HARMONIC CLOSE-TO-CONVEX MAPPINGS

JAY M. JAHANGIRI¹

Kent State University Department of Mathematics Burton, OH 44021-9500 USA E-mail: jay@geauga.kent.edu

HERB SILVERMAN

College of Charleston
Department of Mathematics
Charleston, SC 29424-0001 USA
E-mail: silvermanh@cofc.edu

(Received October, 1999; Revised May, 2000)

Sufficient coefficient conditions for complex functions to be close-to-convex harmonic or convex harmonic are given. Construction of close-to-convex harmonic functions is also studied by looking at transforms of convex analytic functions. Finally, a convolution property for harmonic functions is discussed.

Key words: Harmonic, Convex, Close-to-Convex, Univalent. **AMS subject classifications:** 30C45, 58E20.

1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play important roles in a variety of problems in applied mathematics. Harmonic functions have been studied by differential geometers such as Choquet [2], Kneser [7], Lewy [8], and Rado [9]. Recent interest in harmonic complex functions has been triggered by geometric functions theorists Clunie and Sheil-Small [3].

A continuous function f = u + iv is a *complex-valued harmonic functions* in a domain $\mathcal{D} \subset C$ if both u and v are real harmonic in \mathcal{D} . In any simply connected domain, we can write

$$f = h + \overline{g} , \qquad (1)$$

where h and g are analytic in \mathcal{D} . We call h the *analytic part* and g the *co-analytic part* of f. A necessary and sufficient conditions (see [3] or [8]) for f to be *locally univalent* and *sense-preserving in* \mathcal{D} is that |h'(z)| > |g'(z)| in \mathcal{D} .

Denote by $\mathcal{S}_{\mathcal{H}}$ the class of functions f of the form (1) that are harmonic univalent and sense-preserving in the unit disk $\Delta = \{z: |z| < 1\}$ for which $f(0) = f_z(0) - 1 = 0$. Thus we may write

¹Dedicated to KSU Professor Richard S. Varga on his seventieth birthday.

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n.$$
 (2)

Note that $\mathcal{S}_{\mathcal{H}}$ reduces to \mathcal{S} , the class of normalized univalent analytic functions if the coanalytic part of f is zero. Since $h'(0) = 1 > |g'(0)| = |b_1|$ for $f \in \mathcal{S}_{\mathcal{H}}$, the function $(f - \overline{b_1 f})/(1 - |b_1|^2)$ is also in $\mathcal{S}_{\mathcal{H}}$. Therefore, we may sometimes restrict ourselves to $\mathcal{S}^o_{\mathcal{H}}$, the subclass of $\mathcal{S}_{\mathcal{H}}$ for which $b_1 = f_{\overline{z}}(0) = 0$. In [3], it was shown that $\mathcal{S}_{\mathcal{H}}$ is normal and $\mathcal{S}^o_{\mathcal{H}}$ is compact with respect to the topology of locally uniform convergence. Some coefficient bounds for convex and starlike harmonic functions have recently been obtained by Avci and Zlotkiewicz [1], Jahangiri [5, 6], and Silverman [14].

In this paper, we give sufficient conditions for functions in $\mathcal{S}_{\mathcal{H}}$ to be close-to-convex harmonic or convex harmonic. We also construct close-to-convex harmonic functions by looking at transforms of convex analytic functions. Finally, we discuss a convolution property for harmonic functions.

In the sequel, unless otherwise stated, we will assume that f is of the form (1) with h and g of the form (2).

2. Convex and Close-to-Convex Mappings

Let K, $K_{\mathcal{H}}$ and $K_{\mathcal{H}}^o$ denote the respective subclasses of S, $S_{\mathcal{H}}$ and $S_{\mathcal{H}}^o$ where the images of $f(\Delta)$ are convex. Similarly, C, $C_{\mathcal{H}}$ and $C_{\mathcal{H}}^o$ denote the subclass of S, $S_{\mathcal{H}}$ and $S_{\mathcal{H}}^o$ where the images of $f(\Delta)$ are close-to-convex. Recall that a domain \mathcal{D} is convex if the linear segment joining any two points of \mathcal{D} lies entirely in \mathcal{D} . A domain \mathcal{D} is called close-to-convex if the complement of \mathcal{D} can be written as a union of non-crossing half-lines. For other equivalent criteria, see [4].

Clunie and Sheil-Small[3] proved the following results.

Theorem A: If h, g are analytic in Δ with |h'(0)| > |g'(0)| and $h + \epsilon g$ is close-to-convex for each ϵ , $|\epsilon| = 1$, then $f = h + \overline{g}$ is harmonic close-to-convex.

Theorem B: If $f = h + \overline{g}$ is locally univalent in Δ and $h + \epsilon g$ is convex for some ϵ , $|\epsilon| \leq 1$, then f is univalent close-to-convex.

A domain \mathcal{D} is called convex in the direction ϕ $(0 \le \phi < \pi)$ if every line parallel to the line through 0 and $e^{i\phi}$ has a connected intersection with \mathcal{D} . Such a domain is close-to-convex. The convex domains are those convex in every direction. We will also make use of the following result, which may be found in [3].

Theorem C: A function $f = h + \overline{g}$ is harmonic convex if and only if the analytic functions $h(z) - e^{i\phi}g(z)$, $0 \le \phi < 2\pi$, are convex in the direction $\phi/2$ and f is suitably normalized.

The harmonic Koebe function $k_0 = h + \overline{g} \in \mathcal{S}_{\mathcal{H}}^o$ is defined by $h(z) - g(z) = z/(1-z)^2$, g'(z) = zh'(z), which leads to

$$h(z) = \frac{z - \frac{1}{2}z^2 + \frac{1}{6}z^3}{(1-z)^3}, \ g(z) = \frac{\frac{1}{2}z^2 + \frac{1}{6}z^3}{(1-z)^3}.$$

The function k_o maps Δ onto the complex plane minus the real slit from -1/6 to $-\infty$. The coefficients of k_o are $a_n = (2n+1)(n+1)/6$ and $b_n = (2n-1)(n-1)/6$. These coefficient bounds are known to be extremal for the subclass of $\mathcal{S}^o_{\mathcal{H}}$ consisting of typically real functions (e.g., see [3]) and functions that are either starlike or convex in one direction (e.g., see [12]). It is not known if the coefficients of k_o are extremal for all of $\mathcal{S}^o_{\mathcal{H}}$.

Necessary coefficient conditions were found in [3] for functions to be in $\mathcal{C}_{\mathcal{H}}$ and $\mathcal{K}_{\mathcal{H}}$. We now give some sufficient condition for functions to be in these classes. But first we need the following results. See, for example, [13].

Lemma 1: If $q(z) = z + \sum_{n=2}^{\infty} c_n z^n$ is analytic in Δ , then q maps onto a starlike domain if $\sum_{n=2}^{\infty} n \mid c_n \mid \leq 1$ and onto a convex domains if $\sum_{n=2}^{\infty} n^2 \mid c_n \mid \leq 1$.

3. Main Results

Theorem 1: If $f = h + \overline{g}$ with

$$\sum_{n=2}^{\infty} n \mid a_n \mid + \sum_{n=1}^{\infty} n \mid b_n \mid \le 1, \tag{3}$$

then $f \in \mathcal{C}_{\mathcal{H}}$. The result is sharp.

Proof: In view of Theorem A, we need only prove that $h + \epsilon g$, $|\epsilon| = 1$, is close-toconvex. It suffices to show that

$$t(z) = \frac{h + \epsilon g}{1 + \epsilon b_1} = z + \sum_{n=2}^{\infty} \left(\frac{a_n + \epsilon b_n}{1 + \epsilon b_1} \right) z^n \in \mathcal{C}.$$

Since

$$\sum_{n=2}^{\infty} n \left| \frac{a_n + \epsilon b_n}{1 + \epsilon b_1} \right| \le \sum_{n=2}^{\infty} \frac{n(|a_n| + |b_n|)}{1 - |b_1|} \le 1$$

if and only if (3) holds, t(z) maps Δ onto a starlike domain and consequently $t(z) \in \mathcal{C}$.

To see that the upper bound in (3) cannot be extended to $1 + \delta$, $\delta > 0$, we note that the function $f(z)=z+\frac{1+\delta}{n}z^n$ is not univalent in Δ . **Theorem 2:** If f is locally univalent with $\sum_{n=2}^{\infty}n^2\mid a_n\mid \leq 1$, then $f\in\mathcal{C}_{\mathcal{H}}$. **Proof:** Take $\epsilon=0$ in Theorem B and apply Lemma 1.

Corollary: If $\sum_{n=2}^{\infty} n^2 \mid a_n \mid \leq 1$ and $\mid g'(z) \mid \leq 1/2, z \in \Delta$, then $f \in \mathcal{C}_{\mathcal{H}}$.

Proof: The function f is locally univalent if $\mid h'(z) \mid > \mid g'(z) \mid$ for $z \in \Delta$. Since $2\sum_{n=2}^{\infty} n \mid a_n \mid \leq \sum_{n=2}^{\infty} n^2 \mid a_n \mid \leq 1$, we have $h'(z) > 1 - \sum_{n=2}^{\infty} n \mid a_n \mid \geq 1/2$.

We next give a sufficient coefficient condition for f to be convex harmonic.

Theorem 3: If

$$\sum_{n=2}^{\infty} n^2 |a_n| + \sum_{n=1}^{\infty} n^2 |b_n| \le 1, \tag{4}$$

then $f \in \mathcal{K}_{\mathcal{H}}$. The result is sharp.

Proof: By Theorem C, it suffices to show that $h - e^{i\phi}g$ is convex in Δ . Set

$$s(z) = \frac{h - e^{i\phi}g}{1 - e^{i\phi}b_1} = z + \sum_{n=2}^{\infty} \left(\frac{a_n - e^{i\phi}b_n}{1 - e^{i\phi}b_1}\right) z^n.$$

Since

$$\sum_{n=2}^{\infty} n^2 \left| \frac{a_n - e^{i\phi} b_n}{1 - e^{i\phi} b_1} \right| \leq \sum_{n=2}^{\infty} \frac{n^2 (|a_n| + |b_n|)}{1 - |b_1|} \leq 1$$

if and only if (4) holds, we see from Lemma 1 that $s(z) \in \mathcal{K}$ and consequently $f \in \mathcal{K}_{\mathcal{H}}$.

The function $f(z) = z + \frac{1+\delta}{n^2}z^n$, $\delta > 0$, shows that the upper bound in (4) cannot be improved.

Remark: The coefficient bound given in Theorem 3 can also be found in [5] and [14]. However, our approach in this paper is different from those given in [5] and [14].

Remark: The well-known results for univalent functions that f is convex if and only if zf' is starlike does not carry over to harmonic univalent functions. See [12]. Hence, we cannot conclude from Theorem 3 that (3) is a sufficient condition for f to map Δ onto a starlike domain. Nevertheless, we believe this to be the case. See [5, 6, 14].

We now introduce a class of harmonic close-to-convex functions that are constructed from convex analytic functions.

Theorem 4: If $h(z) \in \mathcal{K}$ and w(z) is a Schwartz function, then

$$f(z) = h(z) + \int_{0}^{z} w(t)h'(t)dt \in \mathcal{C}_{\mathcal{H}}^{o}.$$

Proof: Write g'(z) = w(z)h'(z). Now for each ϵ , $|\epsilon| = 1$, we observe that

$$Re^{\frac{h'(z)=\epsilon g'(z)}{h'(z)}} = Re(1+\epsilon w(z)) \ge 1-\mid z\mid >0, z\in\Delta.$$

Consequently, $h + \epsilon g$ is close-to-convex and the result follows from Theorem A.

Remark: If we only require that w in Theorem 4 be analytic with $|w(z)| < 1, z \in \Delta$, then we may conclude that $f \in \mathcal{C}_{\mathcal{H}}$.

Corollary: If $h \in K$ and n is a positive integer, then

$$f_n(z) = \int\limits_0^z \left(rac{h(t)}{t}
ight)^2 dt + \int\limits_0^z t^{n-2}h^2(t)dt \in \mathcal{C}^o_{\mathcal{H}}.$$

Proof: A result of Sheil-Small [10] shows that $\int_0^z (h(t)/t)^2 dt \in \mathcal{K}$ whenever $h \in \mathcal{K}$. Set $w(z) = z^n$ in Theorem 4, and the result follows.

We now give some examples from Theorem 4.

Example 1: Suffridge [15] showed for the partial sums $p_n(z)$ of $e^{1+z} = \sum_{k=0}^{\infty} (1+z)^k/k!$ that

$$C_n(z) = \frac{p_n(z) - p_n(0)}{p'_n(0)} = \sum_{k=1}^n \left(\frac{\sum_{l=0}^{n-k} \frac{1}{l!}}{\sum_{l=0}^{l-1} \frac{1}{l!}} \right) \frac{1}{k!} z^k \in \mathcal{K}.$$

Setting w(z) = z in Theorem 4, we see that

$$f(z) = \sum_{k=1}^{n} \left(\frac{\sum_{l=0}^{n-k} \frac{1}{l!}}{\sum_{l=0}^{n-1} \frac{1}{l!}} \right) \left(\frac{(k+1)z^k + k\overline{z}^{k+1}}{(k+1)!} \right) \in \mathcal{C}^o_{\mathcal{H}}.$$

Example 2: Since $h_k(z) = z + z^k/k^2 \in \mathcal{K}$, we get from the Corollary that

$$f_{k,n}(z) = z + \frac{2}{k^3} z^k + \frac{1}{k^4 (2k-1)} z^{2k-1} + \frac{\overline{z^{n+1}}}{n+1} + \frac{2z^{n+k}}{k^2 (n+k)} + \frac{z^{2k+n-1}}{k^4 (2k+n-1)} \in \mathcal{C}^o_{\mathcal{H}}$$

for k = 2, 3, ..., and n = 1, 2,

Example 3: Set h(z) = z/(1-z) and w(z) = z in Theorem 4. Then

$$f(z)=rac{z}{1-z}+\int\limits_0^zrac{t}{(1-t)^2}dt=2Rerac{z}{1-z}+\log(1-\overline{z}\;)\in\mathcal{C}^o_{\mathcal{H}}.$$

We can actually state a more general result for which Example 3 is a special case.

Theorem 5: If b(z) is analytic with $|b(z)| < 1/|1-z|^2$, $z \in \Delta$, then

$$f(z) = rac{z}{1-z} + rac{\int\limits_0^z b(t)dt}{\int\limits_0^z b(t)dt} \in \mathcal{C}_{\mathcal{H}}.$$

Proof: Set h(z) = z/(1-z) and $g(z) = \int_{o}^{z} b(t) dt$. Then $|h'(z)| = (1/|1-z|^2) > |g'(z)| = |b(z)|$, so that f is locally univalent. Set $\epsilon = 0$ in Theorem B, and the result follows.

Corollary: If b(z) is analytic with $|b(z)| \le 1/4$, $z \in \Delta$, then

$$\frac{z}{1-z} + \int_{0}^{z} b(t)dt \in \mathcal{C}_{\mathcal{H}}.$$

4. Convolution Condition

The convolution of two harmonic functions $f_1(z)=z+\sum_{n=2}^\infty a_nz^n+\sum_{n=1}^\infty b_n\overline{z}^n$ and $f_2(z)=z+\sum_{n=2}^\infty A_nz^n+\sum_{n=1}^\infty B_n\overline{z}^n$ is defined by

$$f_1(z)*f_2(z) = (f_1*f_2)(z) = z + \sum_{n=2}^{\infty} a_n A_n z^n + \sum_{n=1}^{\infty} b_n B_n \overline{z}^n.$$

In [3], it was shown for $\phi \in \mathcal{K}$ and $f \in \mathcal{K}_{\mathcal{H}}$ that $(\phi + \epsilon \overline{\phi}) * f \in \mathcal{C}_{\mathcal{H}}(\mid \epsilon \mid \leq 1)$. We given an example to show that \mathcal{K} cannot be replaced by $S^*(\alpha)$, $0 \leq \alpha < 1$, the family of functions starlike of order α .

Set

$$\phi(z) = z + \frac{1-\alpha}{n-\alpha}z^n \in S^*(\alpha), h(z) = \frac{z-z^2/2}{(1-z)^2}, g(z) = \frac{-z^2/2}{(1-z)^2}.$$

Then $f = h + \overline{g} \in \mathcal{K}_{\mathcal{H}}$, see [3]. Setting $\epsilon = 0$ in $(\phi + \epsilon \overline{\phi}) * f$ we obtain

$$\phi * f = \phi * (h + \overline{g}) = \phi * h = \left(z + \frac{1-\alpha}{n-\alpha}z^n\right) * \left(z + \sum_{n=2}^{\infty} \frac{n+1}{2}z^n\right)$$

$$=z+\frac{(1-\alpha)(n+1)}{2(n-\alpha)}z^n,$$

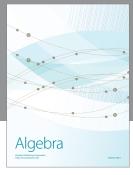
which is not even univalent for $n > 2\alpha/(1-\alpha)$.

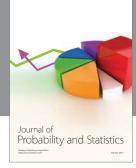
References

- [1] Avci, Y. and Zlotkiewicz, E., On harmonic univalent mappings, *Ann. Univ. Marie Curie-Sklodowska Sect. A* **44** (1991), 1-7.
- [2] Choquet, G., Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, *Bull. Sci. Math.* **69**:2 (1945), 156-165.
- [3] Clunie, J. and Sheil-Small, T., Harmonic univalent functions, *Ann. Acad. Sci. Fenn. Ser. A.I Math* **9** (1984), 3-25.
- [4] Duren, P.L., *Univalent Functions*, Springer-Verlag, New York 1983.

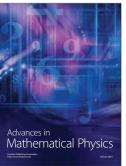
- [5] Jahangiri, J.M., Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, *Ann. Univ. Marie Curie-Sklodowska Sect. A* **52** (1998), 57-66.
- [6] Jahangiri, J.M., Harmonic functions starlike in the unit disk, *J. Math. Anal. Appl.* **235** (1999), 470-477.
- [7] Kneser, H., Lösung der aufgabe 41, Jahresber, Deutsch. Math.-Verein. 35 (1926), 123-124
- [8] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.* **42** (1936), 689-692.
- [9] Rado, T., Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 49.
- [10] Sheil-Small, T., On convex univalent functions, J. London Math. Soc. 2:1 (1969), 483-492.
- [11] Sheil-Small, T., On linear accessibility and the conformal mapping of convex domains, *J. Analyse Math.* **25** (1972), 259-276.
- [12] Sheil-Small, T., Constant for planar harmonic mappings, *J. London Math. Soc.* **2**:42 (1990), 237-248.
- [13] Silverman, H., Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.* **51** (1975), 109-116.
- [14] Silverman, H., Harmonic univalent functions with negative coefficients, *J. Math. Anal. Appl.* **220** (1998), 283-289.
- [15] Suffridge, T.J., On a family of convex polynomials, *Rocky Mountain J. Math.* 22:1 (1992), 387-391.







Submit your manuscripts at http://www.hindawi.com



Journal of Discrete Mathematics

