
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXII, NUMBER 2

JUNE 2014, PAGES 267–280

S 0033-569X(2014)01332-1

Article electronically published on February 4, 2014

HARMONIC CIRCULAR INCLUSIONS FOR NON-UNIFORM FIELDS

THROUGH THE USE OF MULTI-COATING

By

XU WANG (School of Mechanical and Power Engineering, East China University of Science and
Technology, 130 Meilong Road, Shanghai 200237, China)

and

PETER SCHIAVONE (Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical
Engineering Building, Edmonton, Alberta, Canada T6G 2G8 )

Abstract. We propose a novel method for rendering a circular inclusion harmonic

even in the presence of non-uniform loading. Most significantly, the condition that the

inclusion be harmonic is shown to be independent of the specific form of the loading. In

addition, we demonstrate that the harmonicity condition obtained actually leads to the

stronger property of neutrality when the loading takes a particular form. Our method is

based on the idea of ‘multi-coating’ (surrounding the inclusion with a specified number

of coatings each with its own separate elastic properties) used in the design of cloaking

structures for the conductivity problem. Consequently, the harmonic inclusions designed

here can also be thought of as special kinds of ‘near-cloaking’ structures in plane elasticity

(in the sense that they are invisible to any changes in mean stress in the structure).

1. Introduction. In the optimum design of composites, the concept of “harmonic

shape” was first advocated by Bjorkman and Richards [2], [3]. A “harmonic shape” (hole

or inclusion) is one which does not disturb the trace of the surrounding stress field when

inserted into a uniformly or non-uniformly stressed solid. There are many important

practical applications in which the design of harmonic inclusions is crucial. For example,

in biomechanics, where implants are embedded in human bones, it is known that the

mechanism responsible for loosening and failure of the implant/bone system is controlled

by the disturbance in mean stress (Firoozbakhsh and Aleyaasin, [5]; Weinans et al., [10]).

Received May 29, 2012.
2010 Mathematics Subject Classification. Primary 74B05; Secondary 30E25.
Key words and phrases. Harmonic inclusion, neutral inclusion, cloaking structure, inverse problem, non-
uniform loading, plane elasticity.
The first author was supported by the Innovation Program of Shanghai Municipal Education Commission
(No. 12ZZ058).
The second author acknowledges the support of the Natural Sciences and Engineering Research Council
of Canada.
E-mail address: xuwang sun@hotmail.com

E-mail address: p.schiavone@ualberta.ca

c©2014 Brown University
Reverts to public domain 28 years from publication

267

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/qam/
http://www.ams.org/jourcgi/jour-getitem?pii=S0033-569X-2014-01332-1


268 XU WANG AND PETER SCHIAVONE

In Ru [8], the author extended the original concept of “harmonic holes” to a three-phase

harmonic circular inclusion under uniform remote stresses and observed that the resulting

harmonicity condition was, in fact, independent of the loading.

In anti-plane elasticity (or the mathematically equivalent two-dimensional conductiv-

ity), Ammari et al. [1] proposed a novel cancellation technique for the design of near-

cloaking structures in which a circular elastic inclusion with a sufficiently large number

of coatings will not cause any disturbance in the matrix under any kind of non-uniform

remote anti-plane stresses. These near-cloaking N -phase structures have the amazing

property that the generalized polarization tensors up to the (N − 2)-th order vanish.

In this paper, we design the material parameters of a multi-coated circular elastic

inclusion in such a way that the inclusion becomes harmonic under a general class of

non-uniform loadings. Our idea, which originates from the analysis of the case of an

inclusion with a single coating (Ru, [8]) and the near-cloaking multi-coated structure

in anti-plane shear (Ammari et al., [1]), is based on a multi-coating which cancels the

higher-order poles in the analytic function governing the mean stress in the surrounding

matrix. It will be shown that the permissible set of non-uniform loadings is quite general

(although not arbitrary). For comparison purposes, we examine the conditions under

which a single-coated circular inclusion becomes harmonic when subjected to the same

non-uniform loading considered by Bjorkman and Richards [3] for harmonic holes. We

similarly establish results for a double-coated circular inclusion when subjected to the

same non-uniform loading considered by Wang et al. [9]. In each of these aforementioned

cases we are able to design harmonic inclusions independently of the remote non-uniform

stresses. This is in sharp contrast to the results obtained in Bjorkman and Richards

[3] and Wang et al. [9] where it is shown that the remote loading exerts a significant

influence on the harmonic shape.

2. Formulation. For plane deformations of an isotropic elastic material, the in-plane

displacements u and v, the two resultant forces fx and fy, and the in-plane stresses σxx,

σyy and σxy can be expressed in terms of two analytic functions ϕ(z) and ψ(z) of the

complex variable z = x + iy as (Muskhelishvili, [6])

2μ(u + iv) = κϕ(z) − zϕ′(z) − ψ(z),

fx + ify = −i
[
ϕ(z) + zϕ′(z) + ψ(z)

]
,

(2.1)

σxx + σyy = 2[ϕ′(z) + ϕ′(z)],

σyy − σxx + 2iσxy = 2 [z̄ϕ′′(z) + ψ′(z)] ,
(2.2)

where κ = 3 − 4ν for plane strain and κ = (3−ν)
1+υ for plane stress; μ and ν, where μ > 0

and 0 � ν � 0.5, are the shear modulus and Poisson’s ratio, respectively.

Consider an N -phase structure in which a circular elastic inclusion is bonded to an

infinite matrix through (N − 2) coaxial coatings. Let S1,. . . ,Sk (k = 2, 3,. . . , N − 1)

and SN denote the inclusion, the (N − 2) coatings, and the surrounding matrix, all of

which are perfectly bonded across the (N−1) concentric circles Rk, (k = 1, 2,. . . , N − 1)

(R1<R2<. . .<RN−1). The subscript j or the superscript (j) will be adopted to denote
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the quantities in Sj . In addition, the remote non-uniform loading is characterized by the

functions

ϕN (z) = Az + Bz2, ψN (z) =
N−2∑
n=1

Cnz
n, (2.3)

where A is a real constant, and B and Cn (n = 1, 2, . . . , N − 2) are complex constants.
2.1. Design of multi-coated harmonic circular inclusions. The boundary value prob-

lem of the N -phase inclusion/matrix system takes the following form:

1
μj

[
κjϕj(z)− zϕ′

j(z)− ψj(z)
]
= 1

μj+1

[
κj+1ϕj+1(z)− zϕ′

j+1(z)− ψj+1(z)
]
,

ϕj(z) + zϕ′
j(z) + ψj(z) = ϕj+1(z) + zϕ′

j+1(z) + ψj+1(z), |z| = Rj , (j = 1, 2, · · · , N − 1),

(2.4)
ϕN (z) = Az +Bz2, (z ∈ SN ),

ψN (z) =
N−2∑
n=1

Cnz
n +O(1), |z| → ∞.

(2.5)

Here, ϕj(z) and ψj(z), as defined in phase j, can be expanded into the following Laurent

series

ϕj(z) = A
(j)
1 z + A

(j)
2 z2 +

N−2∑
n=1

[
A

(j)
1n z

−n + A
(j)
2n z

n+2
]
,

ψj(z) = B
(j)
1 z−1 + B

(j)
2 z−2 +

N−2∑
n=1

[
B

(j)
1n z

−(n+2) + B
(j)
2n z

n
]
,

(z ∈ Sj) (2.6)

in which the coefficients are to be determined.

By enforcing the continuity conditions (2.4) across the interface |z| = Rj , j = 1, 2, · · · ,
N − 1 and after some straightforward yet tedious algebraic operations, the coefficients in

the Laurent series for the inner phase j can be expressed in terms of those for the outer

phase (j + 1) as[
A

(j)
1n R−2

1 B
(j)
1n R2n+2

1 Ā
(j)
2n R2n

1 B̄
(j)
2n

]T
(2.7)

= P(j)
n

[
A

(j+1)
1n R−2

1 B
(j+1)
1n R2n+2

1 Ā
(j+1)
2n R2n

1 B̄
(j+1)
2n

]T
, n = 1, 2, . . . , N − 2[

R−2
1 B

(j)
2 R2

1Ā
(j)
2

]T
= Qj

[
R−2

1 B
(j+1)
2 R2

1Ā
(j+1)
2

]T
, (2.8)[

R−2
1 B

(j)
1 A

(j)
1

]T
= Rj

[
R−2

1 B
(j+1)
1 A

(j+1)
1

]T
, (2.9)

where P
(j)
n is a 4× 4 real matrix and Qj and Rj are 2× 2 real matrices. These matrices

are specifically determined as

(2.10)

P
(j)
n =

τj

⎛
⎜⎜⎜⎝

1 + βj 0 ρ−n−1
j (n+ 2) (βj − αj) ρ−n

j (βj − αj)

2nρ−1
j βj 1− βj ρ−n−2

j �j ρ−n−1
j n (βj − αj)

nρn+1
j (αj − βj) ρn+2

j (βj − αj) 1+ βj 0

ρnj �j ρn+1
j (n+ 2) (αj − βj) −2nρ−1

j (n+ 2)βj 1− βj

⎞
⎟⎟⎟⎠ ,
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Qj = τj

[
1 − βj −ρ−2

j (βj + αj)

ρ2j (βj − αj) 1 + βj

]
, (2.11)

Rj = τj

[
1 + αj − 2βj −4ρ−1

j βj

ρj(βj − αj) 1 − αj + 2βj

]
, (2.12)

with material parameters �j = [n (n + 2) (βj − αj)− (βj + αj)], τj =

μj
μj+1

(κj+1+1)+κj+1

2(κj+1)

and geometric parameter ρj =
R2

1

R2
j
� 1. Here, αj , βj are two Dundurs parameters for

the bi-material composed of phase j and phase (j + 1) (Dundurs, [4]):

αj =

μj

μj+1
(κj+1 + 1) − (κj + 1)

μj

μj+1
(κj+1 + 1) + κj + 1

, βj =

μj

μj+1
(κj+1 − 1) − (κj − 1)

μj

μj+1
(κj+1 + 1) + κj + 1

. (2.13)

It follows from Eqs. (2.7), (2.8) and (2.9) that[
0 0 R2n+2

1 Ā
(1)
2n R2n

1 B̄
(1)
2n

]T
= Sn

[
A

(N)
1n R−2

1 B
(N)
1n 0 R2n

1 C̄n

]T
,

(n = 1, 2, . . . , N − 2)
(2.14)

[
0 R2

1Ā
(1)
2

]T
= K

[
R−2

1 B
(N)
2 R2

1B̄
]T

, (2.15)[
0 A

(1)
1

]T
= T

[
R−2

1 B
(N)
1 A

]T
, (2.16)

where

Sn = P(1)
n P(2)

n · · ·P(N−1)
n , K = Q1Q2 · · ·QN−1, T = R1R2 · · ·RN−1. (2.17)

In writing Eqs. (2.14)-(2.16), we have imposed the regularity condition for the two

analytic functions ϕ1(z) and ψ1(z) defined in the inclusion and in the far-field condition

(2.3). The unknown coefficients in the inclusion and in the matrix can then be uniquely

determined as[
A

(N)
1n

R−2
1 B

(N)
1n

]
= −R2n

1 C̄n(S11
n )−1S12

n

[
0

1

]
,

[
R2n+2

1 A
(1)
2n

R2n
1 B

(1)
2n

]
= R2n

1 Cn

[
S22
n − S21

n (S11
n )−1S12

n

] [ 0

1

]
,

R−2
1 B

(N)
2 = −K12

K11
R2

1B̄, R2
1A

(1)
2 =

(
K22 −

K12K21

K11

)
R2

1B,

R−2
1 B

(N)
1 = −T12

T11
A, A

(1)
1 =

(
T22 −

T12T21

T11

)
A, (2.18)

where the following partitioned forms of the matrices have been adopted:

Sn =

[
S11
n S12

n

S21
n S22

n

]
, K =

[
K11 K12

K21 K22

]
, T =

[
T11 T12

T21 T22

]
,

with the dimension of Sij
n (i, j = 1, 2) being 2 × 2.

In order to make the multi-coated inclusion harmonic, the 2 × 2 matrix (S11
n )−1S12

n

should be a lower triangular matrix (or, equivalently, [(S11
n )−1S12

n ]12 = 0) for n = 1, 2,

. . .,N−2. In other words, the higher-order poles up to the order of (N−2) in ϕN (z) must
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HARMONIC CIRCULAR INCLUSIONS 271

be cancelled exactly. This condition is independent of the remote non-uniform stress field

characterized by A, B and Cn (n = 1, 2, . . . , N−2), and takes the following general form:

fn(α1, β1, α2, β2, · · · , αN−1, βN−1, ρ2, ρ3, · · · , ρN−1) = 0, (n = 1, 2, · · · , N − 2). (2.19)

For example, when N = 4 and β1 = β2 = β3 = 0, the explicit expression of Eq. (2.19)

can be finally derived as

α1 + ρ−n
2 α2 + ρ−n

3 α3 + ρn+2
2 α2

1α2 + ρn+2
3 α2

1α3 + ρ−2n−2
2 ρn+2

3 α2
2α3

+
[
(n + 1)2ρ22 − 2n(n + 2)ρ2 + n(n + 2)

]
α1α

2
2

+
[
(n + 1)2ρ23 − 2n(n + 2)ρ3 + n(n + 2)

]
α1α

2
3

+
[
ρ−n−2
2 ρ23(n + 1)2 − 2n(n + 2)ρ−n−1

2 ρ3 + ρ−n
2 n(n + 2)

]
α2α

2
3

+ ρ2n+2
2 ρ−n

3 α2
1α

2
2α3 + ρn2

[
(n + 1)2ρ23 − 2n(n + 2)ρ2ρ3 + n(n + 2)ρ22

]
α2
1α2α

2
3 (2.20)

+
[[
ρ−1
2 ρ3(n + 1)2 + n(n + 2)(ρ2 − ρ3 − 1)

]2
+ n(n + 2)(ρ2 − ρ3)

2
]
α1α

2
2α

2
3

+ ρ−n−2
2 ρ−n

3 (ρ2n+2
2 + ρ2n+2

3 )
[
(1 + ρ22)(n + 1)2 − 2n(n + 2)ρ2

]
α1α2α3

= 0, (n = 1, 2).

It is observed that even for the above simple case of βj =0, the specific expression is

still rather tedious. In addition, it is easily found from Eq. (2.20) that if (α1,α2,α3) is a

solution, then (−α1,−α2,−α3) is also a solution.

For given geometric parameters (ρ2, ρ3, · · · , ρN−1), there are in total (N−2) non-linear

equations for the 2(N−1) Dundurs parameters (α1, β1, α2, β2, · · · , αN−1, βN−1) with the

restriction that the admissible values of these αj and βj are within the parallelogram

enclosed by αj = ±1 and αj − 4βj = ±1 in the αj ,βj-plane. These non-linear equations

can be solved iteratively to arrive at these Dundurs parameters.

In the next section, several typical cases will be discussed in detail to illustrate the

obtained general result.

3. Discussions.

3.1. A single-coated harmonic inclusion under non-uniform loading. We first consider

a three-phase structure (N = 3) with asymptotic behavior characterized by

ψN (z) = CMzM + O(1), |z| → ∞. (3.1)

It is of interest to note that the case M = 2 corresponds to the non-uniform loading

considered by Bjorkman and Richards [3]. In order to make the single-coated inclusion

harmonic under the remote loading (3.1), the following condition should be satisfied:

ρ2M+2
2 (β1 − α1)(β1 + α1)(β2 − 1)(β2 − α2)

+ρM+2
2 [M(M + 2)(1 − β1)(β1 − α1) − (1 + β1)(β1 + α1)] (β2 − α2)

2

+ρM+1
2 2M(M + 2)(β1 − 1)(β1 − α1)(β2 − α2)

2

+ρM2 (1 − β1)(β1 − α1)
[
(1 − β2)

2 + M(M + 2)(β2 − α2)
2
]

+(1 − β1)(1 + β1)(1 − β2)(β2 − α2) = 0.

(3.2)

The above condition is again independent of the specific form of remote non-uniform

stresses characterized by A, B and CM . When M = 1, we recover the case of remote
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272 XU WANG AND PETER SCHIAVONE

uniform loading considered in Ru [8]. In addition, if (μ3 − μ1)(μ3 − μ2) < 0, Eq. (2.19)

has at least one root ρ2 (0<ρ2<1). Interestingly, this condition is independent of the

specific value of M .

For example, if the inclusion is extremely rigid, we have

α1 = 1, β1 =
κ2 − 1

κ2 + 1
. (3.3)

Consequently Eq. (3.2) reduces to

[
(M2 + 2M + κ2

2)ρ
M+2
2 − 2M(M + 2)ρM+1

2 + M(M + 2)ρM2
]
λ2 + κ2(1 + ρ2M+2

2 )λ

+ ρM2 = 0,

λ =
α2 − β2

1 − β2
, μ3 > μ2, − 1

κ2
< λ < 0.

(3.4)

Then λ can be simply determined as

λ

=

−κ2(1 + ρ2M+2
2 ) +

√
κ2
2(1 + ρ2M+2

2 )2 − 4ρM2

[
(M2 + 2M + κ2

2)ρ
M+2
2 − 2M(M + 2)ρM+1

2 + M(M + 2)ρM2

]

2
[
(M2 + 2M + κ2

2)ρ
M+2
2 − 2M(M + 2)ρM+1

2 + M(M + 2)ρM2

] .

(3.5)

At the other extreme, if the inclusion is extremely compliant, we have

α1 = −1. (3.6)

Consequently Eq. (3.2) reduces to

[
(M + 1)2ρM+2

2 − 2M(M + 2)ρM+1
2 + M(M + 2)ρM2

]
λ2 − (1 + ρ2M+2

2 )λ + ρM2 = 0,

λ =
α2 − β2

1 − β2
, μ2 > μ3, 0 < λ < 1,

(3.7)
from which we arrive at

λ

=

(1 + ρ2M+2
2 ) −

√
(1 + ρ2M+2

2 )2 − 4ρM2

[
(M + 1)2ρM+2

2 − 2M(M + 2)ρM+1
2 + M(M + 2)ρM2

]

2
[
(M + 1)2ρM+2

2 − 2M(M + 2)ρM+1
2 + M(M + 2)ρM2

] .

(3.8)

The variations of λ as functions of ρ2 and M determined by Eqs. (3.5) with κ2 = 2

and (3.8) are plotted, respectively, in Figs. 1 and 2. Apparently when M = 1, our results

reduce to those in Ru [8]. It is observed from Figs. 1 and 2 that the parameter λ is always

a monotonic function of ρ2 for a fixed M . This means that λ is uniquely determined

by ρ2 or vice versa. It is interesting to note that the resulting harmonic single-coated

inclusion is independent of the loading parameters A, B and CM in contrast to the shape

of the harmonic hole designed by Bjorkman and Richards [3] which is, in fact, specifically

dependent on these loading parameters.
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Fig. 1. The variations of λ as functions of ρ2 and M for a single-
coated harmonic rigid inclusion determined by Eq. (3.5) with κ2 = 2.

3.2. A double-coated harmonic inclusion. Next, we consider a circular inclusion with

a double coat (N = 4). The remote non-uniform loading characterized by Eq. (2.3) with

B = 0 and N = 4 now reduces to the remote stress field considered by Wang et al. [9].

Table 1 lists the calculated Dundurs parameters αj (j = 1, 2, 3) with β1 = β2 = β3 = 0

for a double-coated harmonic inclusion. During the calculation we directly adopt the

explicit form (2.20): first we assign values of ρ2, ρ3 and α1 with the restriction that

0 < ρ3 < ρ2 < 1 and 0 < α1 � 1, and then the other two parameters α2 and α3

(−1 < α2, α3 < 1) can always be uniquely determined. It is observed from Table 1 that

when the inclusion is rigid (α1 = 1), the inner coating is much softer than the outer

coating such that α2 ≈ −1. For fixed values of the geometric parameters ρ2 and ρ3, both

−α2 and α3 are increasing functions of α1.

3.3. A harmonic inclusion using three or more coatings. Finally, we consider a circu-

lar inclusion with three or more coatings. Condition (2.19) is solved iteratively in the

following manner: First we assign values of the geometric parameters (ρ2, ρ3, · · · , ρN−1)

and the N Dundurs parameters βj (j = 1, 2, . . .,N − 1), α1. Next, the remaining (N − 2)

Dundurs parameters αj (j = 2, 3, . . . , N − 1) are uniquely determined by solving Eq.

(2.19). Our specific calculations indicate that as the number of coatings increases, the
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

ρ2

Fig. 2. The variations of λ as functions of ρ2 and M for a single-
coated harmonic inclusion determined by Eq. (3.8).

α1 α2 α3

ρ2 =0.8, ρ3 =0.6

0.2 −0.2522 0.0715

0.4 −0.4839 0.1400

0.6 −0.6833 0.2040

0.8 −0.8508 0.2654

1.0 −0.9997 0.7214

ρ2 =0.9, ρ3 =0.3

0.2 −0.1890 0.0031

0.4 −0.3783 0.0064

0.6 −0.5687 0.0106

0.8 −0.7635 0.0165

1.0 −0.9997 0.0840

Table 1. The calculated Dundurs parameters αj (j =1,2,3) with
β1 = β2 = β3 = 0 for a harmonic doubly coated inclusion.

permissible maximum absolute value of α1 always decreases. It is not clear if this obser-

vation is a consequence of the physical problem under consideration or of our iteration

algorithm. Listed in Tables 2 and 3 are the calculated Dundurs parameters αj with
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HARMONIC CIRCULAR INCLUSIONS 275

Fig. 3. The calculated αj (j = 1, 2, . . . , N − 1) with βj = 0, j =

1, 2, . . . , N − 1) and ρj =
1− 0.75(j − 1)

(N − 2)
, (j = 2, 3, · · · , N − 1) for

N = 50.

βj = 0 (j = 2, 3, . . . , N − 1) for N = 6 and N = 9. It is observed from Tables 2 and

3 that αj and αj+1 have opposite signs and that (−1)j−1αj (j = 2, 3, . . . , N − 1) are

increasing functions of α1.

α1 α2 α3 α4 α5

0.1 −0.1723 0.0906 −0.0145 0.0004

0.2 −0.3332 0.1756 −0.0282 0.0008

0.4 −0.5964 0.3179 −0.0515 0.0014

0.5 −0.6971 0.3745 −0.0609 0.0017

0.526 −0.7203 0.3877 −0.0631 0.0017

Table 2. The calculated αj (j = 1, 2, . . . , N − 1) with βj = 0 (j =
1, 2, . . . , N − 1) for N = 6 using ρ2 = 0.8125, ρ3 = 0.6250, ρ4 =
0.4375, ρ5 = 0.2500.

We illustrate in Figs. 3 and 4 the calculated Dundurs parameters αj (j = 2, 3, . . . , N−
1) with βj = 0 (j = 2, 3, . . . , N − 1) for the larger values of N = 50 and N = 495,
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Fig. 4. The calculated αj (j = 1, 2, . . . , N − 1) with βj = 0, (j =

1, 2, . . . , N − 1) and ρj =
1− 0.75(j − 1)

(N − 2)
, (j = 2, 3, · · · , N − 1) for

N = 495.

α1 α2 α3 α4 α5 α6 α7 α8

0.05 −0.1539 0.1848 −0.1103 0.0334 −0.0047 0.0003 −3 ×
10−6

0.1 −0.2887 0.3322 −0.1986 0.0613 −0.0089 0.0005 −5 ×
10−6

Table 3. The calculated αj (j =1,2,. . . ,N−1) with βj =0
(j =1,2,. . . ,N−1) for N =9. The geometric parameters are:
ρ2 =0.8929, ρ3 =0.7857, ρ4 =0.6786, ρ5 =0.5714, ρ6 =0.4643,
ρ7 =0.3571, ρ8 =0.25.

respectively. It is observed from Fig. 3 that the absolute values of αj (20 � j � 49) are

negligible as compared with those of αj (1 � j � 11). Also, from Fig. 4 those αj having

relatively large absolute values are mainly those for which j = 3, 4, . . . , 11.

3.4. A neutral coated circular inclusion under non-uniform loading. It is well

established that a coated circular elastic inclusion can be made neutral in the presence
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of a remote uniform hydrostatic stress field (see for example Ru, [7]). In what follows

we discuss an interesting consequence of the present research, namely the identification

of single or multi-coated circular elastic inclusions which can be made neutral under a

general class of non-uniform loadings. In fact, from Eqs. (2.6) and (2.18), it follows that

when K12 = T12 = 0, a multi-coated inclusion will be neutral when subjected to the

following remote non-uniform loading

ϕN (z) = Az + Bz2, ψN (z) = 0. (3.9)

Below we will design neutral single- and double-coated inclusions under the non-uniform

loading given by (3.9).

3.5. A neutral single-coated inclusion (N = 3). When N =3, the condition K12 =

T12 =0 leads to the two linear algebraic equations

ρ22(β1 + α1)(1 + β2) + (1 − β1)(β2 + α2) = 0,

ρ2β1(1 − α2 + 2β2) + β2(1 + α1 − 2β1) = 0.
(3.10)

We can first assign suitable values of ρ2, α1 and β1, and then α2 and β2 can be uniquely

determined by solving (3.10).

For example, if the inclusion is extremely rigid, we can obtain from Eq. (3.10) that

α2 = −
ρ2

[
κ2(1 − ρ2)

2 + (1 + ρ2κ2)
2
]

4 + ρ2(κ2 − 1)(3 + ρ22κ2)
, β2 = − ρ2(κ2 − 1)(1 + ρ22κ2)

4 + ρ2(κ2 − 1)(3 + ρ22κ2)
. (3.11)

The above obtained α2 and β2 for different values of ρ2 (0� ρ2 �1) and κ2 (1� κ2 �3)

always lie within the parallelogram enclosed by α2 = ±1 and α2 − 4β2 = ±1 in the

α2, β2-plane. Physically we can always design a single-coated neutral rigid inclusion

by choosing the appropriate shear modulus of the coating and Poisson’s ratio of the

surrounding matrix.

On the other hand, if the inclusion is extremely compliant (α1 = −1), we can obtain,

from Eq. (3.10), that

α2 = − ρ2
2 + ρ2

, β2 =
ρ2(1 + ρ2)

(2 + ρ2)(1 − ρ2)
. (3.12)

In this case, α2 and β2 lie within the aforementioned parallelogram only when 0 � ρ2 �
(
√
17−3)
4 ≈ 0.2808. Physically, in order to make a single-coated inclusion neutral, the

coating must be sufficiently thick.

If β1 = β2 = 0, it then follows from Eq. (3.10) that ρ2 =
√

−α2

α1
, which is valid when

α1 · α2 < 0 and |α1| � |α2|.
In the case when a single-coated inclusion cannot be made neutral when subjected to

the non-uniform loading (3.9), it is necessary to resort to the double-coated inclusion to

achieve neutrality.
3.6. A double-coated neutral inclusion (N = 4). When N = 4, the condition K12 =

T12 = 0 can be explicitly written as

(β1 + α1)(1 + β2)(1 + β3) + ρ−2
2 (1− β1)(β2 + α2)(1 + β3) + ρ−2

3 (1− β1)(1− β2)
·(β3 + α3)− ρ22ρ

−2
3 (β1 + α1)(β2 − α2)(β3 + α3) = 0,

(3.13)

β1(1− α2 + 2β2)(1− α3 + 2β3) + ρ−1
2 β2(1 + α1 − 2β1)(1− α3 + 2β3)

+ρ−1
3 β3(1 + α1 − 2β1)(1 + α2 − 2β2)− 4ρ2ρ

−1
3 β1β3(β2 − α2) = 0.

(3.14)
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Fig. 5. The distributions of the obtained Dundurs parameters αj ,
βj , (j = 1, 2,3) in the α, β-plane for a neutral double-coated circular
inclusion with ρ2 = 0.8and ρ3 = 0.6.

For given geometric parameters ρ2 and ρ3, Eqs. (3.13) and (3.14) are two nonlinear
equations for the Dundurs parameters αj , βj (j = 1, 2, 3). We can first assign values of
β1, β2, β3, and α1, following which, α2 and α3 can be determined from Eqs. (3.13) and
(3.14) as follows:

α3 =
−c1 +

√
c21 + 4c0c2

2c2
,

α2 =

[
(β1 + α1)

[
(1 + β2)(1 + β3)− ρ22ρ

−2
3 β2β3

]
+ (1− β1)

[
ρ−2
2 β2(1 + β3) + ρ−2

3 β3(1− β2)
]

+ρ−2
3

[
(1− β1)(1− β2)− ρ22β2(β1 + α1)

]
α3

]
[
ρ−2
2 (β1 − 1)(1 + β3)− ρ22ρ

−2
3 β3(β1 + α1)− ρ22ρ

−2
3 (β1 + α1)α3

]
(3.15)
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where

c2 = ρ−2
3 β1(1 − β1)(1 − β2) + ρ22ρ

−2
3 β1(β1 + α1)(1 + β2) + ρ2ρ

−2
3 β2(β1 + α1)

· (1 + α1 − 2β1),

c1 = β1(β1 + α1)(1 + β2)(1 + β3)(1 − ρ22ρ
−2
3 ) + ρ−2

2 β1(1 − β1)(1 + 3β2)(1 + β3)

+ (1 − β1)(1 + α1 − 2β1)
[
ρ−3
2 β2(1 + β3) + ρ−3

3 β3(1 − β2)
]
+ ρ−3

3 β1(1 − β1)(1 − β2)

· [4ρ2β3 − ρ3(1 + β3)]

− ρ2ρ
−3
3 (β1 + α1)(1 + α1 − 2β1) [ρ2β3(1 − β2) + ρ3β2(1 + β3)] ,

c0 =
[
β1(1 + 2β3) − 4ρ2ρ

−1
3 β1β3 − ρ−1

3 β3(1 + α1 − 2β1)
]

×
{
(β1 + α1)

[
(1 + β2)(1 + β3) − ρ22ρ

−2
3 β2β3

]
+ (1 − β1)

·
[
ρ−2
2 β2(1 + β3) + ρ−2

3 β3(1 − β2)
]}

+
[
ρ−2
2 (1 − β1)(1 + β3) + ρ22ρ

−2
3 β3(β1 + α1)

]
×

{
β1(1 + 2β2)(1 + 2β3) − 4ρ2ρ

−1
3 β1β2β3 + (1 + α1 − 2β1)

·
[
ρ−1
2 β2(1 + 2β3) + ρ−1

3 β3(1 − 2β2)
]}

.

(3.16)

In addition, the obtained αj and βj should be within the parallelogram enclosed by

αj = ±1 and αj − 4βj = ±1 in the αj ,βj-plane. For example, if we take ρ2 = 0.8

and ρ3 = 0.6, then the Dundurs parameters are determined as: α1 = −0.6, β1 = −0.3,

α2 = −0.1182, β2 = 0.2, α3 = 0.1227, β3 = 0.2, all of which are within the parallelogram

as shown in Fig. 5 and will make the double-coated inclusion neutral to the non-uniform

loading characterized by Eq. (3.9).

Conclusions. In this study we are concerned with the inverse problem associated

with the design of multi-coated harmonic circular elastic inclusions subjected to a general

class of remote non-uniform loading characterized by Eq. (2.3). In stark contrast to the

design of harmonic holes where the remote (non-uniform) loading exerts a significant

influence on the shape of the hole (Bjorkman and Richards, [2]; Wang et al., [9]), the

multi-coated harmonic inclusion designed here is independent of the remote non-uniform

stresses. Generally, we have found that in order to achieve harmonicity of these inclusions,

the number of intermediate coatings (N − 2) should be equal to the number of terms

in the asymptotic behavior of ψN (z). As a consequence of our analysis, we have also

found conditions under which our method will lead to neutral single- and double-coated

circular inclusions under the non-uniform loading (3.9).
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