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Harmonic Decomposition of Audio Signals With
Matching Pursuit
Rémi Gribonval and Emmanuel Bacry

Abstract—We introduce a dictionary of elementary waveforms,
called harmonic atoms, that extends the Gabor dictionary and
fits well the natural harmonic structures of audio signals. By
modifying the “standard” matching pursuit, we define a new
pursuit along with a fast algorithm, namely, the fast harmonic
matching pursuit, to approximate -dimensional audio signals
with a linear combination of harmonic atoms. Our algorithm
has a computational complexity of ( ), where is the
number of partials in a given harmonic atom. The decomposition
method is demonstrated on musical recordings, and we describe
a simple note detection algorithm that shows how one could use
a harmonic matching pursuit to detect notes even in difficult
situations, e.g., very different note durations, lots of reverberation,
and overlapping notes.

Index Terms—Audio signals, fundamental frequency extraction,
Gabor atom, harmonic structure, matching pursuit, note detection,
time–frequency analysis.

I. INTRODUCTION

A UDIO signals contain superimposed structures such as
transients and stationary parts. It has been noticed [22],

[23], [26] that Gabor atoms

(1)

provide a redundant family (dictionary) of elementary wave-
forms (atoms) that is well suited for decomposing such signals.
However, given the strong harmonic content of most audio sig-
nals, it seems more natural to use a dictionary ofharmonic atoms

(2)

where , . Indeed, these elementary wave-
forms reflect well the prior knowledge about the structure of the
signal. We define in this paper a modification of the matching
pursuit algorithm [22] to decompose efficiently audio signals
into linear combinations of such harmonic atoms.

Dictionaries of harmonic atoms are defined in Section II. In
Section III, we recall the definition of the “standard” matching
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pursuit and introduce our modified matching pursuit, stating
a convergence theorem (the proof is given in Appendix A). A
fast implementation of this pursuit, namely, the fast harmonic
matching pursuit, is described in more detail in Section V.
Some applications of the harmonic matching pursuit are then
described: A time–frequency representation is defined in
Section VI, examples of the analysis of real audio signals are
given in Section VII, and a simple note detection algorithm is
experimented in Section VIII.

II. DICTIONARIES OFHARMONIC ATOMS

A. Gabor and Harmonic Atoms

1) Gabor Atoms:Gabor atoms [see (1)] are obtained by
dilating, translating, and modulating a mother window ,
which is generally real-valued, positive and of unit norm

. A Gabor atom is located around
time with a duration of the order of, and its Fourier trans-
form is centered at frequencywith a dispersion in
frequency of the order of .

2) Harmonic Atoms:Harmonic atoms [see (2)] are defined
by their scale , time , frequency components

, and by the complex coefficients . A harmonic atom
has the same localization in time as a Gabor atom, and its Fourier
transform has essentially peaks, located around frequencies

, with a common width of the order of .
Remark 1: Obviously, Gabor atoms are special cases of har-

monic atoms, with . Moreover, real-valued Gabor atoms

(3)

are also harmonic atoms, with , , and ,
and is a normalizing constant. In practical applications,
we will also consider real-valued harmonic atoms, which are
simply harmonic atoms with , .

In the context of audio signals, it seems natural to “tune” the
harmonic atoms in order to fit one of the main structure of these
signals, namely, the(almost) harmonicity between the
frequency of the th partial and thefundamental fre-
quency [7], [8]. Taking into account the spectral width (of the
order of ) of the th partial , the (almost)harmonicity
can be written1 , , with .

1If some prior knowledge is available, one could improve the analysis pre-
sented here by using a more precise model of the (almost) harmonicity of the
partials. For example, if the signal is a recording of a piano piece, the relation
� � k�

p
1 + bk [10] makes it possible to define more adapted harmonic

atoms.
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B. Harmonic Subspace—Quasi-Orthogonality of the Partials

The set of all harmonic atoms at scale, time , and with
frequency components is exactly the unit
sphere in the subspace of

span (4)

which will be referred to as aharmonic subspace. When it is
possible, it is helpful to specify a range of possible fundamental
frequencies

(5)

This may come froma priori knowledge on the audio signal.
For some technical reason that will become clearer later on, we
need the partials to bequasiorthogonal,
that is to say for some

(6)
It is not difficult to check that this is satisfied if

for some constant .

C. Gabor and Harmonic Dictionaries

1) Gabor Dictionaries: The Gabor dictionary is the set
of Gabor atoms at

every scale , time location and frequency .
2) Harmonic Dictionaries: A harmonic dictionary is an

extension of the Gabor dictionary

for some set of indices . We will use the notation ,
and will denote the index of either a Gabor atom
or a harmonic subspace . Notice that due to
the constraint (5), not all Gabor atoms lie in some ,

.

III. STANDARD MATCHING PURSUIT

The matching pursuit [22] is a greedy algorithm very similar
to the projection pursuit introduced in statistics [11], [19]. Given
a complete dictionary , i.e., a redundant family of unit vectors
in a Hilbert space such thatspan , and an arbitrary
number , it decomposes a signal into a residual term

and a linear combination of atoms chosen among

with the essentialenergy conservationproperty

The strong convergence was proved by
Jones [21] and shows that one can get as good an approximation
to as wanted.

A. Standard Matching Pursuit

From a decomposition of the signal into atoms

one gets an -atom decomposition in the following way.

1) Compute for all .
2) Select a (near) best atom of the dictionary

where is some number independent of.
3) Compute the new residual

(7)

B. Standard Matching Pursuit in Harmonic Dictionaries

With harmonic dictionaries, one can write

where is the orthonormal projection onto. Consequently,
the standard matching pursuit can take the following form.

1) Compute for all .
2) Select a (near) best harmonic subspace

3) Compute the new residual as in (7) with

This formulation shows that no exhaustive search over the
parameters is needed for the optimization of a harmonic
atom. In particular, following Remark 1, when the dictionary
consists of real-valued Gabor atoms [see (3)], the phasecan
be automatically optimized [22], [4], [14], [16].

IV. A PPROXIMATE AND WEAK HARMONIC MATCHING PURSUIT

At each step of the standard matching pursuit described
above, one needs to compute for every subspace

, as well as the exact projection for
the selected subspace. For Gabor atoms ( ), this is easily
done as . A fast and exact
computation is also possible with real-valued Gabor atoms
( ) [4], [14], [16].

For general harmonic dictionaries, computing
for every subspace is time consuming and, from a
practical point of view, makes the standard matching pursuit un-
usable. In the next section, we describe how the quasiorthogo-
nality of the partials [see (6)] along with some recent results on
the convergence ofapproximate weak greedy algorithms[18]
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can be used to define a modified pursuit that avoids these com-
putations.

A. Modified Harmonic Matching Pursuit

Thanks to the quasiorthogonality condition [see (6)], the set
of Gabor atoms used to define

in (4) is nearly an orthonormal basis of . The modified
matching pursuitis a standard matching pursuit actingas if the
partials wereexactlyan orthonormal basis of the corresponding
harmonic subspace.

If the partials were orthogonal, one would have

and

The modified matching pursuit is thus defined as follows.

1) Compute for all thecorrelation function

(8)

2) Select a harmonic subspace such that

(9)

where may depend on ; see Theorem 1.
3) Compute the new residual according to

(10)

where

(11)

with the notation .
After steps, this modified matching pursuit provides a de-

composition of an audio signal as

(12)

B. Convergence—Approximate and Weak Pursuit

The conditions for the convergence of the so-defined pursuit
are given in the following theorem (the proof is in Appendix A).

Theorem 1: Assume that the harmonic dictionary satisfies
the quasiorthogonality condition [see (6)]. Let with

such that

(13)

Then, the residual obtained with the modified matching pursuit
[i.e., see (8)–(11)] converges strongly to zero.

Thus, the so-obtained matching pursuit isweakin the sense
that the choice (9) of a “good” harmonic atom can be much
weakerthan in a standard matching pursuit. Indeed, one is not
restricted to , and we will see in Section V an
example where , in which case, convergence is
guaranteed if .

Moreover, it is approximate in the sense that, at each
step, defined by (11) is only anapproximationof

, and the energy conservation is approxi-
mate as well, i.e.,

(14)

as long as [defined by (6)] satisfies . The proof and
the precise formulation of this last equation can be found in
Appendix B.

Let us now describe a fast implementation of this modified
harmonic matching pursuit, namely, the fast harmonic matching
pursuit.

V. FAST HARMONIC MATCHING PURSUIT

A. Main Principles

The main idea of the fast harmonic matching pursuit is that it
is possible to select the “best” harmonic subspacein a finite
sub-dictionary

(15)

By choosing the sub-dictionaries much smallerthan
the whole harmonic dictionary , we decrease the numerical
complexity. By using (13), we can indeed construct small sub-
dictionaries without loosing the convergence of the pursuit. The
general principle is the following.

1) Initialization: At some steps
, the finite sub-dictionary is ini-

tialized so that it satisfies
.

2) Update: At the intermediate steps , the
sub-dictionary is updatedby removing some har-
monic subspaces from .

B. Convergence

From the brief description above, one can easily show that at
each step, the selected harmonic subspacesatisfies the “pes-
simistic” estimate
with

.

Hence, if , then is
an acceptable “weakness” sequence (according to Theorem 1),
and the pursuit will be convergent.
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C. Adaptive Sub-Dictionaries of Local Maxima

Let us describe how is initialized and how is up-
dated from .

1) Initialization: At each step , we detect thelocal
maximaof the function

(16)

for every value of and , as well as the local maxima of the
function

(17)

for every value of and and keep the location of the largest
(the choice of will be discussed in a moment). This corre-
sponds to keeping only the local maxima2 for which the corre-
lation is above somethreshold .

2) Update: The same threshold is used to update for
: Once has been selected, one re-

computes the correlation of the new residual with the subspaces
of , and the threshold is applied to obtain .

The next initialization step occurs when the process of
throwing away subspaces from has emptied it.

D. Fast Matching Pursuit Algorithm

When one deals with a finite but high-dimensional signal of
samples, the standard discretization of the Gabor dictio-

nary contains Gabor atoms.
Let us describe in details the implementation and the numer-

ical complexity of the fast harmonic matching pursuit.
1) Initialization Steps :

1) [ ] Compute for every Gabor
atom . This is equivalent to computing several
short time Fourier transforms (STFTs) based on win-
dows at each possible scale, which is done using a fast
algorithm (FFT or direct convolution).

2) [ ] Compute, for every discrete and

(18)

There is at most such discrete values of
.

3) [ ] Detect the local maxima.
4) [ ] Sort the local maxima and threshold.
2) Updates for :

1) [ ] Select of the “best” subspace,
and set , .

2It has been observed [27] that local maxima of correlation functions such as
(16) and (17) are likely to correspond to signal features. This is a desirable fact
because it shows that form 2]m ; m [, the harmonic atomh 2 D �

D will likely be a featureof the signalrather than an artefact of the matching
pursuit, as was sometimes the case with the standard matching pursuit [6], [17],
[20].

2) [ ] (Optional) Perform a Newton interpolation to get
a fine estimate for of

3) [ ] Update the residual according to (10).
4) [ ] Update the inner products of the useful

Gabor atoms

(19)
There are at most useful Gabor atoms: in each
subspace of . Each inner product can be
computed in with an analytic formula (see e.g.,
[22]).

5) [ ] Recompute the correlations [see (18)] for
every discrete associated with some subspace
in .

6) [ ] Eliminate from the subspaces whose cor-
relation has fallen below .

E. Computational Complexity and Convergence

In practice we choose aconstant sizeof

The number of steps necessary to empty each sub-dictionary
is at least its size, i.e., . Because local

maxima of the correlation function have a tendency to be al-
most orthogonal one to another, only few subspaces are removed
from at each step, hence it is reasonable to assume that

for some . As a result, the com-
putational complexity of iterations of this pursuit is at most

that is to say

The convergence follows from Theorem 1 and the
fact that .

VI. TIME—FREQUENCYREPRESENTATION

The harmonic matching pursuit described in the previous sec-
tions allows one to decompose a signal as the sum of a
residual term and of a linear combination of an arbitrary number

of harmonic atoms, i.e.,

One fundamental property of this decomposition is that it satis-
fies the approximate energy conservation law
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Fig. 1. Time–frequency representation using the harmonic matching pursuit. The analyzed signal is a simple sum of two harmonic atoms (withK = 5) using
the asymmetric windoww(t) defined by (23) and displayed in Fig. 2. The first atom corresponds tos = 128, u = 220, and� = 0:09k and the second
one tos = 512, u = 244, and� = 0:058k. A M = 2 step harmonic matching pursuit is performed. (a) Graph of the analyzed signal. (b) Energy density
E [s](t; !) [see (20)]. (c) Reduced energy densityE [s](t; !) [see (21)].

(let us recall that the s are complex numbers and that
). Moreover, each harmonic component corresponds to a linear

combination of Gabor atoms

and consequently

Let us note that from a numerical point of view, these energy
conservation relations [see (14) and its precise formulation in
Appendix B] can be considered, in a very good approximation,
to be exact equalities.

Following the usual representation used for the standard
matching pursuit [22], we choose to represent each Gabor
atom in the time–frequency half-plane by its
Wigner—Ville distribution [9] . The energy
density of the signal in the time-frequency
half-plane at the step of the pursuit is then naturally defined
by

(20)

Fig. 1 illustrates the so-obtained time-frequency representation
using the asymmetric window defined by equation (23)

and displayed in Fig. 2. It shows the energy density corre-
sponding to a signal made of two harmonic atoms (with )
starting, respectively, at time and . The
black spots in Fig. 1(b) represent the Wigner–Ville distributions
of the corresponding Gabor atoms. The two lower spots cor-
respond to the fundamental frequencies of the two harmonic
atoms and the other ones to their harmonics. In this case, since
there are only two harmonic atoms, it is of course very easy to
relate which spots belong to which harmonic atom. However, for
real audio signals, this can get rather complicated and make this
representation very hard to “read.” For the sake of simplicity, we
will use a “reduced” version of this representation, consisting of
a representation of only the first partial of each harmonic atom.
This reduced energy density is then simply de-
fined as

(21)

and it is illustrated in Fig. 1(c).
In the next section, we illustrate the harmonic matching pur-

suit on a real audio signal.

VII. H ARMONIC MATCHING PURSUIT

OF A REAL AUDIO SIGNAL

Sound signals are asymmetric in time. They often consist in a
short transient part (e.g., the attack of the sound) followed by a
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Fig. 2. FoF window. The graph of the asymmetric windoww(t) [see (23)]
with � = 4� and� = 10 .

stationary part which eventually slowly fades out (e.g., the sus-
tained/decay parts of the sound). Consequently, as shown in a
previous work [17], if a symmetrical window is used, the
matching pursuit will often pick up, as the most energetic atom,
an atom that overlaps the actual starting time location of the tran-
sient. It results in “creation of energy” just before this transient.
Thus, for instance, if the signal consists in a succession of notes
played by an instrument, the matching pursuit time–frequency
representation will display the energy of each note as if it was
starting before its actual starting time location. This results in a
pre-echo effect in the resynthesized audio signal:

(22)

As suggested in [17] and [20], in order to avoid creation of
energy, one could use a high-resolution matching pursuit. How-
ever, it slows down the pursuit quite a bit. In the case of audio
signals, since the time asymmetry is basically always thesame
(e.g., the transients generally come before the stationary parts),
the pre-echo effect can be taken care of (as shown in Fig. 3) by
simply using an asymmetric window that reproduces a generic
transient followed by a generic slowly decaying part [14], [15].
In order to keep a fast algorithm, one has to choose a window
which enables an analytic formula of the inner product of two
atoms [see (19)] [22]. For that purpose, we chose the FoF func-
tion [24], which is defined by

for

for

otherwise
(23)

where is a normalization factor, allows one to adjust the
size of the transient, and is the damping factor (let us note
that will be chosen so that the discontinuity at is of the
order of the numerical noise). The analytical formulas of the
inner product of two such atoms are rather complicated and can
be found in [1] and [3]. In the following, we will always choose

and . The graph of this window is displayed on
Fig. 2. The computation of at the initialization step

are performed based on the FFT; however, as suggested in [15],
they may be sped up by using recursive filters.

The harmonic matching pursuit using this asymmetric
window is illustrated on Fig. 3. It has been performed on a real
audio signal which consists in an 11-note melodic recording of
a clarinet [5]. Fig. 3(c) shows the residual for . It
shows that 100 harmonic atoms are enough to capture most of
the energy of the original signal (the relative error is of the
order of 9 dB). Moreover, as it can be seen in Fig. 3(b), each
note (with all its harmonic structure) is captured by very few
atoms [to make this figure easier to read, each note has been
indexed by order of appearance from the first one (1) to the last
one (11)]. Moreover, the use of the asymmetric window (23)
prevented any pre-echo, i.e., the beginning of the notes can be
detected very precisely looking at the Fig. 3(b).

Thus, it seems very natural to use this harmonic decomposi-
tion to build a note detection algorithm. In the following section,
we elaborate what could be the basis of such an algorithm.

VIII. N OTE DETECTION ALGORITHM USING HARMONIC

MATCHING PURSUIT DECOMPOSITION

The note detection algorithm we describe here is basic and
it should not be used as it is for note detection applications.
The purpose of this section is to show that, although it is a first
naive version of what should be a more elaborate algorithm, it
can detect notes successfully even in some very difficult situa-
tions, e.g., very different note durations, lots of reverberation,
etc. Moreover, let us point out that, apart from the frequency
range [see (5)], the only prior information on the audio signal
that is implicitly used by the algorithm is that the pitches of
the notes do not change significantly through time. There is no
prior information on what instruments are playing, how they are
tuned, how many notes can be played at the same time, what type
of music is played, etc.

A. Note Detection Algorithm

The basic idea of the algorithm is that the most energetic har-
monic atoms are good candidates for notes. Given such an atom,
the algorithm first evaluates what the fundamental frequency
of the corresponding note is, based on the simplifying assump-
tion that it corresponds to the most energetic partial. Then, it
computes (using all the atoms of the decomposition) the energy
density profile at this frequency [see (20)]. A
simple thresholding on this profile will allow to detect the begin-
ning and the end of the corresponding note. The algorithm then
loops by considering the “next” most energetic harmonic atom
skipping all the atoms that have been “marked” as belonging
to some formerly detected notes. The algorithm stops when the
only harmonic atoms left have small energy.

Let us describe each step of this algorithm more precisely.
First, of course, the harmonic matching pursuit is performed on
the considered signal. At the beginning of the detection algo-
rithm none of the harmonic atoms are marked.

1) Locate the most energetic harmonic atom , which
is not marked.

2) If is smaller than a given threshold , the
algorithm stops.
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Fig. 3. Harmonic matching pursuit of a real audio signal. The analyzed signal corresponds to an excerpt of a recording of a solo clarinet piece. It consists in
a melodic phrase made of 11 notes with very different durations and a lot of reverberation. The harmonic matching pursuit is performed using the asymmetric
windoww(t) (cf. Fig. 2), withM = 100, � = 130 Hz, and� = 1400 Hz [see (5)]. (a) Graph of the audio signals(t). (b) Reduced energy density
E [s](t; !) [see (21)] obtained through the harmonic matching pursuit. It is gray-coded from the smallest values (white) to the largest values (black). To make
this figure easier to read, each note has been indexed by order of appearance from the first one (1) to the last one (11). (c) ResidualR (t) = s(t)� s (t), where
s (t) is the resynthesized signal [see (22)]. RelativeL error is of the order of 9 dB.

3) The most energetic partial of this harmonic atom is con-
sidered to be the fundamental frequency of the
note, i.e., .

4) Compute the energy density profile
at this frequency.

5) Let be the time location of the considered harmonic
atom . Let the maximum
value of in a neighborhood of (of size of the
order of ). Compute the largest (resp. smallest) time

(resp. ) for which
is larger than a given threshold (resp. ). The
so-obtained time location (resp. ) is considered
as being the beginning (resp. end) of the note.

6) If the duration is large enough (i.e., ),
a note is detected at frequencyat time till time .

7) We mark the current harmonic atom along with all the
harmonic atoms that correspond to the same note,
i.e., which satisfy and for which at least
one partial atom satisfies, for a given threshold

8) Go back to step 1.

B. Note Detection With Some Musical Signals

In this section, we apply the note detection algorithm de-
scribed in the previous section to some musical signals. The pa-
rameters for the algorithm have been chosen in the following
way: , dB, s
and .

We first apply it to the clarinet signal previously analyzed
(cf. Fig. 3). As illustrated in Fig. 4(a), all the notes are success-
fully detected, although they are of very different durations and,
as shown by the time-frequency representation, some of them
overlap each other (due to reverberation). Moreover, the begin-
ning of each note is very accurately estimated. This estimation
(i.e., step 5 of the algorithm) is illustrated on Fig. 4(b). Let us
point out that the detection of notes of very different durations
and of their starting time locations using “standard” techniques
is difficult. In the particular case where the musical instrument
that is playing is a piano, it has been shown in [25] that, if one
performs an extensive learning phase on the specific piano that is
used, then STFT-based algorithms can achieve polyphonic note
detection with few errors. However, in the case there is none
or little prior information on the specific instruments that are
playing, these algorithms no longer apply and precise note de-
tection using STFT techniques becomes really difficult. A major
problem one has to face when using STFT is the fact that one
has to choose, once for all, the size of the window. Ideally, one
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Fig. 4. Note detection on a clarinet signal. The signal is the same as the one displayed in Fig. 3(a). (a) Reduced energy densityE [s](t; !) defined by (21).
The harmonic matching pursuit is performed using the same parameters as for Fig. 3. The detected notes obtained using the detection algorithm described in
Section VIII-A are indicated using triangle shapes and the corresponding symbolic names for each note is in parentheses (using the standard notationA, B, C,
D, E, F, G). (b) FunctionD (t) = E [s](t; !) for the first note (A). The beginning timet and ending timet of this note are estimated using simple
thresholding (i.e., step 5 of the algorithm) with� = � = � = 19 dB.

would want to use both a very short window (for very short notes
or for estimating accurately the starting time of each note) and
longer windows (of the order of the note durations). In a way,
the harmonic matching pursuit changes the size of the window
adaptatively according to these requirements and makes the de-
tection very accurate.

The next signal we have tested our note detection algorithm
on is a recording of the beginning of theChromatic Fantasyby
Bach [2]. Detection is much harder than on the previous signal:
This recording involves much more reverberation, the melody is
really fast, and the attacks of the notes are very soft. Moreover,
since the melody is made of three successive scales (ascending,
descending, and then ascendingagain), there are a lotof reverber-
atingoctavesor fifths,whichmakethedetectionall themorediffi-
cult. Actually, at a given time, the only way to “understand” that
an octave has been played (and not just a single note) is to look
at the energy density at time locations that can be arbitrarily far
from time , i.e., at times when only one of the twonotes of the oc-
tave could be heard. Although this is very hard to achieve using
a regular algorithm based on a STFT, this is automatically per-
formed when using the harmonicmatchingpursuit.As illustrated
in Fig. 5, the detection is quite good. The reverberating fifths and
theoctavesareall detected.Moreover,although theattackofeach
note is very soft, all the notes are detected.

However, the algorithm makes a few mistakes. Most mis-
takes are due to the sensitivity of the algorithm to the parameters
values (mainly and ). The value of must be chosen
relatively to how hard the attacks of the notes are. As seen in
Fig. 5, most of the attack time locations are well estimated ex-
cept for very few (e.g., the “A” detected at time , which
has been detected to start after the “B” leading to an inversion
of the scale). Moreover, low values for and will lead
the algorithm to merge notes that have the same frequency and

that are close enough one to each other, whereas large values
will lead the algorithm to split single notes into two notes, as if
the note was played twice. Actually, in Fig. 5, one can see that
all the notes are detected, but the “G” (starting at time )
is detected twice (one after the other) though only one “G” has
been played.

Let us point out that these decisions (mainly the one note
versus two notes decision and the estimation of the time location
of the beginning of a note) are really hard to make, especially
because of the reverberation and of the soft attacks. If the attacks
were a little harder, just decreasing the would improve the
result quite a bit.

Considering the difficulty of the note detection on this signal,
the fact that this rather simple algorithm succeeds in finding
all the notes and in estimating precisely most of their starting
time locations, makes, we think, the harmonic matching pursuit
a very promising tool for note detection.

IX. CONCLUSION

The flexibility of the matching pursuit paradigm makes it pos-
sible to design dictionaries of elementary waveforms that reflect
the expected structures of the analyzed signals. Harmonic struc-
tures, which are common in audio signals, are easily described
as linear combinations of a few quasiorthogonal Gabor atoms.
This enables the efficient realization of a harmonic matching
pursuit decomposition. One can indeed notice that the com-
plexity of the fast harmonic matching pursuit is es-
sentially that of building the approximant , i.e.,
the cost of selecting the harmonic atoms of interest is negligible.

Because of its demonstrated ability to decompose a musical
recording intoharmonicstructuresofverydifferentdurationsand
that could overlap each other, the harmonic matching pursuit is a
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Fig. 5. Note detection on a piano signal. The signal corresponds to the beginning of theChromatic Fantasyby Bach. It is basically made of three successive scales
(ascending, descending, and then ascending again) played really fast with very soft attacks and a lot of reverberation. (a) Reduced energy densityE [s](t; !) as
defined in (21). The harmonic matching pursuit is performed using the asymmetric windoww(t) (cf. Fig. 2), withM = 100, � = 130 Hz and� = 1700
Hz [see (5)]. The detected notes obtained using the detection algorithm described in Section VIII-A are indicated using triangle shapes, and the corresponding
symbolic names for each note are in parentheses (using the standard notation A, B, C, D, E, F, G).

very promising tool for note detection. However, the note detec-
tion algorithm we proposed is still too sensitive to its parameter
values. We actually believe that this sensitivity is inherent to the
use of the harmonic matching pursuit itself rather than to the de-
tection algorithm and that, consequently, the pursuit should not
be used “as is.” We believe that the selection of harmonic atoms
for note detection should rather be done simultaneously with the
detection algorithm itself, which may imply using tracking tech-
niques [12], [13] and penalizing those harmonic atoms where the
coefficients “oscillate” to much.

As a last remark, we believe the “subspace matching pursuit”
framework that we have defined in this paper may be the basis
for other applications where it is possible to use dictionaries that
are the union of the unit spheres of small dimensional spaces
spanned by simple quasiorthogonal atoms.

APPENDIX A
PROOF OFTHEOREM 1

To prove this theorem, we are going to use [18, Th. 2.1],
which states the condition of convergence for theapproximate
weak greedy algorithms. This theorem shows that in order to
prove the convergence of our modified pursuit, one just needs
to prove the two following points.

1) For some sequence , which satisfies
, satisfies

(24)

2) For some , the coefficient is approximately
:

(25)

with .
(Let us note that the condition for convergence in [18] is slightly
weaker.)

For any , let
, the Grammian matrix of the family

. One can easily check that (6)
implies that the eigenvalues of lie within .
Hence, is a linearly independent family of
vectors, as well as its biorthogonal basis
(characterized by ) in . As a result, the
extremal eigenvalues of the positive definite quadratic form

(restricted to the finite dimensional subspace) are equal to
the extremal eigenvalues of . Hence, for all and all

(26)
Similarly for the dual basis, for all and all ,

. Thus, since
belongs to and , one can show that there

exists such that
. Thus, one easily gets

Since, from (11), one gets that
, we finally get

Hence, this proves point 2) [i.e., (25)].
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From (11), one gets

Then, using (25)

(27)

On the other hand, (9) and (26), along with the fact that
, give

Combining this last equation with (27), we get

Since Theorem 1 assumes that , this last
equation proves point 1) [i.e., (24) with ].

In order to apply [18, Th. 2.1], we just need to check that
is complete, but this is easily done because it contains,

which is complete as soon as the window is smooth and satisfies
[22].

APPENDIX B
PROOF OF(14)

From (11), one gets

(28)

Using (25), this last equation becomes

(29)

On the other hand, from (27), one deduces that

Using (28), we get

(30)

Hence, using (29) and (30)

Since , if we assume that , we obtain the
desired approximations.
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