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Abstract

This paper reviews the hypothesis of harmonic cancellation according to which

an interfering sound is suppressed or canceled on the basis of its harmonicity (or

periodicity in the time domain) for the purpose of Auditory Scene Analysis. It

defines the concept, discusses theoretical arguments in its favor, and reviews ex-

perimental results that support it, or not. If correct, the hypothesis may draw on

time-domain processing of temporally-accurate neural representations within the

brainstem, as required also by the classic Equalization-Cancellation (EC) model

of binaural unmasking. The hypothesis predicts that a target sound corrupted by

interference will be easier to hear if the interference is harmonic than inharmonic,

all else being equal. This prediction is borne out in a number of behavioral studies,

but not all. The paper reviews those results, with the aim to understand the incon-

sistencies and come up with a reliable conclusion for, or against, the hypothesis

of harmonic cancellation within the auditory system.

keywords: Pitch perception, auditory scene analysis, segregation, harmonicity,

harmonic cancellation
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Introduction

Our environment is cluttered with sound sources, but to act effectively we must

focus on one or a few and ignore the others. This is hard because the mixing pro-

cess, by which sounds from the various sources add up before entering the ears,

cannot be undone. We usually do not know the mixing matrix (i.e. the delays

and gains applied to each source before adding) and, even if we did, that matrix

is generally not invertible. Recovering individual sources is thus impossible ex-

cept in very simple cases. Nonetheless, we sometimes feel that we can follow

an individual source, for example a voice within a conversation, or an instrument

within an ensemble, as if it were alone. The ability to make sense of a complex

acoustic scene in terms of individual sources is known as Auditory Scene Analysis

(Bregman, 1990).

Auditory Scene Analysis is sometimes discussed as a process of “grouping”

elements (e.g. partials) to form sources or objects (Bregman, 1990), for example

according to Gestalt principles. However, such “elements” are conceptual rather

than operational. While sinusoids and clicks serve well as synthesis parameters, it

may not be possible to extract them from the sound due to theoretical limits (e.g.

time-frequency uncertainty tradeoff, Gábor, 1947) and physiological limits (e.g.

temporal and frequency resolution of cochlear analysis, Moore & Glasberg, 1983;

Plack & Moore, 1990). If they cannot be accessed, postulating that they can be

grouped is perhaps misleading.

Fortunately, perfect isolation of each source is usually not necessary. Accord-

ing to the principle of unconscious inference (Helmholtz, 1867; Kersten, Mamas-

sian, & Yuille, 2004), we need only to recover enough information to infer the

presence or nature of a target. Regularities within the world, internalized as mod-

els within the perceptual system, allow us to fill in missing parts. This process,

which manipulates incomplete information “under the hood”, provides us with the
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illusion of perceiving each object just as if true unmixing had taken place. Infor-

mation about the source is partial but, thanks to inference, it appears to us that it

is complete (al Haytham, 1030; Hatfield, 2002; Imbert, 2020).

For this to work, it is essential that the sensory representation be stripped of

the influence of background objects. If not, a different background might lead

to a different percept, defeating the goal of perceiving the target as if it were in

isolation. In other words, the sensory representation should be made invariant to

the presence of interfering sources. This is analogous to invariance with respect

to intra-class variability in Pattern Classification (Duda, Hart, & Stork, 2012).

Several aspects of auditory processing might contribute to this goal. If target

and background differ by their spectral content, cochlear filtering can be used to

split sensory input into channels dominated by the target, distinct from those that

reflect the background. Discarding the latter then yields a representation that is

invariant to the presence of the background – albeit incomplete because of the

missing channels. Likewise, if target and background occur at different points

in time, temporal resolution properties of the auditory system (Moore, Glasberg,

Plack, & Biswas, 1988; Plack & Moore, 1990) can be used to discard time inter-

vals contaminated by the background.

Putting both elements together, the target can be “glimpsed” within spectro-

temporal gaps of the background (Cooke, 2006). The glimpsed “pixels” of the

time-frequency representation are handed over to subsequent processing together

with a mask to indicate their position. Discarded pixels are not merely set to zero:

they are given zero weight (Cooke, Morris, & Green, 1997). Spectro-temporal

glimpsing has been proposed in speech processing applications (D. Wang, 2008;

D.-L. Wang & Brown, 2006), and to account for human perceptual abilities and

derive predictive measures of intelligibility (e.g. Best, Roverud, Baltzell, Rennies,

& Lavandier, 2019; Josupeit, Schoenmaker, Par, & Hohmann, 2020).
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Binaural disparity is another potentially useful cue. In addition to head shadow

effects that produce favorable target-to-masker ratios within certain frequency

channels at either ear (Grange & Culling, 2016), perception benefits from binaural

interaction, which is commonly understood to follow the well-known Equaliza-

tion Cancellation (EC) model (Durlach, 1963), and its extensions (e.g. Akeroyd,

2004; Breebaart, van de Par, & Kohlrausch, 2001; Culling & Summerfield, 1994).

Signals at each ear are differentially time-shifted and scaled (“equalization”),

and then subtracted one from the other (“cancellation”) to suppress interaurally-

coherent sound from a competing source. The internal time shift and scale fac-

tor are tuned to match the interfering source. The EC model is assumed to in-

volve temporally accurate neural patterns processed by specialized neural circuitry

within the auditory brainstem (Joris & van der Heijden, 2019; Tollin & Yin, 2005).

To summarize this viewpoint, Auditory Scene Analysis entails cancelling and/or

ignoring irrelevant features of the sensory input, and matching the remainder to

an internal model to produce a reliable percept. The process draws on spectro-

temporal analysis within the cochlea, complemented by neural time-domain sig-

nal processing within the brain, to provide the brain with a rich – albeit incomplete

– representation within which a target can be “glimpsed”. The glimpses are then

interpreted according to a Helmholtzian inference process.

The remainder of this paper asks whether this process can be extended to in-

clude, as a cue, the harmonic (periodic) structure of interference such as a com-

peting talker. So-called “double-vowel” experiments found that vowels mixed in

pairs are easier to identify if their fundamental frequencies (F0s) differ (Assmann

& Summerfield, 1994; Brokx & Nooteboom, 1982; Culling & Darwin, 1993;

McKeown, 1992), suggesting that harmonic structure somehow assists segrega-

tion. Furthermore, it appears that this effect is driven mainly by the harmonicity

of the background, e.g. the competing vowel (de Cheveigné, McAdams, & Marin,
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Figure 1: Segregation and matching. Sensory input is stripped of correlates of

interfering sources, and the selected pattern, possibly incomplete, is passed on for

pattern-matching (or model-fitting), together with a mask that indicates which parts

are missing or unreliable. Initial stages are under attentional control.

1997; Lea, 1992; Summerfield & Culling, 1992). This is the harmonic cancella-

tion hypothesis.

To set the stage, I assume a “segregation module” that works hand in hand

with a “pattern-matching” module (Fig. 1). The segregated sensory pattern (red

arrow) is accompanied by a “reliability mask” (gray arrow) to assist matching of

a pattern that is incomplete or distorted by the segregation process. Sensory rep-

resentations might consist of a spectral profile (e.g. place-rate representation), or

a temporal, or place-time pattern. Examples of the latter are a matrix of auto-

correlation functions (ACF), one per channel (autocorrelogram), or the sum over

channels of these ACFs (summary autocorrelation function, SACF) (Licklider,

1959; Lyon, 1984; Meddis & Hewitt, 1992). The flow of sensory information in

this schema is purely bottom-up: the only top-down influence is attentional con-

trol (dotted arrow). Top-down transfer of a sensory-like pattern is also conceivable

(“schema-driven” segregation), but not considered here.

We want to know whether harmonic cancellation is instantiated in the auditory

system, but it is often easier to reason in terms of the acoustic waveform, for clarity

and to distinguish theoretical from implementation limits: if a principle fails in

abstract terms, consideration of biological constraints is premature. That said,
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Figure 2: Harmonic cancellation in the idealized frequency domain. Left: line

spectra of a “target” sound (red) and a “background” (blue). Next to left: mixture.

Next to right: harmonic mask with zeros at all harmonics of background. Right:

recovered target.

references to “cochlear filtering” or “neural processing” will sometimes creep into

the discussion without warning. I beg your patience when this occurs.

Harmonic Cancellation - Possible Mechanisms

How might harmonic cancellation be implemented? This section investigates sev-

eral hypotheses, including frequency-domain, time-domain, and hybrid models.

A later section will ask which – if any – is used by the auditory system. The

busy reader might want to read about Frequency Domain and Time Domain mod-

els, then skip to the Psychophysics section and come back for details as needed.

There are also interesting things to be found in the Appendix.

Frequency Domain

Conceptually, harmonic cancellation is straightforward: just zero all spectral

components at multiples of F0 = 1/T where T is the period of the background,

as in Fig. 2 (Parsons, 1976; Stubbs & Summerfield, 1988). Target components

emerge intact (right panel), except in the event, vanishingly unlikely in this ideal-
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Figure 3: Harmonic cancellation in the frequency domain using a short-term

Fourier representation, or a filter bank. (a) 238 Hz target (red) and 200 Hz back-

ground (blue) analyzed by a filter bank with 100 Hz resolution, (b) mixture, (c)

harmonic mask, (d) target recovered from mixture (green), and same in the absence

of the background (thin red), (e) same analysis but using a filter bank with non-

uniform frequency resolution. Filter bandwidth depends on center frequency (CF)

according to estimates of cochlear frequency resolution from Moore and Glasberg

(1983) as implemented by Slaney (1993).
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ized world, that a target component falls on the harmonic series of the background.

A practical implementation, however, needs to deal with two issues: one is

limited frequency resolution of the spectral representation, the other is the spectral

widening expected when analyzing a time-limited and/or non-stationary signal.

Figure 3 (a) shows short-term amplitude spectra of two harmonic sounds, a 200 Hz

“background” with a flat spectral envelope (blue), and a weaker 238 Hz “target”

with a broad peak centered at 1 kHz (red).

This spectral transform has limited frequency resolution (or, equivalently, in-

finite resolution but the signals are time-limited, in this case eight cycles of a

200 Hz fundamental, shaped with a Hanning window). When target and masker

are mixed, here with a target-to-masker ratio (TMR) of −12 dB, the spectrum

of the mix (Fig. 3 b, black) is almost entirely dominated by the background

(Fig. 3 a, blue). This differs radically from the idealized picture of Fig. 2.

If we multiply the spectrum with a harmonic mask with zeros at the harmonics

of the background (Fig. 3, c), we obtain a “recovered” spectral pattern (d, green)

very different from the true target (a, red). Two terms contribute to this difference.

One is multiplicative distortion from the masking procedure (compare d, red to a,

red), the other is additive distortion due to the incompletely-cancelled background

(compare d, green to d, red). The former can, in principle, be taken into account

by a pattern-matching stage if it has access to the nature of that distortion, for

example via the gray arrow in Fig. 1. The latter is more serious because it is

unknown and cannot be compensated for, and because it implies that we miss

our goal of invariance with respect to the background. The shape of the harmonic

mask (Fig. 3 c) affects the balance between error terms but a different mask would

not yield a radically different result. The contrast between Fig. 2 (conceptual

model) and Fig. 3 (implementation) is sobering.

Spectral resolution is critical. Cochlear filters are narrower, on a linear fre-
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quency scale, at low than at high center frequencies (CF) (Fig. 3 e). From this

figure it would seem that low-frequency target features might be recovered, but

perhaps not high-frequency (compare green and thin red). This illustration used a

bank of gammatone filters (Slaney, 1993) with equivalent rectangular bandwidths

(ERBs) from psychophysical estimates (Moore & Glasberg, 1983). If cochlear fil-

ters were narrower (e.g. Shera, Guinan, & Oxenham, 2002; Sumner et al., 2018)

a wider frequency range might be recoverable (not shown), but resolution would

still be limited if the stimulus were short or non-stationary.

In summary, frequency-domain cancellation requires (a) a spectral representa-

tion with resolution sufficient to cancel background partials while retaining enough

of the target to support pattern matching, (b) an estimate of the background period

T , and (c) a pattern-matching process that tolerates distortion of target spectral

patterns. How to estimate the background period is discussed in the Appendix

(Period Estimation).
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Figure 4: Harmonic cancellation in the time domain. (a) Impulse response of the

cancellation filter (left) and corresponding magnitude transfer function (right). (b)

Input (left) and output (right) of the cancellation filter for the background 100 Hz

vowel /a/ (top), target 132 Hz vowel /e/ (middle), and mixture at TMR=−12 dB (bot-

tom). (c) Schematic of a circuit implementing the cancellation filter (Eq. 1) (left) and

neural circuit with similar function (right). A spike on the direct pathway (black) is

transmitted unless it coincides with a spike on the delayed pathway (red). The delay

can be applied to the positive/excitatory input, instead of negative/inhibitory, with

equivalent results.

Time Domain

Harmonic cancellation can also be implemented in the time domain by a sim-
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ple filter with impulse response

h(t) = δ0(t)− δT (t) (1)

where T is the period of the interfering sound and δT is the Kronecker delta func-

tion translated to T (Fig. 4 a, left). The filtered version of a signal s(t) is simply

s(t)− s(t− T ). The magnitude transfer function of this filter has deep dips at all

harmonics of 1/T (Fig. 4 a, right).

Figure 4 (b) shows a background vowel stimulus /a/ with fundamental 100 Hz

(top), a weaker target vowel /i/ with fundamental 132 Hz (middle), and their mix-

ture (bottom), before (left) and after (right) filtering with a cancellation filter with

lag T equal to the period of the background vowel. The response consists of initial

and final one-period glitches, separated by a short steady-state portion, in red. The

steady-state portion is zero for the background (top). For the target, it is a distorted

version of the target waveform (compare middle right, red, to middle left). For the

mixture, it is the same as for the target alone (compare middle right, red, to bot-

tom right, red). In other words, this part of the pattern is invariant with respect to

the presence of a background of period T , which is what we need. This contrasts

with frequency-domain cancellation for which none of the recovered pattern was

background-invariant.

In summary, time-domain cancellation requires (a) a time-domain signal rep-

resentation such that Eq. 1 can be implemented, (b) an estimate of the background

period T (see Appendix, Period Estimation), (c) a pattern matching process capa-

ble of selecting the intervals of perfect cancellation, and compensating for distor-

tion of the target within these intervals.

Hybrid Models

A hybrid model combines spectral and temporal processing, for example cochlear
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filter bank analysis followed by time-domain harmonic cancellation within the

brainstem. There is a rich literature based on this idea for the purpose of audi-

tory modeling and sound processing applications (e.g. Assmann & Summerfield,

1990; Lyon, 1983, 1988; Meddis & Hewitt, 1992; Weintraub, 1985). A benefit of

the filter bank is that TMR varies across channels, some favoring the target and

others the background (Fig. 5 a), which may be useful if the dynamic range of

temporal processing is limited.

Figure 5: (a) TMR within each channel of a model cochlear filter bank for an input

consisting of a 124 Hz harmonic target mixed with a 100 Hz harmonic background

with overall TMR=0 dB (black), −12 dB (dotted blue), or +12 dB (dotted red).

Thanks to the filter bank, the TMR is enhanced in certain channels within which

the target can be “glimpsed”. (b) Linear operations can be swapped. Filtering the

signal before the filter bank is equivalent to applying the same filter to each channel

after the filter bank.

It is worth remembering that linear, time-invariant operators can be swapped:

a time-domain cancellation filter applied to the acoustic waveform can instead be

applied to each channel after filtering: the result is the same (Fig. 5 b). Cochlear
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filtering and transduction are both non-linear and non-stationary (e.g. adaptation),

but the “equivalence” of Fig. 5 (b) may nonetheless be useful conceptually. I

review briefly here a selection of hybrid schemes for harmonic cancellation, de-

scribed in detail in the Appendix (Hybrid Models). In brief:

• Hybrid Model 1: Cancellation-enhanced spectral patterns. A time-

domain cancellation filter is applied to each channel of the cochlear filter

bank, resulting in sharper selectivity and cleaner spectral patterns for pat-

tern matching.

• Hybrid Model 2: Channel rejection on the basis of periodicity. Channels

dominated by the background periodicity are discarded, and the remaining

channels are used to form a time-domain pattern for pattern matching, as in

the concurrent vowel identification model of Meddis and Hewitt (1992).

• Hybrid Model 3: Cancellation filtering of selected channels. As in Hy-

brid Model 2, channels dominated by the background are discarded, and

channels dominated by the target are left intact. In contrast to Hybrid

Model 2, channels with intermediate TMR are processed by a cancellation

filter. The result is used for time-domain pattern matching.

• Hybrid Model 4: Channel-specific cancellation filter. The parameter T

of the cancellation filter can differ between channels, in contrast to other

models that use the same T for all channels. The result is used for time-

domain pattern matching.

• Hybrid Model 5: Synthetic delays. The “synthetic delay” mechanism of

de Cheveigné and Pressnitzer (2006) is used to implement the relatively

long delays T required by the temporal model of harmonic cancellation.

The result is used for time-domain pattern matching.
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• Hybrid Model 6: Logan’s theorem. This is not a specific model but a

processing principle. A narrowband signal can be reconstructed perfectly

from its zero crossings (and hence also from its half-wave rectified version)

(Logan, 1977). This implies that, despite the non-linearities, the temporal

model can be implemented after transduction as if it were applied to the

acoustic waveform (the theorem does not say how).

These examples illustrate how peripheral filtering and temporal processing

might work hand-in-hand to enhance a spectral model (Hybrid model 1) or a tem-

poral model (Hybrid Models 2-6) of harmonic cancellation. To summarize, a wide

variety of mechanisms can implement harmonic cancellation: spectral, temporal

and hybrid.

Alternatives to Harmonic Cancellation

It is important to consider alternatives: to the extent that they are viable, the

case for harmonic cancellation is weaker. Other aspects of the spectral structure of

the target or background might support segregation, even in situations that seem

to implicate harmonic cancellation.

Harmonic Enhancement.

According to this hypothesis, the harmonic structure of a target sound allows

its extraction from a background. The idea is attractive: it fits with the Auditory

Scene Analysis credo that components of a sound must be “grouped” together,

here on the basis of harmonicity, to form a coherent “object” that can be distin-

guished from other parts of the scene (Bregman, 1990). It is satisfying to hypoth-

esize that voiced speech might be “engineered” for this purpose through evolution

(e.g. Popham, Boebinger, Ellis, Kawahara, & McDermott, 2018).

The mechanisms just reviewed can be re-purposed for enhancement. For ex-

ample, the mask in Fig. 2 can be made to select target harmonics rather than reject
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background harmonics. Likewise, replacing the minus by a plus in Eq. 1, and

setting T to the period of the target, yields a harmonic enhancement filter:

h(t) = δ0(t) + δT (t). (2)

Enhancement and cancellation seem symmetric one of the other, but they have

rather different properties. Enhancement requires the period of the target, but this

is hard to estimate when TMR is small, which is unfortunately when segregation

is most necessary. Cancellation works well in that situation. An enhancement

filter provides only a limited boost in TMR (6 dB for the simple filter of Eq. 2) in

contrast to cancellation that can reject the masker perfectly, at least in principle. A

larger boost would require a longer impulse response (as explained in Appendix A

of de Cheveigné, 1993, courtesy of Jean Laroche), but this might not be practical

for a non-stationary signal such as speech. Anticipating, behavioral results also

don’t favor the enhancement hypothesis.

Incidentally, the term “harmonic enhancement” appears in other contexts with

a different meaning: perceptual enhancement of one harmonic of a complex when

it is turned on or off (e.g. Hartmann & Goupell, 2006). Hopefully no confusion

will result from this overloading of the terminology.

Spectral Glimpsing. Between the lines of a harmonic spectrum are gaps where

target components might be glimpsed (Deroche, Culling, & Chatterjee, 2013;

Guest & Oxenham, 2019), and this might conceivably account for the benefit ob-

served when a background is harmonic rather than inharmonic. Figure 5 (a) shows

how individual channels in the low frequency region can preferentially reflect one

source or the other, as long as partials are not too close. The spectral-glimpsing

hypothesis glosses over the question of how target channels are distinguished from

background channels. In that, it differs from Hybrid Model 2 above.
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Waveform Interactions.

The sinusoidal waveforms of two or more partials can interact within a chan-

nel of a filter bank to produce a complex “beat” pattern. This can occur between

partials of the same sound (with a rate equal to the fundamental if the sound is

harmonic) or partials of different sounds. The patterns that result are quite diverse

(static summation, slow fluctuations, rapid beats, etc.), and they depend in a com-

plex way on several parameters (frequencies, levels, filter shapes). The “waveform

interactions” hypothesis is thus ill-defined unless further specified.

From slow to fast: phase-dependent summation of same-frequency partials

constitutes a potential confound in experiments that include a “zero ∆F0” con-

dition (de Cheveigné, 1999c). Slow beats between closely-spaced partials from

different sounds cause the short-term spectrum to cycle between shapes that might

favor perception of one or the other sound, either because it momentarily resem-

bles that of one of the sounds in isolation, or because temporal contrast effects

enhance important spectral features (Assmann & Summerfield, 1994; Culling &

Darwin, 1994; Summerfield, Foster, Gray, & Haggard, 1981). Faster beats might

evoke a sensation of roughness signaling the presence of a target (Treurniet &

Boucher, 2001), or the spectral location of such beats might provide cues to its

spectral features (e.g. the location of a formant peak, or the boundary between

formants of different sounds). Conversely, the lack of beats at a rate slower than

F0 (or the perceptual correlate of this lack, “smoothness”) could signal the ab-

sence of a target, or the spectral location of channels dominated by harmonics of a

single sound. Finally, the absence of any modulation at F0 implies that the chan-

nel is dominated by a single partial, as in the phenomenon of “synchrony capture”

which might signal the position of a formant peak of a successfully isolated sound

(Carney, Li, & McDonough, 2015; Maxwell, Richards, & Carney, 2020).

Interaction of more than two harmonics produces a phase-dependent beat pat-
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tern that is more deeply sculpted for certain phase relations, such as cosine, or

“Klatt” phase that approximates natural phonation with a glottal pulse within each

period. Valleys between pulses might then allow a target to be glimpsed for a fa-

vorable alignment, as might occur if sounds of different F0 are mixed (the pitch

period asynchrony hypothesis, PPA, Summerfield & Assmann, 1991).

Beat patterns might be exploited to group channels by correlation (Fishman

& Steinschneider, 2010; Hall, Haggard, & Fernandes, 1984; Shamma, Elhilali, &

Micheyl, 2011; Sinex, Henderson Sabes, & Li, 2002; Sinex & Li, 2007) or, alter-

natively, beat rates in the F0 range might be compared across channels (Roberts &

Bregman, 1991; Roberts & Brunstrom, 2003; Treurniet & Boucher, 2001). This

requires the existence of some mechanism to analyze beat patterns and quantify

their rates (see Modulation Filter Bank below).

Beat amplitude depends non-monotonically on the amplitude of sources within

the stimulus, and the shape of the beat pattern is phase-dependent (for three

or more partials). Beat rate affects perceptual salience (e.g. roughness) non-

monotonically, and the rate itself may depend non-monotonically on F0 differ-

ence, depending on which partials happen to be close. Finally, each channel has

its own pattern of beats. For these reasons, a “waveform interaction hypothesis”

is hard to delineate and test (which does not imply that it is incorrect).

Modulation Filter Bank.

An influential idea is that cochlear filtering and transduction are followed by

analysis by a modulation filter bank within the auditory system (Dau, Kollmeier,

& Kohlrausch, 1997; Jepsen, Ewert, & Dau, 2008; Joris, Schreiner, & Rees, 2004;

Kay & Matthews, 1972; Stein, Ewert, & Wiegrebe, 2005; Viemeister, 1979). Con-

ceptually, this seems rather like reproducing internally an operation (spectral anal-

ysis) that is already carried out in the cochlea. A major difference, however, is

that it occurs after demodulation of each output of the peripheral filter bank (non-
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linearity followed by smoothing), which makes it primarily sensitive to features

of the waveform envelope, and less sensitive to carrier phase. The concept makes

most sense when applied to slow fluctuations (e.g. below ∼30 Hz), but models

have been proposed with channels up to ∼500 Hz, capitalizing on the smooth

transition between neural coding of fine structure at low frequencies and of enve-

lope at higher frequencies (Joris et al., 2004). A modulation filter bank applied to

each peripheral channel results in a center frequency × best modulation frequency

pattern that can be collapsed across channels to obtain a “summary modulation

spectrum”. One could imagine a frequency-domain harmonic cancellation model

applied to this “internal spectrum”. However, most estimates of modulation filter

width are rather wide (quality factor Q ≈1), which makes this idea unlikely to

work given the issues mentioned earlier.

Alternatively, the 2-D pattern could be used to tag channels for the purpose

of segregation (Ewert & Dau, 2000; Meyer, Plante, & Berthommier, 1997). One

might consider implementing this modulation filter bank using cancellation filters,

which would result in a model similar to the hybrid models reviewed previously,

a major difference being the demodulation step which renders the model sensitive

to envelope periodicity rather than (or in addition to) waveform periodicity.

In Summary.

Multiple models have been put forward to explain how the harmonic structure

of sounds within an acoustic scene can be used to analyze the scene and attend

to particular sources. Some fit the definition of harmonic cancellation, others do

not. The next section reviews psychophysical evidence in favor – or against – this

hypothesis and its alternatives.
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Psychophysics

Detection Benefits from ∆F0.

When presented with a mixture of two vowels, subjects more often report

that they hear two vowels if the F0s differ (Arehart, Rossi-Katz, & Swensson-

Prutsman, 2005; Arehart, Souza, Muralimanohar, & Miller, 2011; de Cheveigné,

McAdams, & Marin, 1997; McPherson, Dolan, et al., 2020). Likewise, when

presented with a harmonic tone with one partial mistuned, they may detect the

partial as “standing out” as a separate sound (Moore, Glasberg, & Peters, 1986;

Moore, Peters, & Glasberg, 1985). Such a mistuned target tone can be detected

at ∼ −15 dB relative to a harmonic masker, whereas against a noise background

the threshold is ∼15 dB higher (Micheyl, Bernstein, & Oxenham, 2006). In each

of these examples, background harmonicity seems to affect how many sources are

heard. An interpretation, in the context of harmonic cancellation, is that a single

entity is perceived if cancellation is perfect, and multiple entities if it leaves a

residual.

Discrimination and Identification Benefit from ∆F0.

Mistuning one partial of a harmonic complex allows it to be matched to a pure

tone (Hartmann, McAdams, & Smith, 1990), implying not only that this “second

sound” is detectable, but also that its frequency can be accessed. Subjects are more

likely to identify both vowels of a concurrent pair if their F0s differ (Arehart et

al., 2011; Assmann & Summerfield, 1994; Brokx & Nooteboom, 1982; Chalikia

& Bregman, 1993; Culling & Darwin, 1993; McKeown, 1992; Scheffers, 1983;

Shackleton, Meddis, & Hewitt, 1994; Summerfield & Assmann, 1991; Zwicker,

1984). The pattern of results is similar across studies: poor performance (albeit

well above chance) for ∆F0=0, rapid improvement up to about one semitone, fol-
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lowed by a plateau and possibly a dip at the octave. To create the ∆F0=0 condition

with continuous speech, the voices must be re-synthesized on a monotone, or one

voice given the same F0 track as the other, so that ∆F0s remain the same through-

out the presentation. With that manipulation, a similar benefit of non-zero ∆F0 is

obtained (Brokx & Nooteboom, 1982; Leclère, Lavandier, & Deroche, 2017).

Improved performance with ∆F0 6=0 is taken to reflect a harmonicity-based

segregation mechanism that fails when F0s are the same, and indeed, identifi-

cation is less good if both voices are whispered (Lea, 1992), or inharmonic (de

Cheveigné, McAdams, & Marin, 1997). This brings up the question as to whether

each voice benefits from its harmonic structure, that of its competitor, or both. To

answer that question, voices must be parametrized individually, and responses tal-

lied separately. It cannot be answered if the performance metric is “both correct”

(Brokx & Nooteboom, 1982; Scheffers, 1983; Summerfield & Assmann, 1991),

or if both voices are made inharmonic at the same time (Popham et al., 2018).

Background Harmonicity is Important.

In “double vowel experiments”, listeners give two answers on each trial, but

it has been noted that one constituent (the “dominant” vowel) is usually iden-

tified regardless of ∆F0, whereas identification of the other depends on ∆F0

(McKeown, 1992; McKeown & Patterson, 1995; Zwicker, 1984). “Dominance” is

phoneme- and subject-dependent, but this can be overridden by changing the rela-

tive level of the vowels, in which case the ∆F0 effects are mainly observed for the

weaker (smaller amplitude) vowel (Arehart et al., 2005; de Cheveigné, Kawahara,

Tsuzaki, & Aikawa, 1997; McKeown, 1992). This is congruent with the harmonic

cancellation hypothesis, in that estimation of the harmonic structure of the back-

ground should be easy when the target is weak. However, it could also simply

result from a reduced ceiling effect for the more challenging, weaker vowel.

With the ∆F0 6=0 condition as a starting point, performance decreases if the
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competing vowel is whispered (Lea, 1992) or made inharmonic (de Cheveigné,

McAdams, & Marin, 1997), regardless of whether the target is harmonic or not.

This too is consistent with the harmonic cancellation hypothesis. Similar re-

sults are reported for connected speech: Steinmetzger and Rosen (2015) found

that speech reception thresholds were up to 11 dB lower for periodic than aperi-

odic maskers, while Deroche, Culling, Chatterjee, and Limb (2014b) reported a

4 dB elevation in speech reception threshold (SRT) for inharmonic vs harmonic

maskers. Incorporating harmonic cancellation within a predictive model of speech

intelligibility improved its fit to experimental data (Prud’homme, Lavandier, &

Best, 2020).

Gockel, Moore, and Patterson (2002) found that the threshold for detecting

noise in a harmonic masker was 11 to 14 dB lower than the converse, and Gockel,

Moore, and Patterson (2003) found a similar result for loudness. This suggests

that a harmonic masker might be less potent than a noise masker, as expected

from harmonic cancellation. As mentioned earlier, Micheyl et al. (2006) found

that a harmonic complex tone (HCT) was easier to detect within a background

consisting of another HCT than within noise, and Klinge, Beutelmann, and Klump

(2011) found a lower threshold for detection of a tone embedded in (but mistuned

from) a harmonic rather than inharmonic or noise background (see also Oh &

Lutfi, 2000).

All these results are consistent with harmonic cancellation. However, har-

monic cancellation is not exclusive of other mechanisms, and one might expect

the auditory system to use several or all if they are effective. The next section

reviews evidence for harmonic enhancement.

Target Harmonicity is Less Important

The idea that harmonicity ensures that a sound does not “fall apart into a sea

of individual harmonics” is seducing (Popham et al., 2018), but studies that tried
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to demonstrate an advantage of target harmonicity for segregation have met with

mixed results. As noted earlier, in double-vowel experiments the benefit of a

∆F0 is greatest for weak targets, and measurable for TMR as low as −25 dB

(Arehart et al., 2005; de Cheveigné, Kawahara, et al., 1997; McKeown, 1992).

Estimating the F0 of a target that weak would be challenging. Replacing a voiced

target by a whispered target does not impair intelligibility, regardless of whether

the competitor is voiced or whispered (Lea, 1992), nor does randomly perturbing

its harmonics to make it inharmonic (de Cheveigné, McAdams, & Marin, 1997).

Modulating the F0 of target speech in the presence of reverberation disrupts its

periodicity, but Culling, Summerfield, and Marshall (1994) found no effect on

SRTs (see also Deroche & Culling, 2011b).

For continuous speech, it has been hypothesized that target harmonicity (one

aspect of “temporal fine structure”, TFS) could aid glimpsing within a spectro-

temporally modulated noise, by tagging time-frequency regions that are voiced.

However, a direct test of this hypothesis gave negative results (Shen & Pearson,

2019). There is however some evidence that continuity of target F0 helps to con-

nect information over time, or reduce informational masking if target and masker

F0 ranges are non-overlapping (Darwin & Bethell-Fox, 1977).

A difficulty in testing the enhancement hypothesis is that manipulation of the

target might affect its intelligibility independently of any segregation effect. Whis-

pered speech is reportedly less intelligible than voiced speech (Ruggles, Freyman,

& Oxenham, 2014), and reverberation, which disrupts harmonicity of an intonated

target, also degrades intelligibility (Deroche & Culling, 2011b). Manipulating

F0 (monotonizing, transposing, or inverting the F0 track) may also affect intrin-

sic intelligibility (Binns & Culling, 2007; Deroche, Culling, Chatterjee, & Limb,

2014a; Guest & Oxenham, 2019). Such effects might conceivably offset the ben-

efits of harmonic enhancement, making them unmeasurable, so the best we can
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say is that we lack strong evidence in favor of that hypothesis.

An Intriguing Exception: Target Pitch

In contrast to results just reviewed, a target within a noise background is easier

to detect if it is harmonic than inharmonic (McPherson, Grace, & McDermott,

2020). This inconsistency is resolved if we reflect that a harmonic target is likely

detected in noise on the basis of its pitch (Gockel, Moore, Plack, & Carlyon,

2006; Hafter & Saberi, 2001; Scheffers, 1984), which is probably more salient

if the sound is harmonic. If frequency discrimination in noise relies on a pitch

percept, it too should benefit from target harmonicity, as found by McPherson,

Grace, and McDermott (2020). Thus, we cannot with confidence attribute such

benefits to enhanced segregation as opposed to an enhanced pitch percept.

It is also intriguing that the pitch of a target is easier to discriminate if mixed

with a noise background rather than a harmonic background (Micheyl et al., 2006),

opposite to what we expect of harmonic cancellation (indeed, the same sounds

were easier to detect within a harmonic background than a noise background).

It would seem that background harmonicity interferes with target pitch, possibly

in a way similar to the phenomenon of pitch discrimination interference (PDI)

(Gockel, Carlyon, & Plack, 2009; Micheyl, Keebler, & Oxenham, 2010). That

interference is not absolute: the pitch of a mistuned partial may be heard within a

harmonic background (Hartmann & Doty, 1996; Hartmann et al., 1990), and indi-

vidual tones may be heard within a chord (Graves & Oxenham, 2019), consistent

with skills found in competent musicians.

Is the Benefit Explained by Spectral Glimpsing?

Several results seem consistent with this hypothesis. The benefit of ∆F0 to

vowel identification is mainly limited to the region of resolved partials (Culling &

Darwin, 1993), and it improves with a higher background F0 at which partials are
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more widely spaced (Deroche et al., 2013; Deroche, Culling, Chatterjee, & Limb,

2014a). Guest and Oxenham (2019) found that removing the even harmonics of a

masker reduced masking of a target placed one octave above, also consistent with

glimpsing within the large gaps between background partials of odd rank.

However, Deroche et al. (2013); Deroche, Culling, Chatterjee, and Limb (2014a,

2014b) argued that the larger gaps that arise when a masker is made inharmonic

should reduce masking, contrary to their results. A possible explanation is that

cancellation and glimpsing are both involved (Deroche, Culling, Chatterjee, &

Limb, 2014b), consistent with Hybrid models 2 or 3.

Is the Benefit Explained by Waveform Interactions?

As pointed out earlier, waveform interaction comes in multiple forms, and

it is not always clear which version of the hypothesis is implied when it is in-

voked. One difficulty, common to many versions, is that the non-monotonic de-

pendency of beat amplitude on component amplitudes implies that the magnitude

(and spectral locus) of beat-dependent cues should show non-monotonic varia-

tions with level, whereas identification usually varies monotonically with TMR.

Another challenge is that F0-based segregation seems to benefit mostly partials

of low rank, for which, thanks to resolvability, the distribution over channels of

high-amplitude beats is likely sparse (Deroche, Culling, & Chatterjee, 2014).

Phase effects attributable to PPA were found at 50 Hz, but not at 100 Hz

or higher (de Cheveigné, McAdams, & Marin, 1997; Deroche et al., 2013; De-

roche, Culling, & Chatterjee, 2014; T. Green & Rosen, 2013; Summerfield &

Assmann, 1991, but see Summers and Leek 1998). Furthermore, reverberation

should scramble the phase relations required by PPA, whereas it does not affect

segregation unless F0 is modulated (Culling, Hodder, & Toh, 2003; Culling et al.,

1994; Deroche & Culling, 2011b).

Culling and Darwin (1994) attributed effects of small ∆F0 to the ability to
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shop for favorable spectral patterns among those offered by slow beats. Random

starting phase should reduce this benefit due to the haphazard temporal alignment

of beat patterns, but, de Cheveigné, McAdams, and Marin (1997) found that the

∆F0 benefit did not depend on the phase pattern (random vs sine) of either target

or background. The slow-beat hypothesis was further tested by de Cheveigné

(1999c), again with limited support. The reader should refer to those two papers

for a detailed discussion of several forms of the waveform interactions hypothesis.

Given the diversity, it is hard to rule out that some form of waveform interaction

contributes to segregation. Indeed, harmonic cancellation itself could be construed

as a mechanism to exploit a particular form of waveform interaction specific to

harmonically-related partials.

The Special Case of Maskers with Frequency-shifted or Odd-order Harmonics

In experiments that require detecting (or matching the pitch of) a mistuned

partial of rank n within a harmonic complex of fundamental F0, the subject likely

attends to channels with a center frequency close to nF0. The task might then

be hampered by the presence, within those channels, of neighboring harmonics,

in particular harmonics of rank n − 1 and n + 1. A cancellation filter tuned

to F0 would suppress those unwanted harmonics, but it would also suppress the

target unless it is mistuned. We would thus expect performance to improve with

mistuning, as indeed is observed (Hartmann et al., 1990; Moore et al., 1986).

However, Roberts and Brunstrom (1998) found a similar result when the back-

ground series had been made inharmonic by shifting all partials by the same

amount ∆f , in which case partials are regularly spaced but harmonicity is dis-

rupted. This suggests that spectral regularity, rather than harmonicity, might be

the driving factor, which would put in doubt the harmonic cancellation account.

However, that proposal hinges on the existence of a mechanism to detect spectral

regularity: Roberts and Brunstrom (2001) doubted the existence of a dictionary of
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shifted-harmonic templates.

An alternative is that harmonic cancellation is applied locally within peripheral

channels, for example based on Hybrid model 4 (analogous to what has been pro-

posed for the binaural EC model, Akeroyd, 2004; Breebaart et al., 2001; Culling

& Summerfield, 1994). Specifically: the shifted partials (n − 1)F0 + ∆f and

(n + 1)F0 + ∆f can be approximated with harmonics of rank n − 1 and n + 1

of a harmonic series of fundamental F0(1 + ∆f/n). A cancellation filter tuned

to that series would approximately cancel the closest offending background par-

tials (more distant ones are attenuated by cochlear filtering). The nth zero of that

filter falls at nF0 + ∆f , i.e. it fits the “spectral regularity” template invoked by

Roberts and Brunstrom (1998), which would explain why they found that “mis-

tuning” a partial from that position makes it easier to detect or match. An array of

such CF-dependent cancellation filters, each tuned to an “equivalent F0” equal to

F0(1 + ∆f/fc) would attenuate a shifted-harmonic complex across all channels,

allowing “mistuning” relative to that spectrally regular (but inharmonic) pattern

to be detected.

This reasoning can be extended to the case of a background harmonic com-

plex with only odd harmonics of F0, as it is equivalent to a series of harmonics

of 2F0 each shifted by ∆f = −F0. This series can be cancelled perfectly by a

cancellation filter tuned to F0, or approximately, within each peripheral channel,

by a cancellation filter tuned near 2F0 as just described. The reason for consid-

ering the latter is that it requires a shorter delay, which is relevant if there is a

penalty on longer delays as has been suggested in the context of pitch perception

(Bernstein & Oxenham, 2008; de Cheveigné & Pressnitzer, 2006; Moore, 2003).

An array of cancellation filters, each tuned to 2F0(1 + F0/fc), would spare any-

thing that does not fit the series of odd harmonics, in particular an even-numbered

harmonic. If so, it might explain why a single even-numbered harmonic embed-
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ded among odd-numbered harmonics is “heard out” more easily than any of the

odd-numbered partials (Roberts & Bregman, 1991), and similar explanation might

underlie the benefit for identification of a speech target of removing even harmon-

ics of the masker (Guest & Oxenham, 2019) mentioned earlier. This question is

revisited in the Discussion.

In Summary

A body of evidence agrees with the hypothesis that harmonic cancellation as-

sists auditory scene analysis, complementing the well-known benefits of periph-

eral frequency analysis. Dissenting results are sparse. The alternative hypothesis

of harmonic enhancement, while attractive, garners little experimental support.

Harmonic cancellation raises a number of issues that are discussed further in the

Appendix. These include period estimation (necessary to apply cancellation), the

relations between correlation and cancellation, analogies with the well-known

EC model of Durlach, pattern matching with missing data, potential anatomical

and physiological substrates, and the possible synergy between cochlear filtering

and neural filtering.

Discussion

Periodicity (or harmonicity) – and its perceptual correlate, pitch – have long cap-

tured the attention and imagination of thinkers and scientists (Micheyl & Oxen-

ham, 2010). A periodic sound within the right parameter range evokes a salient

percept that is long-lasting in memory (McPherson, Dolan, et al., 2020), is robust

to masking by noise (Hafter & Saberi, 2001; McPherson, Grace, & McDermott,

2020), and supports fine discrimination (e.g. Micheyl & Oxenham, 2010). How-

ever, the idea that a sound “falls apart” unless it is harmonic does not withstand

a bit of reflection. A one-period tone pulse seems unitary without the aid of har-
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monicity, meaningless at that duration. A harmonic tone of longer duration may

sound unitary, but so does noise which lacks harmonicity. An alternative proposi-

tion is that the percept evoked by a sound is unitary by default, and that “multiplic-

ity” is inferred from the accumulation of evidence in favor of additional sources. A

complex with a mistuned harmonic initially sounds like a single object but, given

time and encouragement, a subject might detect something amiss and interpret it

as an additional source. The process requires time (Hartmann et al., 1990; McK-

eown & Patterson, 1995; Moore et al., 1985), and is harder if the background is

made inharmonic (Roberts & Brunstrom, 2003; Roberts & Holmes, 2006). Thus,

one could argue, the harmonic nature of one part of the stimulus makes it easier to

detect the presence of other parts. From this perspective, harmonicity of a source

may contribute to a percept of multiplicity for mixtures in which it participates,

rather than to its own unity.

That background harmonicity is crucial comes as a surprise, as it suggests

that segregation must rely on an adventitious quality of the environment. Also

surprising is that target harmonicity has only a minor role, as it goes against the

attractive idea that communication sounds are “engineered” through evolution to

be harmonic for resilience. It does make sense, however, when one realizes that

cancellation works well (and enhancement poorly) at low TMR, which is when

segregation is most needed. Infinite TMR improvement can be achieved, in prin-

ciple, for very short stimuli for which enhancement offers more limited benefit.

Cancellation meshes well with the concept that perception involves a quest for

invariance to irrelevant dimensions.

Cancellation as a Model of Sound.

The ability to cancel unwanted sounds is clearly useful for perception, but

one might take a step further and argue that it is, in part, constitutive of percep-

tion. As a predictive model, a harmonic cancellation filter characterizes the part
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of input that it can cancel, just as an autoregressive model characterizes its spec-

tral envelope, or a binaural EC model its spatial position. The residual, which

by definition does not fit that model, informs us about “what else is out there”.

It too can be characterized by recursively applying the same model or, alterna-

tively, a compound model can be applied to the original sound to estimate pa-

rameters jointly (as in the multiple F0 model described in the Appendix, Period

Estimation). This is related to concepts of predictive coding (Friston, 2018) and

compression (Schmidhuber, 2009).

Like pattern classification (Duda et al., 2012), cancellation seeks invariance

with respect to irrelevant dimensions of the input, specifically those that reflect the

background. In contrast to classifiers that involve non-linear transforms, cancella-

tion as described here is purely linear, which makes sense given that the acoustic

mixing process itself is linear.

How Useful is it in Practice?

Auditory Scene Analysis benefits from multiple cues and regularities, of which

harmonicity is but one. Harmonic cancellation is likely to be useful in situations

where neither temporal separation, nor spectral separation, nor binaural dispari-

ties are effective to suppress interfering sources, and then only if the interference

is harmonic. Thus, at best, it is one tool among many, beneficial in a restricted set

of circumstances.

Measured in terms of TMR at threshold performance, the harmonicity benefit

can reach ∼17 dB for identifying synthetic vowels, although most studies report

smaller effects (Culling et al., 1994; de Cheveigné, Kawahara, et al., 1997; Sum-

merfield, Culling, & Fourcin, 1992). This is of the same order of magnitude as

reported for binaural unmasking (Colburn & Durlach, 1965; Jelfs, Culling, & La-

vandier, 2011). In terms of proportion of tokens recognized, the benefit appears

maximal for TMR around −15 dB and vanishes below −30 dB or above +15 dB
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(de Cheveigné, 1999b; de Cheveigné, Kawahara, et al., 1997; McKeown, 1992).

Thanks in part to harmonicity-based segregation, a target (wide-band harmonic

or noise) mixed with a harmonic background can be detected at TMRs down to

∼ −20 dB (Gockel et al., 2002; Micheyl et al., 2006), or −32 dB for a narrow-

band noise target (Deroche & Culling, 2011a). The benefit relative to a noise

or inharmonic masker is on the order of 5 to 15 dB (Deroche & Culling, 2011a;

Deroche, Culling, & Chatterjee, 2014; Micheyl et al., 2006). Overall, harmonic

cancellation mainly benefits weak targets.

For vowel identification, the benefit is measurable for ∆F0 s as small as 0.4%

but not less (de Cheveigné, 1997b), and plateaus for ∆F0 s beyond ∼6%. It is

greater for longer stimuli (200 ms) than shorter stimuli (50 ms) (Assmann & Sum-

merfield, 1994), but measurable for stimuli as short as four cycles of the lower F0

(23 ms at 175 Hz, McKeown & Patterson, 1995). It is reduced but not abol-

ished if the masker’s F0 is modulated at rates as fast as 5 Hz (200 ms period) (de

Cheveigné, 1997b; Deroche & Culling, 2011b; Summerfield et al., 1992), sug-

gesting a remarkable ability to track F0 variations. However, this breaks down in

the presence of reverberation, whereas a similar degradation is not observed if the

masker F0 is steady-state (Culling et al., 1994; Sayles, Stasiak, & Winter, 2015).

Data from mistuned harmonic experiments suggest that the benefit might be lim-

ited to the spectral region below ∼2-3 kHz (Hartmann et al., 1990). Indeed, in

concurrent vowel experiments the benefit appears to stem mainly from the region

below 1 kHz that includes a vowel’s first formant (Culling & Darwin, 1993).

Real speech maskers differ from ideal harmonic maskers in that periodic por-

tions are sparsely distributed over time (Hu & Wang, 2008), the F0 varies due

to intonation, and periodicity is further degraded by articulation, irregularities in

voice excitation, and added noise including reverberation. The benefit of a ∆F0

between a monotonized speech target and monotonized masker (two concurrent
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voices with the same F0, or harmonic complex with spectral envelope similar to

speech) ranges from 3-8 dB (Deroche & Culling, 2013; Deroche, Culling, Chatter-

jee, & Limb, 2014a; Deroche, Culling, Lavandier, & Gracco, 2017), which is also

on the same order as binaural effects for similar stimuli (Deroche et al., 2017).

Learning?

Pattern-matching models of pitch perception (de Boer, 1976) postulate some

form of harmonic template, or “sieve” (Duifhuis, Willems, & Sluyter, 1982; Schroeder,

1968), and the same template is also required for a spectral domain model of seg-

regation. This is non-trivial: the dictionary of templates must cover the full range

of F0s, there must be some mechanism to align the templates accurately with the

substrate of frequency analysis (e.g. cochlea), and each template itself is a com-

plex affair involving multiple slots with accurate tuning. It has been proposed that

templates are learned from exposure to harmonic sounds such as speech (Bowl-

ing & Purves, 2015; Divenyi, 1979; Saddler, Gonzalez, & McDermott, 2020; Ter-

hardt, 1974) possibly modulated by cultural preferences (J. McDermott & Hauser,

2004; J. H. McDermott, Lehr, & Oxenham, 2010; J. H. McDermott, Schultz, Un-

durraga, & Godoy, 2016; McPherson, Dolan, et al., 2020). The demonstration that

templates can be learned from noise (Shamma & Dutta, 2019; Shamma & Klein,

2000) makes that argument more tenuous, and highlights the question of what,

exactly, is being learned. Perhaps that algorithm discovers, rather than learns, the

mathematical property that is exploited more directly by the cancellation filter.

The template-like properties of a time-domain cancellation filter (Eq. 1, Fig. 4)

stem from mathematics, rather than learning. This is a big appeal: why jump

through hoops when a simple solution is at hand? The organism may still need to

discover that this regularity exists and is worth attending to, and the mechanism

may need tuning, particularly if it involves combining frequency channels. This

leaves ample room for learning, and possibly even cultural influences.
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Is There Time?

In a classic chapter, de Boer (1976) likened auditory theory to a pendulum

moving between “time” and “place” (spectrum). The pendulum is still swing-

ing, and several recent papers have strengthened the case for spectral and place-

rate accounts (e.g. Shera et al., 2002; Su & Delgutte, 2020; Sumner et al., 2018;

Verschooten, Desloovere, & Joris, 2018; Whiteford, Kreft, & Oxenham, 2020).

Arguments for time remain (a) evidence for temporal mechanisms of binaural

processing (see section Analogy with Binaural Equalization-Cancellation of the

Appendix), (b) existence of specialized neural circuitry within the brain (see sec-

tion Anatomy and Physiology of the Appendix), (c) the simplicity, effectiveness

and ease of implementation of a time-domain harmonic filter, in contrast to a har-

monic template or sieve in the frequency domain.

Hybrid models offer the best of both worlds, but they may worry scholars who

care about parsimony or falsifiability. As a case in point, if we admit that delay

might arise by cross-channel interaction (de Cheveigné & Pressnitzer, 2006), it is

hard to say anything for, or against, the hypothesis that processing involves neural

delays. On the other hand, it would be unwise to let this blind us to the possibility

that that auditory system does rely on a combination of spectral and time-domain

analysis.

My personal inclination is that auditory perception involves time-domain pro-

cessing within the brain, but the effectiveness of that processing is enhanced by

the peripheral bandpass filter bank that helps overcome the effects of nonlinear

transduction and noise (based on principles related to Logan’s theorem). High-

resolution mechanical filtering serves to “pre-calculate” a set of useful basis func-

tions upon which the brain then operates in the time-domain (see sections Trans-

forms in Filter Space and Non-Linearity of the Appendix). In this perspective,

cochlear mechanics are the “last chance” to process acoustical signals with good
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resolution, linearity, and low noise, before handing transduced patterns over to

more flexible but less accurate neural processing.

Carving Sound at its Joints. Auditory Scene Analysis is often described as a

process of assembling elements across the spectrum (simultaneous grouping) or

across time (sequential grouping) (Bregman, 1990), mirroring the common pro-

cess of additive or concatenative synthesis by which stimuli are created in the lab.

It glosses over the issue of whether these ingredients are recoverable from the mix,

upon which this assumption depends. Once the coins are thrown into the melting

pot, can we pull them out intact? According to classic Auditory Scene Analy-

sis, we can: spectral analysis reveals “natural kinds” (partials), between which

are found the “joints” at which sounds may be carved (Campbell, O’Rourke, &

Slater, 2011). Indeed, according to this view, a grouping mechanism is required

for any complex sound to form a coherent whole, otherwise it might shatter into as

many percepts as partials (even though few of us would claim to ever have heard

more than a couple of such percepts within a sound). The wisdom of invoking si-

nusoidal partials as “natural kinds” on which Auditory Scene Analysis processes

operate is rarely questioned.

In contrast, harmonic cancellation requires no analysis-into-parts or grouping.

Whereas a bandpass filter is defined by what it selects (a frequency band), a can-

cellation filter is defined by what it removes (periodic power at period T ). This is

an example, like a shadow, of what Sorensen (2011) calls a “para-natural kind”.

The process is effective both to characterize a periodic sound by its parameter T ,

and to get rid of that sound and search for more. It is an alternative way to “carve

sound at its joints”.
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Conclusion

The harmonic cancellation hypothesis states that the harmonic (or periodic) struc-

ture of interfering sounds can be exploited to suppress or ignore them. A large

body of experimental results are consistent with this hypothesis, whereas alterna-

tive hypotheses for F0-based segregation are less well supported. In particular,

harmonic enhancement, according to which harmonicity of a target makes it re-

silient to masking, receives little support, which is surprising because counter to

our intuition and inconsistent with textbook explanations of scene analysis in-

volving a harmonicity-based “grouping” operation. Harmonic cancellation fits

well with an account of perception as seeking invariance with respect to irrelevant

dimensions of the sensory pattern, and with the concept of “unconscious infer-

ence” promoted by Helmholtz. Harmonic cancellation can be implemented in the

frequency domain (based on cochlear analysis) or time domain (based on the tem-

poral processing of neural discharge patterns). Support for the latter comes from

the success of the related EC model of binaural interactions, from the presence of

neural structures apparently specialized for processing of temporal information,

and from theoretical considerations that suggest that a time-domain implementa-

tion might be more straightforward and effective.
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Appendix: Deeper Issues

The harmonic cancellation hypothesis is straightforward and well supported ex-

perimentally, but it raises a number of interesting questions that are worth consid-

ering.

Hybrid models

The hybrid harmonic cancellation models enumerated in the main text are

described here in greater detail.

• Hybrid model 1: Cancellation-enhanced spectral patterns. Each chan-

nel of a filter bank is convolved with a cancellation filter tuned to T . This

has the effect of sharpening spectral analysis so that the outcome is closer to

the ideal (Fig. 2 right). The pattern of power over channels is then handed

over to a frequency-domain pattern-matching stage. This is illustrated in

Fig. 6 (a). Two vowels, /a/ and /e/ with fundamentals 100 Hz and 106 Hz

respectively (left), are mixed. Cues to /e/ are indistinct within the spectrum

of the mix (right, black), but can be enhanced by applying to each chan-

nel a cancellation filter tuned to suppress /a/ (right, red). This model is

reminiscent of periodicity tagging of tonotopic patterns (Keilson, Richards,

Wyman, & Young, 1997), or of the place-time model of Assmann and Sum-

merfield (1990) in which a spectral profile for the target vowel was taken by

sampling the autocorrelation function at the target’s period. If the spectral

profile were derived from a limited window of cancellation-filtered signal,

placing that window within the background-invariant part (red in Fig. 4 (b),

right) would make the profile invariant with respect to backgrounds of pe-

riod T . The pattern would still be distorted by the cancellation filtering, and

spectral pattern-matching would need to take this into account.
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Figure 6: Two hybrid models of harmonic cancellation. (a) Hybrid Model 1.

Left: power as a function of CF for synthetic vowels /a/, F0=100 Hz (blue) and

/e/, F0=106 Hz (red). Short lines above the plot indicate the first two formant fre-

quencies of each vowel. Right: power as a function of CF for the mix before (black)

and after (red) applying a cancellation filter tuned to suppress the period of /a/.

(b) Hybrid Model 3. Black: per-channel TMR of vowel /e/ as a function of CF

for a mixture of /a/+/e/ at overall TMR=0 dB. Channels are divided into 3 groups:

TMR>12 dB (green, to be left intact), TMR<−12 dB (black, to be discarded) and

−12 dB≤TMR≤12 dB (red, to be filtered by a cancellation filter).

• Hybrid Model 2: Channel rejection on the basis of periodicity. Filter

bank channels are divided into two groups based on TMR (estimated based

on residual power at the output of a cancellation filter tuned to T ). The first

group consists of channels dominated by the background; these are rejected.

The remaining channels are handed over to the pattern-matching stage to be

matched based on their temporal pattern. This principle was employed in

the concurrent vowel identification model of Meddis and Hewitt (1992), it-

self inspired from earlier ideas for binaural or periodicity-based segregation

(Lyon, 1983, 1988; Weintraub, 1985). Spectral resolution must be sufficient
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so that enough channels are spared to represent the target.

• Hybrid Model 3: Cancellation filtering of selected channels. Filter bank

channels are divided into three groups based on TMR. Channels with large

TMR are left untouched, channels with small TMR are discarded, and in-

termediate channels are processed by the cancellation filter. Keeping the

first group intact reduces target distortion, and discarding the second group

avoids contamination from noise if the cancellation filter is imperfect (as it

might be due to nonlinearity or noise). Cancellation filtering is reserved for

channels with intermediate TMR, for which it can be effective. This model

differs from Hybrid model 2 by the presence of this third group. A similar

suggestion was made by Guest and Oxenham (2019).

Hybrid Mode| 3 is illustrated in Fig. 6 (b). The black line shows the TMR

per channel at the output of a filter bank in response to the mix /a/+/e/ with

overall TMR = 0 dB. Channels for which TMR exceeds some threshold

(+12 dB in this example) are left intact (green), channels for which TMR is

below a second threshold (−12 dB in this example) are discarded (black).

Channels with intermediate TMR are processed with a cancellation filter

(red).

• Hybrid Model 4: Channel-specific cancellation filter. In contrast to pre-

vious models, for which the parameter T is the same for all channels, here

it is allowed to vary across channels. This is analogous to the channel-

dependent versions of the EC model of binaural unmasking (Akeroyd, 2004;

Breebaart et al., 2001; Culling & Summerfield, 1994). This hypothesis may

be useful to explain results found with inharmonic stimuli (e.g. Roberts &

Brunstrom, 1998) as discussed in the main text.

• Hybrid Model 5: Synthetic delays. The cancellation filter of Eq. 1 re-
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quires a delay equal to the background period (e.g. 20 ms for a 50 Hz fun-

damental). The existence of delays of this size in the auditory system has

been questioned (e.g. Laudanski, Zheng, & Brette, 2014), and to address

this issue it has been suggested that long delays might arise from cross-

channel interaction (de Cheveigné & Pressnitzer, 2006). According to this

model, the filter bank serves mainly that purpose: to help synthesize the

delay T required by Eq. 1.

• Hybrid Model 6: Logan’s theorem. Rather than a specific model, this

is a processing principle that addresses the issue of the non-linear trans-

duction that follows cochlear filtering. Due to half-wave rectification, each

transduced signal is “blind” to one-half of every cycle, and thus one might

worry that some information was lost. Logan’s theorem states instead that

a narrowband signal can be reconstructed perfectly from its zero crossings,

and hence also from its half-wave rectified version (Logan, 1977; Shamma

& Lorenzi, 2013). To the extent that it is applicable here, the benefit of

cochlear filtering would be to linearize transduction, so that neural signal

processing has, in effect, full access to the acoustic waveform (see the sec-

tion Non-Linearity below).

Period Estimation

Harmonic cancellation requires an estimate of the interferer period T . Har-

monic cancellation itself can be used for that purpose: an array of cancellation fil-

ters, each tuned to a different delay (lag) covering the range of expected periods,

shows a minimum in output power at a lag equal to the period. This is equiva-

lent to searching for a peak in the autocorrelation function (de Cheveigné, 1998;

Licklider, 1951; Meddis & Hewitt, 1991). The relation between cancellation and

correlation is detailed in the next section.
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From this perspective, cancellation is both an analysis tool (it cancels part of

a signal to reveal the remainder), and an estimation tool (it estimates the period

of the part it cancels). Applied recursively to a mixture of two sounds, it can re-

veal two periods: we first estimate the period of the dominant sound and cancel

it, and then recurse on the remainder. These steps can be performed in parallel

by searching the two-dimensional parameter space of a cascade of cancellation

filters defined as h1(t) = δ0(t) − δτ1(t) and h2(t) = δ0(t) − δτ2(t) for a mini-

mum in output power. This output is zero when [τ1, τ2] = [nT1,mT2] for integers

m, n (de Cheveigné, 1993; de Cheveigné & Kawahara, 1999). Interestingly, a

neural version of this model designed to estimate the pitch of a mistuned par-

tial (de Cheveigné, 1999a) accurately accounted for the subtle shifts observed by

Hartmann and Doty (1996); Hartmann et al. (1990), see also Holmes and Roberts

(2012)

Associated with the period is an estimate of the degree to which the sound is,

in fact, periodic. A straightforward measure is output power of a cancellation filter

tuned to the period T , normalized by power at the input (or by output averaged

over other lags, e.g. 1 . . . T ). A value of zero indicates that the sound is perfectly

periodic, and a small value indicates that it is “approximately periodic”. This same

measure can be used as a criterion to detect a target in the presence of a harmonic

background.

The threshold beyond which a sound should be declared “aperiodic” depends

on the application, and more specifically on the distributions of “periodic” and

“aperiodic” sounds as defined by the application’s needs. It is worth noting that

residual aperiodic power at the output of a narrowband filter (e.g. filter bank

channel) takes on relatively low values even if the stimulus is aperiodic. The

threshold needs adjusting accordingly.

Correlation and Cancellation
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We can define the running autocorrelation function (ACF) at time t as

rt(τ) =
t+W
∑

i=t

s(i)s(i− τ) (3)

(dropping the scaling factor 1/W for simplicity), where W is the duration of a

sliding integration window that serves to smooth the time course of rt. Power

at time t can then be defined as Pt = rt(0). Likewise, we can define a squared

difference function (SDF) as power at time t of the cancellation filter output:

dt(τ) =
t+W
∑

i=t

[s(i)− s(i− τ)]2 . (4)

ACF and SDF are then related by:

2rt(τ) = Pt + Pt−τ − dt(τ). (5)

A peak in correlation, cue to the period, maps to a trough in difference function.

It is convenient to normalize ACF and SDF:

r̄t(τ) = rt(τ)/
√

PtPt−τ , (6)

d̄t(τ) =
t+W
∑

i=t

[

s(i)/
√

Pt − s(i− τ)/
√

Pt−τ

]2

, (7)

in which case the normalized functions are related more simply by

2r̄t(τ) = 1− d̄t(τ). (8)

For a periodic sound with period T , r̄t(T ) = 1, and d̄t(T ) = 0.

Equation 5 is useful to derive the ACF from the SDF or vice-versa. It can

also be extended to more terms, for example to implement a cascade of cancel-
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lation filters in terms of correlation. This allows different modeling strands to be

unified, and justifies some flexibility when speculating about hypothetical neural

implementations (see below).

Analogy with Binaural Equalization-Cancellation

Durlach’s EC model has been successful in accounting for binaural unmasking

(Culling, 2007; Culling & Summerfield, 1994; Durlach, 1963) and binaural pitch

phenomena (Culling, Summerfield, & Marshall, 1998), and in predictive mod-

els of speech intelligibility (Beutelmann & Brand, 2006; Cosentino, Marquardt,

McAlpine, Culling, & Falk, 2014; Lavandier et al., 2012; Schoenmaker, Brand,

& van de Par, 2016). Binaural interaction has also been couched in terms of

inter-aural correlation rather than cancellation (Jeffress, 1948) but, as pointed out

by D. M. Green (1992), an EC model can be implemented on the basis of inter-

aural correlation, and vice versa, as the two are related: [sL(t)− αsR(t− τ)]2 =

sL(t)
2+α2sR(t− τ)2−2αsL(t)sR(t− τ), where sL and sR are sounds at left and

right ears, respectively. A cancellation residue in one model maps to decorrelation

in the other.

An interesting suggestion is that EC might operate independently within fre-

quency channels (Akeroyd, 2004; Breebaart et al., 2001; Culling & Summerfield,

1994), rather than with parameters common to all channels as in the original EC

model (Durlach, 1963). It has been further suggested that EC parameters can be

estimated and applied within short time windows (Hauth & Brand, 2018; Wan,

Durlach, & Colburn, 2014), which paves the way for a spectro-temporal form of

the EC model that supports “glimpsing” (Beutelmann, Brand, & Kollmeier, 2010).

A monaural version of the EC model has been invoked to explain comodula-

tion masking release (CMR) (Piechowiak, Ewert, & Dau, 2007).

Anatomy and Physiology
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Time-domain and hybrid models entail time-domain signal processing within

the brain. Anatomical and physiological specializations to support such process-

ing include transduction and coding of acoustic temporal structure in the auditory

nerve (up to 4-5 kHz or possibly higher, Carcagno, Lakhani, & Plack, 2019; Hart-

mann, Cariani, & Colburn, 2019; Heinz, Colburn, & Carney, 2001; Verschooten

et al., 2019), specialized synapses in the cochlear nucleus and subsequent relays,

and fast excitatory and inhibitory interaction in the medial and lateral superior

olives (MSO and LSO) (Beiderbeck et al., 2018; Grothe, 2000; Keine, Rübsamen,

& Englitz, 2016; Stasiak, Sayles, & Winter, 2018; Zheng & Escabí, 2013) and

other nuclei (Albrecht, Dondzillo, Mayer, Thompson, & Klug, 2014; Caspari,

Baumann, Garcia-Pino, & Koch, 2015; Felix et al., 2017). Some of these circuits

are interpreted as serving binaural interaction, but presumably could be borrowed

for other needs (see Joris & van der Heijden, 2019; Kandler, Lee, & Pecka, 2020,

for recent reviews).

The time-domain cancellation filter of Fig. 4 (c, left), Eq. 1, can be approxi-

mated by the “neural cancellation filter” of Fig. 4 (c, right). Spikes arriving via

the direct pathway are suppressed by the coincident arrival of spikes delayed by

T . Applied to data recorded from the auditory nerve in response to a mixture of

two vowels with different F0s (Palmer, 1990), that simple circuit was effective in

estimating both their periods and suppressing correlates of one or the other vowel

(de Cheveigné, 1993, 1997a; Guest & Oxenham, 2019). Such a mechanism would

require temporally-accurate neural representations (excitatory and inhibitory), de-

lays, and an inhibitory gating or “anticoincidence” mechanism.

Temporally-accurate inhibitory transforms of sensory input are created in sev-

eral nuclei, including cochlear nucleus (CN) (stellate-D cells), medial and lateral

nuclei of trapezoid body (MNTB and LNTB), and ventral nucleus of the lateral

lemniscus (VNLL) (Arnott, Wallace, Shackleton, & Palmer, 2004; Caspari et al.,
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2015; Joris & Trussell, 2018). Fast interaction between direct and delayed neu-

ral patterns could in principle occur as early as the dendritic fields of cells in CN

(Davis & Voigt, 1997; Needham & Paolini, 2006; Schofield, 1994; Shore, Helfert,

Bledsoe, Altschuler, & Godfrey, 1991; Xie & Manis, 2013), or as late as dendritic

fields of the inferior colliculus (IC) (Caspari et al., 2015; Chen, Read, & Escabí,

2019). A recent study reported evidence for an inhibitory “veto” mechanism at

the axon initial segment of LSO principal neurons, with very narrow tuning to

inter-aural time differences (Franken et al., 2021). Transmission failure at re-

puted “secure” synapses in CN and MNTB might conceivably reflect a similar

veto mechanism (Englitz, Tolnai, Typlt, Jost, & Rübsamen, 2009; Mc Laughlin,

van der Heijden, & Joris, 2008; Stasiak et al., 2018).

The cancellation-correlation equivalence discussed earlier implies that fast in-

teraction might also be excitatory-excitatory, the correlation pattern being later

converted to a cancellation-like statistic by slower inhibitory interaction along the

lines of Eqs. 5 and 8. Note, however, that finding a minimum of cancellation

would then require subtraction of two large correlation values, which may be a

problem if those values are coded by a representation (like rate of a Poisson-like

process) for which the noise variance of the value increases with its mean. One

might speculate that the cost of specialized fast inhibitory circuitry is recouped by

the benefit of performing cancellation directly.

There is also evidence in favor of accurate rate-place spectral representations

(Fishman, Micheyl, & Steinschneider, 2013; Fishman, Steinschneider, & Micheyl,

2014; Larsen, Cedolin, & Delgutte, 2008; Su & Delgutte, 2020) that might sup-

port a spectral version of the harmonic cancellation hypothesis, particularly as it

has been argued that tuning might be narrower in humans than in most model an-

imals (Shera et al., 2002; Sumner et al., 2018; Verschooten et al., 2018; Walker,

Gonzalez, Kang, McDermott, & King, 2019). Narrow tuning might also benefit a
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spectro-temporal mechanism, with the caveat that narrower filters are temporally

more sluggish.

Sinex et al. (2002); Sinex and Li (2007); Sinex, Li, and Velenovsky (2005)

report stronger responses in IC neurons for mistuned partials, consistent with the

output of a cancellation filter, but they explain it by a different model based on

cross-channel interaction of between-partial beat patterns, analogous to the wave-

form interaction models described earlier. Their model also accounts for the par-

ticular temporal structure of the response; whether that structure too could be

explained by cancellation remains to be determined.

In summary, known neural circuitry might support both temporal and spec-

tral mechanisms of harmonic cancellation, however I am not aware of evidence

as strong as that reported in favor of the EC model. A rate-frequency response

such as Fig. 4 (a) might evade notice if attention is devoted to peaks of activ-

ity rather than dips. It could also elude discovery if the output pattern follows a

latency code rather than rate code (Chase & Young, 2007). The filter output in

Fig. 4 (b) is evocative of ON-OFF patterns observed in the superior paraolivary

nucleus (SPON) (Kandler et al., 2020) but this similarity could be fortuitous, in-

deed those patterns have been attributed to gap detection or duration encoding

(Kadner & Berrebi, 2008).

Smart Pattern Matching

As discussed in the main text (Harmonic Cancellation – Possible Mecha-

nisms), each recovered target pattern is affected by two error terms: imperfect

cancellation of the background, and distortion undergone by the target. In the

time-domain model, the first term can be reduced to zero over part of the pattern

(red segment in Fig. 4 b, right). This assumes the ability to locate and isolate reli-

able intervals, which is commonly granted for auditory perception (Moore et al.,

1988; Viemeister & Wakefield, 1991).
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There remains the second error term due to filter-induced target distortion.

This can be mitigated if it is known to the pattern matching stage, for example by

applying the same distortion to each pattern in the dictionary. Distortion consists

of an attenuation factor applied to each target component depending on how close

it falls to the harmonic series of the background, as quantified by the filter transfer

function (Fig. 4 a, right). This produces a “moiré effect” that can be quantified

(and thus taken into account) if F0s of both background and target are known.

Target patterns can be further refined if the background is stationary over more

than two periods, as illustrated in Fig. 7. Specifically, if the stimulus is long

enough to define N distinct observation intervals temporally separated by T , these

intervals can form N(N−1)/2 distinct pairs from which to infer the target. These

observations are not all strictly independent, but the distortion (Fig. 7 right) and

noise patterns differ between pairs and this may assist inference. A perceptual

mechanism operating in this fashion might seem implausibly complex. On the

other hand, we cannot rule out that the trick is discovered by a learning process.

The point made here is that the opportunity exists.
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Figure 7: Left: waveform of the mix of target vowel /e/ (132 Hz) with background

vowel /a/ (100 Hz) at TMR=−12 dB. Given four background cycles, intervals can

be paired over spans of T , 2T and 3T , with three, two and one repeats respectively

(blue arrows). Right: spectrum of target vowel /e/ (black line) and cancellation-

filtered estimates obtained for spans T , 2T and 3T (symbols). Averaging over es-

timates (or better: taking their maximum) would yield a more accurate estimate of

the target, and averaging over repeats might further attenuate uncorrelated noise

(not shown).

Transforms in Filter Space

The idea that cochlear filtering works hand in hand with neural filtering is

intriguing. What are the possibilities, what are the limits? As an example, the

bandwidth of cochlear filters is usually seen as a hard limit on spectral resolution,

but it appears that with neural filtering that limit can be overcome, as exploited by

past schemes such as the “second filter” (Huggins & Licklider, 1951), stereau-

sis (Shamma, Shen, & Gopalaswamy, 1989), lateral inhibitory network (LIN)

(Shamma, 1985), phase opponency (Carney, Heinz, Evilsizer, Gilkey, & Colburn,

2002), synthetic delays (de Cheveigné & Pressnitzer, 2006), EC (Durlach, 1963),

selectivity focusing in inferior colliculus (IC) (Chen et al., 2019), and here har-

monic cancellation.

This section attempts to make sense of this situation by casting both filter-

ing stages into a common framework. Any filter can be approximated as a fi-
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nite impulse response filter (FIR) of order N , defined by the column vector h =

[h0, h1, . . . , hN ]
⊤ of impulse response coefficients. A signal s(t) is filtered by

convolving it with this impulse response. Alternatively, using matrix notation, if

S = [s(t), s(t− 1), . . . s(t−N + 1)] is the T ×N matrix of time-lagged signals,

the filtered signal is obtained as the product Sh. A useful way to think of it is that

the lags [0 . . . N ] create a memory of the past signal, within which the filter can

“shop” for useful information to characterize variations over time.

Extending to a M -channel filter bank, the filters can be defined by a matrix

of impulse responses F of size N × M , where each column of F represents the

impulse response of one channel. The matrix of filtered signals is then obtained as

the product S′ = SF. To relate this to the context of this paper, picture s(t) as an

acoustic signal, F as a bank of “cochlear” filters, and S
′ as a matrix of vibration

waveforms at different points along the basilar membrane.

If the matrix F is of rank N , it has a right inverse F̄ such that FF̄ = I, the

identity matrix. Why might this be useful? Suppose that we wish to speculate that

the auditory brain implements a particular filter (defined by its impulse response

h applicable to the acoustic waveform). We know that it does not have access

to time-lagged acoustic signals S, so it cannot implement that filter directly, but it

does have access to peripheral filter outputs S′. We want to know if our speculation

is realistic.

We can write:

Sh = SFF̄h = S
′(F̄h) = S

′
h
′, (9)

where h
′ = F̄h is a vector of weights. Applying weights h

′ to S
′ yields the

desired filtered signal, exactly as if we had applied the filter h directly to the

acoustic waveform. Whereas the filter was originally defined by its coordinates h

on a basis of time shifts applicable to the acoustic signal, it is now defined using
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coordinates h′ on a basis of filter bank channels. The outcome is the same.

Why is this relevant here? It means that essentially any filter can be imple-

mented (or its implementation can be complemented) by forming a weighted sum

of cochlear filter outputs, as long as their impulse responses are long enough to

reach the required order N . This is the gist of the “synthetic delay” model of

de Cheveigné and Pressnitzer (2006). According to this view, peripheral filtering

and neural time-domain interaction work hand in hand to perform acoustic signal

processing (subject to limits imposed by noise and nonlinearity discussed in the

next section).

A matrix of N cancellation filters with lag parameters T ranging from 0 to

N -1 is also invertible (if one replaces the degenerate T=0 filter by δ0(t)), and

thus one can treat it as a “basis” similar to the filter bank basis just described. A

filter defined by its coefficients h on a lags basis, or h′ on a filter bank basis, can

therefore also be defined by a set of coefficients h′′ on this new basis. One can, at

least conceptually, transform the sensory representation back and forth between

these three representations: lagged waveforms, band pass filter bank channels,

and cancellation-filtered channels, with no loss of information. The cancellation-

filtered representation is reminiscent of the pitch-like “level of representation”

invoked by Hafter and Saberi (2001).

There remains one difficult issue: given a periodic sound with period T , how

do we find the coefficients h
′ of a cancellation filter (defined over a basis of pe-

ripheral filter outputs) that can cancel it? In the standard formulation (Eq. 1) based

on a basis of lags, the filter h consists of all zeros except h(0)=1 and h(T )=-1, so

the parameter T can easily be found by scanning a linear array for a minimum.

For h′, the situation is more complex because we must find a set of N parame-

ters, rather than one, to obtain the same result. This is a serious obstacle unless a

“smart” way of finding h
′ is found. A full discussion of the problem is beyond the
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scope of this paper, but it is worth taking note of three points.

The first is that, if principal component analysis (PCA) is applied to the ma-

trix S for a periodic input with period T ≤ N , at least one column of the PCA

transform matrix defines a FIR filter h that cancels that input. This is because the

T th column of S is identical to the 0th column (periodicity), hence S is not of full

rank.

The second point follows from the first: if PCA is applied to the matrix S
′

of filter bank outputs, at least one column of the PCA transform matrix defines a

set of coefficients h
′ that also cancels its input. This is because rank deficiency

of S implies rank-deficiency of S′. Thus, the appropriate coefficients h
′ can be

also be found by applying PCA to filter bank outputs for a periodic input. This

data-dependent process can be seen as a form of data-driven learning, analogous

to what we discussed earlier.

The third point is that PCA is widely considered as a plausible neural operation

(Minden, Pehlevan, & Chklovskii, 2018; Oja, 1982; Qiu, Wang, Lu, Zhang, &

Du, 2012). Putting these pieces together, we can speculate that the hypothesis

that Eq. 1 is implemented in the brain as a weighted sum of filter bank outputs,

rather than a simple delay T , is not completely unrealistic. This rough sketch

needs fleshing out, but it suggests a possible direction to model how the auditory

brain might implement complex signal processing tasks, cancellation being one

particular example.

Again, such operations might seem implausibly complex for a biological im-

plementation, but knowing that the option exists, in principle, and understanding

how it works, can guide speculation that something similar is discoverable by a

learning process.

Non-Linearity

Previous sections mostly glossed over the issue of non-linear transduction.
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The suggestion that linear operations can be swapped, as in Fig. 5 (b), or linear

transforms inverted as in the previous paragraph, is moot if the systems are not

linear. What can be salvaged from those simple ideas?

First, note that any time-invariant transform of a periodic signal is periodic

with the same period (or submultiple of that period), so a cancellation filter tuned

to the period would produce zero output as in the linear case. Thus, for example,

Hybrid Model 1 would work as advertized. Second, pattern distortions due to non-

linearity may be compensated for in the pattern-matching stage. Thus, Hybrid

Model 2 might also work. Third, more generally, we can invoke Logan’s theorem

and assume that the deleterious effects of nonlinearity, whatever they are, can be

redressed by subsequent processing. The theorem doesn’t say how, but it is easy to

imagine simple situations in which this might pan out. For example, sampling the

steep phase characteristic of the cochlear filter bank at two points differing by π

might give access to both polarities of the signal at that point, reversing effects of

half-wave rectification. Fourth, non-linearity demodulates the band-pass filtered

signal, thus abstracting an informative temporal envelope from less robust fine

structure (Dau et al., 1997). In this respect, non-linearity is a feature, rather than

a bug.

In summary, non-linearity does not prevent harmonic cancellation, although it

does make it harder to understand the limits of what can be achieved, and how.
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