX B
This appendix is devoted to the proof of Theorem 2.6.
Theorem 2.6. Suppose that

(N #B;NVy) <1 foreachsesS.
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Then, for each p € [(Vy), there exist a unique quasi-harmonic function f with

flw=p

In the following, we let V5 = {1,2,..., M} and /(};) = RM for ease of
notation.

Before starting the discussion, we summarize the results of the heuristic ar-
guments in §2.
Lemma B.1. Let A; = R(_ X’_, ;) for each s € S. Then As is a stochastic
matrix and for every quasi-harmonic function [ and any w € W, ,

(N = 4Ny
where Ay = Ay, Aw,_, - Aw, If W =W W Wpy.
Now, for f € l(V,), we define v(f) =maxi<; j<m|fi — fjl-
Lemma B.2. For any f €l(Vy) with v(f) #0, v(Asf) <v(f) foreach s.
Proof. As v(f) # 0, we have

Ly = max f; > L, = min f;.
jevy 7! jev !

We extend f to a function on ¥} by flye = —X~!Jf. Then, 4f = Rf
and, forall s€ S,
< min f; < < L.
LS g S mf < L

Now, if v(f) = v(4;), then there exist p and g € B; such that f(p) = L,
and f(q) = L,. By the assumption (1), p or g € V}° and so, without loss of
generality, we may assume p € V°. As D is irreducible, hence we can choose

{ql s q2s o0ny qn+l} - BS SO that
(1) ql =ps qn+1 =q,
(i) {q,q,....q}C V7,
(ii1) DFS_I(q‘_)FS_l(qM) >0fori=1,2,...,n.
Then, by the definition of H;,
(H1)gigis 2 DFs_l((li)F;_l(qm) > 0.

On the other hand, if f(r) = L; for r € V°, then f(r') = L, for all v with
(Hy)rr # 0 because

Hy . f =Y (H)w(f(r) - f(r)) =0.

Therefore, applying the above discussion inductively, we can show that f(g;)
L, for i=1,2,...,n+ 1. This contradicts the fact that f(g,,1) = f(q)
L, < L. Hence we have v(A4,f) <v(f).

Lemma B.3. There exists a constant C with 0 < C < 1 such that, for all
felVy) and we W,, v(4y,f) < C™lu(f).

Proof. We define V = {f|f € I(Vy) and ¥, fi = 0} and Q:l(Vp) — V by,
for each i, (Qf)i=fi— M~' ¥, f;. Then, it follows that v(4Qf) = v(Af)
and v(f) = v(Qf). Hence, we have

vr(nfg;ov(Asf)/v(f) = feVn}%):lv(Asf)/v(f)-
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Now, as {f|f € V, v(f) = 1} is compact, using Lemma B.2, we have C; =
maxy( )0 V{4sf)/v(f) < 1. Therefore, let C = maxsesCs, then 0 < C < 1
and v(A4y f) < Clu(f) forall f€l(Vy) and w € W,.

Next, for given p € [(V,), we define f € [(V,) by, for each w € W,,
fo=A4up.
Lemma Bd4. Let {p,}>, C Vi and p, — p as n — oo for some p € K.
Then{f(p:)}2, is convergent as n — oo.

Proof. Let Km,p = Uyew, pex, Kw, then Kum p O Kpy1,p and Kp,p is a
neighborhood of p. Hence, for given ¢ > 0, we can choose m and ny so that
2C™v(p)<e and, if n>ng, pp €Ky p.

Recalling that A4; is a stochastic matrix, we have

mi < < m .
qum,l:}ij f(q) - f(p") - qum.ap)r(ij f(q)

And so, using Lemma B.3, we can see that, if k;, k> > ng, then

| f(Pr,) = f(Pi,)| £ 2wEPrVI:?;&eKwU(Awf) <E.

Hence {f(p.)}32, is a Cauchy sequence.

Using the above Lemma, we can extend f € /(V.) to a continuous function
S on K. Infact, if {p.}32,, {gx}32, C Vi and both sequences converges to
the same point p € K, let

~_{pm ifn=2m+1,
Pn= qm ifn=2m.

Then using Lemma B.4, {f(F,)} is convergent and so we can show that
Jim f(py) = lim f(qn).

Thus, this f is the harmonic function with f]|y, = p. Uniqueness is obvious
because f|y, is uniquely determined as is observed in Lemma B.4.

REFERENCES

1. M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpinski carpet,
Ann. Inst. H. Poincaré 25 (1989), 225-257.

2. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory
Related Fields 79 (1988), 543-624.

3. K. J. Falconer, The geometry of fractal sets, Cambridge, 1985.

4. M. Fukushima, Dirichlet forms and Markov processes, North-Holland/Kodansha, 1980.

5. M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381-414.

6. M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math.
1 (1984), 183-199.

7. K. Hattori, T. Hattori, and H. Watanabe, Gaussian field theories on general networks and
the spectral dimensions, Progr. Theoret. Phys. Suppl. 92 (1987), 108-143.

8. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.

9. A. Kameyama, Kyoto Univ. Master Thesis, 1989.

10. J. Kigami, 4 harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 6 (1989),
259-290.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




CALCULUS ON SELF-SIMILAR SETS 755

11. S. Kusuoka, A4 diffusion process on a fractal, Probabilistic Methods in Mathematical Physics,
Proc. Taniguchi Internat. Sympos. (Katata and Kyoto, 1985), (K. Ito and N. Ikeda, eds.),
Kinokuniya, Tokyo, 1987, pp. 251-274.

12. ___, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math.
Sci. 25 (1989), 659-680.

13. T. Lindstrem, Brownian motion on nested fractals, Mem. Amer. Math. Soc. no. 420 (1990).

14. T. Shima, On eigenvalue problems for the random walks on the Sierpinski pre-gaskets, Japan
J. Indust. Appl. Math. 8 (1991), 124-141.

15. M. Yamaguti and J. Kigami, Some remarks on Dirichlet problem of Poisson equation,
Analyse Mathématique et Application, Gauthier-Villars, Paris, 1988, pp. 465-471.

16. M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Preprint
(1989).

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, OsAKA UNIVERSITY, Toy-
ONAKA 560, JAPAN

Current address. Department of Mathematics, University of California, Riverside, California
92507

E-mail address: jkigami@ucrmath.ucr.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




