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HARMONIC DIFFEOMORPHISMS OF MANIFOLDS

S. E. STEPANOV AND I. G. SHANDRA

Abstract. In spite of the abundance of publications on harmonic mappings of man-
ifolds, at present there exists neither a theory of harmonic diffeomorphisms, nor a
definition of infinitesimal harmonic transformation of a Riemannian manifold, to say
nothing of the theory of groups of such transformations. In the paper, this gap is
partially filled, and a new subject of investigations is announced.

§0. Introduction

The theory of harmonic mappings dates back to investigation of minimal surfaces by
Weierstrass. However, only in the 1950s the theory acquired an independent status. From
the early 1960s, it has been developing quickly. Publications on harmonic mappings have
long been numbered by hundreds (see the surveys [1]–[3]).

Despite the abundance of publications on harmonic mappings of Riemannian mani-
folds, at present there exists neither a theory of harmonic diffeomorphisms, nor a defi-
nition of an infinitesimal harmonic transformation, i.e., of a local harmonic autodiffeo-
morphism of a Riemannian manifold, to say nothing of the theory of groups of such
transformations. This is in sharp contrast with the theories of isometric, conformal,
projective, and other types of mappings (see, e.g., [4]–[8]).

The present paper partially fills this gap and announces a new subject of investigations.
Here we study harmonic diffeomorphisms and local groups of harmonic transformations of
Riemannian, almost complex, and complex manifolds by methods of the classical tensor
analysis on manifolds; we also use elements of the group representation theory and the
Bochner techniques [9].

In §1, we present facts about harmonic mappings of Riemannian manifolds, find a
necessary and sufficient condition for a diffeomorphism to be harmonic, prove our main
theorem on harmonic diffeomorphisms, and present examples of harmonic diffeomor-
phisms between Riemannian and almost complex manifolds.

In §2, we indicate two methods of classification of harmonic diffeomorphisms between
Riemannian manifolds, which are based on the group representation theory; we describe
one of them in detail and study three of seven distinguished classes of harmonic diffeo-
morphisms.

In §3, we define infinitesimal harmonic transformations, describe properties of the lo-
cal one-parameter group of infinitesimal harmonic transformations of Riemannian man-
ifolds, and present examples of infinitesimal harmonic transformations of Riemannian
and Kähler manifolds.

The results presented in the paper were announced in a plenary talk at an international
conference [10].
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402 S. E. STEPANOV AND I. G. SHANDRA

§1. Harmonic mappings of Riemannian manifolds

1.1. Preliminaries. We consider Riemannian C∞-manifolds (M, g) and (M, g) of di-
mensions m and n, respectively, and a smooth mapping f : M → M . The differential
f∗ : TM → TM of f is a section df of the tensor vector bundle T ∗M ⊗ f−1(TM), where
f−1(TM)x = Tf(x)M at each point x ∈M .

For a relatively compact open subset Ω ⊂ M , the energy EΩ(f) of the mapping f is
the functional

EΩ(f) =
1
2

∫
Ω

‖df‖2dV,

where ‖df‖ is the norm of df calculated in the natural Riemannian metric on T ∗M ⊗
f−1(TM), and dV is the element of volume of (M, g) (see, e.g., [3]).

Definition 1.1. A smooth mapping f : (M, g) → (M, ḡ) is said to be harmonic if f
provides an extremum of the energy functional EΩ(f) for each relatively compact open
subset Ω ⊂M with respect to the variations of f that are compactly supported in Ω.

The Levi-Civita connections ∇ and ∇ of (M, g) and (M, ḡ) induce a connection D in
the vector bundle T ∗M ⊗ f−1(TM). We have the following result.

Theorem 1.1 [1]–[3]. A smooth mapping f : (M, g) → (M, ḡ) is harmonic if and only
if it satisfies the Euler–Lagrange equation

(1.1) traceg D(df) = 0.

We write the Euler–Lagrange equations in local coordinates. Suppose {x1, . . . , xm}
are local coordinates in a neighborhood U of a point x ∈ M and {x̄1, . . . , x̄n} are local
coordinates in a neighborhood U ⊃ f(U) of the point x̄ = f(x) ∈ M . In what follows,
we denote by Γk

ij , i, j, k, . . . = 1, 2, . . . ,m, and by Γ
α

βγ , α, β, γ, . . . = 1, 2, . . . , n, the
Christoffel symbols of the Levi-Civita connections ∇ and ∇, respectively. Then the
Euler–Lagrange equations (1.1) take the form

(1.2) gij(∂i∂jf
a − Γk

ij∂kf
a + Γ

a

β,γ∂if
β∂jf

γ) = ∆fa + gijΓ
a

β,γ∂if
β∂jf

γ = 0,

where the gij are the contravariant components of the metric tensor g, ∂i = ∂/∂xi, and
∆ is the Laplace–Beltrami operator of (M, g) (see, e.g., [3, 12]).

Remark. In the case of Euclidean space, equations (1.2) turn into the system of Laplace–
Beltrami equations ∆fa =

∑m
j=1 ∂

2
j f

a = 0, whence the term “harmonic mapping”.

Suppose that dimM = dimM = m and f : M → M is a diffeomorphism. Then,
locally, the mapping f acts in accordance with the “equality of coordinates” rule x̄1 =
x1, . . . , x̄m = xm for the corresponding points x and x̄ = f(x) (see [13, p. 67]). In this
case, we say that {x1, . . . , xm} are f -adjusted common (local) coordinates on M and M
(see [6, p. 47]).

We denote by gij and ḡij the components of the metric tensors g and ḡ, and by Γk
ij and

Γ
k

ij the Christoffel symbols of the Levi-Civita connections ∇ and ∇ of (M, g) and (M, ḡ)
in f -adjusted common coordinates {x1, . . . , xm}. Then the Euler–Lagrange equations
(1.2) take the form

(1.3) gijT k
ij = 0,

where T k
ij = Γ

k

ij − Γk
ij are the components of the deformation tensor T = ∇ − ∇ of

the connection ∇ under the mapping f (see [6, p. 71]). Conditions (1.3) mean that the
deformation tensor T is a symmetric traceless tensor field, i.e., a section of the tensor
vector bundle TM ⊗ S2

0M . Thus, we have proved the following result.
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HARMONIC DIFFEOMORPHISMS OF MANIFOLDS 403

Corollary 1.2. Suppose (M, g) and (M, ḡ) are Riemannian manifolds with Levi-Civita
connections ∇ and ∇, respectively. A diffeomorphism f : M → M is harmonic if and
only if the deformation tensor T = ∇−∇ of ∇ under the mapping f is a section of the
tensor vector bundle TM ⊗ S2

0M . �

1.2. Examples of harmonic diffeomorphisms f : (M, g) → (M, ḡ).

1.2.1. Conformal diffeomorphisms. Our first example is a conformal diffeomorphism,
which is characterized by the equality ḡ = e2σg in adjusted common coordinates {x1, . . . ,
xm}. This equality implies the following relation between the Christoffel symbols (see
[4, p. 113]):

(1.4) Γ
k

ij = Γk
ij + σiδ

k
j + σjδ

k
i − σkgij ,

where σi = ∂iσ, σk = gkiσi and δk
i is the Kronecker delta. Obviously, the Euler–Lagrange

equations (1.3) are fulfilled for a conformal diffeomorphism only in one of the following
two cases: either m = 2, or σ = const.

Summing up, we see that a conformal diffeomorphism f between two Riemannian
2-manifolds is always a harmonic mapping (cf. [3, p. 13]). For other dimensions, this is
possible only if the diffeomorphism f is a homothety.

1.2.2. As the second example of a harmonic diffeomorphism, we consider the composition
of a diffeomorphism and a projective diffeomorphism.

Theorem 1.3. Suppose (M, g), (M, ḡ), and (M̃, g̃) are Riemannian m-manifolds (m ≥
3), f : M → M is a conformal diffeomorphism, and f̄ : M → M̃ is a projective diffeo-
morphism. The composition f̄ ◦ f : M → M̃ is a harmonic mapping if and only if for
each function

σ =
ln(det g̃/ det g)
m2 +m− 2

+ const

we have ḡ = e2σg.

Proof. We recall that, by definition, a projective diffeomorphism f̄ : M → M̃ maps the
geodesics of (M, ḡ) to those of (M̃, g̃). In this case, in f̄ -adjusted common coordinates
the Christoffel symbols Γ̃k

ij and Γ
k

ij of (M̃, g̃) and (M, ḡ), respectively, satisfy the relation

(1.5) Γ̃k
ij = Γ

k

ij + ψiδ
k
j + ψjδ

k
i ,

where

ψj =
∂j ln(det g̃/ det ḡ)

2(m+ 1)

(see [4, pp. 70–76]) and [6, pp. 161–166]).
Now we consider the composition f̄ ◦ f : M → M̃ indicated in the statement of the

theorem. From (1.4) and (1.5) it follows that in (f̃ ◦ f)-adjusted common coordinates we
have the relation

(1.6) Γ̃k
ij = Γk

ij + (σi + ψi)δk
j + (σj + ψj)δk

i − σkgij .

Therefore, the Euler–Lagrange equations (1.3) for the mapping f̄ ◦ f take the form
d[(m − 2)σ − 2ψ] = 0. For m ≥ 3, this implies the required expression for the func-
tion σ. �
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404 S. E. STEPANOV AND I. G. SHANDRA

1.2.3. Now we consider harmonic diffeomorphisms of almost Hermitian manifolds. We
recall (see [14, p. 139]) that an almost Hermitian manifold (M, g, J) is an even-dimen-
sional C∞-manifold M endowed with an almost complex structure J and a Riemannian
metric g with the following properties: at each point x ∈ M , J is an endomorphism of
the tangent space TxM such that J2 = − id, and g is invariant with respect to J , i.e.,
g(J, J) = g.

On an almost Hermitian manifold, the fundamental form Ω with local components
Ωij = gikJ

k
j is defined in a natural way (see [14, p. 140]). If the fundamental form Ω is

coclosed, then the almost Hermitian manifold (M, g, J) is said to be almost semi-Kähler
(see, e.g., [15, 16]).

We mention three subclasses of this class of manifolds. The first is the class of almost
Kähler manifolds, which are characterized by the requirement that the fundamental form
Ω be closed, i.e., dΩ = 0 (see [14, p. 141]). The second class is that of nearly Kähler
manifolds (see [15, 17]), for which the fundamental form Ω is a Killing form [20, p. 339],
i.e., ∇Ω = dΩ. Finally, the third class consists of Kähler manifolds with ∇Ω = 0 (see
[14, p. 141]).

A mapping f : M → M of an almostHermitian manifold (M, g, J) to an almost
Hermitian manifold (M, ḡ, J̄) is almost complex if f∗ ◦ J = J̄ ◦ f∗ (see [14, p. 118]).

Theorem 1.4. Suppose (M, g, J) is an almost Hermitian manifold and (M, ḡ, J) is a
nearly Kähler manifold. Then an almost complex diffeomorphism f : M → M is a
harmonic mapping if and only if the manifold (M, g, J) is almost semi-Kähler.

Proof. In f -adjusted common coordinates, we have J i
j = J

i

j . Differentiating these rela-
tions covariantly, we obtain

(1.7) ∇kJ
i
j = ∇kJ

i

j + J
i

lT
l
jk − J

l

jT
i
lk.

Convolution of both sides in (1.7) with gkj yields

∇kJ
ik =

1
2
gkj(∇kJ

i

j + ∇jJ
i

k) + J
i

i(g
jkT i

jk).

Since (M, ḡ, J̄) is nearly Kähler, these equations take the form

∇kJ
ik = J

i

i(g
jkT i

jk).

Now the claim is obvious. �

Corollary 1.5. If (M, g, J) and (M, ḡ, J) are two nearly Kähler manifolds, then any
almost complex diffeomorphism f : M →M is a harmonic mapping. �

Remark. For Kähler manifolds, an almost complex mapping is holomorphic (see [14,
p. 118]). Therefore, Theorem 1.4 implies a known result saying that a holomorphic
diffeomorphism between two Kähler manifolds is a harmonic mapping.

1.3. A criterion for a diffeomorphism to be harmonic.

Theorem 1.6. Suppose (M, g) and (M, ḡ) are Riemannian manifolds with Levi-Civita
connections ∇ and ∇, respectively. Then a diffeomorphism f : M → M is harmonic if
and only if the differential equations ∇kḡkj = 1

2∇j(gilḡil) for ∇k = gkj∇j or the differ-
ential equations gkl∇kglj = 1

2g
kl∇jgkl are fulfilled in f -adjusted common coordinates.

Proof. Observing that

(1.8)
∇kgij = −gljT

l
ik − gilT

l
jk,

∇kḡij = ḡljT
l
ik + ḡilT

l
jk,
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we find the following expressions for the deformation tensor:

(1.9)
T k

ij = gkl(−∇igjl −∇jgil + ∇lgij),

T k
ij = ḡkl(∇iḡjl + ∇j ḡil −∇lḡij),

where the ḡkl are the components of the matrix inverse to that of the metric tensor ḡ.
Then, using (1.9), we can transform the Euler–Lagrange equations (1.3) to gkl∇kglj =
1
2g

kl∇jgkl, or to

(1.10) ∇k ḡkj =
1
2
∇j(gilḡil). �

1.4. Vanishing theorem.

Theorem 1.7. Suppose (M, g) is a complete Riemannian manifold with positive Ricci
curvature and (M, ḡ) is a Riemannian manifold with nonpositive sectional curvature.
Then there exist no harmonic diffeomorphisms M →M .

Proof. We fix f -adjusted common coordinates on (M, ḡ) and (M, g). Starting with the
components R̄ijkl of the curvature tensor R̄ of (M, ḡ) and the components Rij of the Ricci
tensor Ric of (M, g), we construct two scalar invariants: r = gikgilR̄ijkl and s = ḡijRij .

A vanishing theorem for harmonic mappings of Riemannian manifolds of arbitrary
dimensions was proved in [9]. By that theorem, a diffeomorphism f : M → M of a
compact oriented Riemannian manifold (M, g) to a Riemannian manifold (M, ḡ) is not
harmonic if r(f) < s(f), where

r(f) =
∫

M

gikgilRijkl Vol and s(f) =
∫

M

ḡijRij Vol .

Obviously, this inequality is fulfilled automatically if the sectional curvature of (M, ḡ) is
nonpositive; on the contrary, the Ricci curvature of (M, g) is everywhere positive. �

Remark. The theorem in [9] mentioned above was proved with the help of the Green
theorem [23, p. 259]; to apply it we must assume that (M, g) is compact and oriented.
Since a complete Riemannian manifold with positive Ricci curvature is compact [11,
p. 117], the compactness assumption in Theorem 1.6 is replaced by the assumption of
completeness of (M, g). Furthermore, the assumption of orientability of (M, g) in the
same theorem is also immaterial because if M is nonorientable, then we can consider the
double cover of M which is orientable (see, e.g., [8, p. 308] and [14, p. 63]).

§2. Seven classes of harmonic diffeomorphisms

2.0. By Theorem 1.6, the components Gij of the tensor field G = ḡ− 1
2 (traceg ḡ)g satisfy

the differential equations ∇kGkj = 0 if and only if the diffeomorphism f : M → M is
harmonic.

We consider the space

G(E) = {G̃ ∈ E∗ ⊗ S2E | G̃12(c) = 0},

where E is an m-dimensional Euclidean vector space and G̃23(c) =
∑m

k=1 G̃(c, ek, ek) for
an orthonormal basis {e1, . . . , em} and an arbitrary c in E. By [18], the tensor space G(E)
is the sum of three subspaces irreducible with respect to the action of the orthogonal
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406 S. E. STEPANOV AND I. G. SHANDRA

group O(m,R):

G1(E) = {G̃ ∈ G(E) | G̃(a, b, c) = G̃(b, a, c)},
G2(E) = {G̃ ∈ G(E) | G̃(a, b, c) + G̃(b, c, a) + G̃(c, a, b) = 0},
G3(E) = {G̃ ∈ G(E) | G̃(a, b, c) = (m2 +m− 2)−1

× 
(m+ 1)G̃23(a)q(b, c) − G̃23(b)q(a, c) − G̃23(c)q(a, b)�}.
The tensor field ∇G on (M, g) is a section of the vector bundle G(TM), the fiber of

which at each point is the space G(E). As a consequence, we obtain a pointwise decom-
position of ∇G into a sum of the tensor fields corresponding to the pointwise irreducible
components of the action of the group O(m,R). This decomposition of ∇G determines
a “coarse” classification of harmonic diffeomorphisms, where each class consists of dif-
feomorphisms for which ∇G is a section of one of the invariant subbundles G1(TM),
G2(TM), and G3(TM) or of their direct sums.

Definition 2.1. Let (M, g) and (M, ḡ) be Riemannian manifolds with Levi-Civita con-
nections ∇ and ∇, respectively, and let G = ḡ− 1

2 (traceg ḡ)g. A harmonic diffeomorphism
f : M →M belongs to the class I if at each point x ∈M the tensor field ∇G belongs to
the subspace I(TxM) of the tensor space G(TxM).

We complete the list of classes with yet another class for which ∇G is a section of the
subbundle G1(TM) ∩ G2(TM) ∩ G3(TM), i.e., ∇G = 0.

Theorem 2.1. Suppose (M, g) and (M, ḡ) are two Riemannian manifolds. In an invari-
ant way, we can distinguish seven classes of harmonic diffeomorphisms f : M → M for
each of which the field ∇G, where G = ḡ− 1

2 (traceg ḡ)g, is a section of the corresponding
invariant subbundle G1(TM), G2(TM), G3(TM), or G1(TM)∩G2(TM)∩G3(TM), or of
one of their direct sums. �

We consider the first three classes of harmonic diffeomorphisms.

2.1. Class I1. Suppose f ∈ I1. This means that the components of the tensor field ḡ
satisfy equations (1.10) and also satisfy the differential equations

∇kḡij − 1
2
gij∇k(gnlḡnl) = ∇iḡkj − 1

2
gkj∇i(gnlḡnl).

The collection of these equations is equivalent to the system of differential equations

∇k(gnlḡnl) = 0,(2.1)

∇kḡij = ∇iḡkj .(2.2)

From (2.2) it follows that on (M, g) the tensor field ḡ is a Codazzi tensor with constant
trace. The geometry of manifolds bearing Codazzi tensor fields is described in detail in
the literature (see the survey in [19, pp. 590–598]). For this reason, the facts established
earlier can be used for a description of the geometry of harmonic diffeomorphisms of class
I1. For example, we have the following result.

Theorem 2.3. Suppose (M, g) and (M, ḡ) are two Riemannian manifolds, and (M, g)
has constant sectional curvature K. A diffeomorphism f : M →M is harmonic of class
I1 if and only if the tensor ḡ has the form

ḡ = Hess(F ) +KFg,

where the function F on (M, g) is a solution of the Poisson equation ∆F + nKF = C
for a constant C > 0.
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Proof. On the one hand, f is harmonic of class I1 if and only if equations (2.1) and (2.2)
are fulfilled. On the other hand (see [19, p. 591]), since (M, g) has constant sectional
curvature K, the general solution of (2.2) has the form ḡ = Hess(F ) + KFg, where
F is an arbitrary differentiable function on (M, g) and Hess(F ) is the Hessian of F ,
Hess(F ) = ∇(dF ) (see [19, p. 53]). In this case, equations (2.1) take the form of the
Poisson equation ∆F+nKF = C for some constant C > 0. Finally, observe that we must
look only for the solutions F of the Poisson equation that ensure the positive definiteness
of the field ḡ. For example, in the trivial case where f is a homothety of a manifold
(M, g) of constant sectional curvature K > 0, we set F = K−1e2σ because ḡ = e2σg for
σ = const. �

Applying M. Berger’s theorem [7, p. 591] on the Killing tensors with constant trace,
we arrive at the following result.

Theorem 2.4. Suppose (M, g) is a compact orientable Riemannian manifold of non-
negative sectional curvature K, and K > 0 for at least one point. Then each harmonic
diffeomorphism f ∈ I1 of (M, g) to another Riemannian manifold (M, ḡ) is a homoth-
ety. �
2.2. Class I2. Now suppose that f ∈ I2. This means that the components of the tensor
field ḡ satisfy (1.10) and the differential equations[
∇kḡij − 1

2
gij∇k(gnlḡnl)

]
+

[
∇iḡkj − 1

2
gkj∇i(gnlḡnl)

]
+

[
∇j ḡki − 1

2
gki∇j(gnlḡnl)

]
= 0.

For m ≥ 3, the system of all these equations is equivalent to the following system of
differential equations:

∇k(gnlḡnl) = 0,(2.3)

∇kḡij + ∇iḡkj + ∇iḡkj = 0.(2.4)

The form of equations (2.4) implies that on (M, g) the tensor field ḡ is a Killing tensor
with constant trace (see [20, pp. 339–340]).

The geometry of manifolds bearing Killing tensor fields is described in detail in the
literature. We can apply the known facts for describing the geometry of harmonic dif-
feomorphisms of class I2. For example, a Killing tensor field on a Riemannian manifold
determines the first quadratic integral of the equations of geodesics (see [4, pp. 157–161]).
Therefore, the existence of quadratic integrals of the equations of geodesics is a necessary
condition for the existence of a harmonic diffeomorphism f : M →M of class I2.

Theorem 2.5. Suppose (M, g) and (M, ḡ) are two Riemannian manifolds. If (M, g) is
locally flat, then a diffeomorphism f : M → M is harmonic of class I2 if and only if in
f -adjusted common coordinates {x1, . . . , xm} the tensor ḡ has the form

(2.5) ḡij = Aijklx
kxl +Bijkx

k + Cij

for some constants Aijkl , Bijk, Cij that are symmetric with respect to the first two sub-
scripts and such that

Aijkl +Ajkil +Akijl = 0,
Bijk +Bjki +Bkij = 0,

(2.6)

gijAijkl = gijBijk = 0.(2.7)

Proof. On the one hand, f is harmonic of class I2 if and only if equations (2.3) and
(2.4) are fulfilled. On the other hand (see [21]), since (M, g) is a locally flat Riemannian
manifold, the general solution of (2.4) has the form (2.5) for constants Aijkl , Bijk, and
Cij symmetric with respect to the first two subscripts and satisfying (2.6). In this case,
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408 S. E. STEPANOV AND I. G. SHANDRA

equations (2.3) take the equivalent form (2.7). Finally, we observe that, besides the
conditions (2.6) and (2.7), the choice of the constants Aijkl , Bijk, and Cij in (2.5) is
restricted by the condition of positive definiteness of the tensor field ḡ. �

Suppose that (M, g) is a compact orientable Riemannian manifold with K ≤ 0 and
that K < 0 for at least one point. In [22] it was established that each Killing tensor field
on M , and in particular the Killing field ḡ, has the form ḡ = Cg, where C = const. This
implies the following result.

Theorem 2.6. Suppose (M, g) is a compact orientable Riemannian manifold of non-
positive sectional curvature K, and K < 0 for at least one point. Then each harmonic
diffeomorphism f ∈ I2 of (M, g) to another Riemannian manifold (M, ḡ) is a homoth-
ety. �

2.3. Class I3. The third class I3 of harmonic diffeomorphisms is related to the following
system of differential equations:

(2.8) ∇kḡij =
mgij∇kḡ

l
l + m−2

2 gkj∇iḡ
l
l + m−2

2 gki∇j ḡ
l
l

(m+ 2)(m− 1)
.

We introduce the symmetric tensor field ϕ with components

ϕij = ḡij − m

(m+ 2)(m− 1)
(gklḡkl)gij ,

which, as easily follows from (2.8), satisfy the differential equations

(2.9) 2∇kϕij = (gnl∇iϕnl)gkj + (gnl∇jϕnl)gki.

By N. S. Sinyukov’s theorem (see [6, p. 122]), a Riemannian manifold (M, g) bears a
symmetric tensor field ϕ with components satisfying (2.9) if and only if (M, g) admits a
projective diffeomorphism to some (pseudo-)Riemannian manifold (M̃, g̃).

Conversely, suppose that a Riemannian manifold (M, g) admits a projective diffeomor-
phism, and therefore there exists a symmetric tensor field ϕ on (M, g) the components
of which satisfy equations (2.9).

The proof of the Sinyukov theorem implies that if (M̃, g̃) is a Riemannian (rather
than a pseudo-Riemannian) manifold, then the tensor field ϕ must be positive definite.
For this reason, we assume that ϕ is positive definite and consider the tensor field ḡ on
(M, g) with components ḡij = ϕij + m

m−2(gkiϕkl)gij . We can check that these components
satisfy (2.8). Therefore, the diffeomorphism id : (M, g) → (M, ḡ) is harmonic of class I3.
Thus, we have proved the following result.

Theorem 2.7. Suppose (M, g) is a Riemannian manifold. If (M, g) admits a harmonic
diffeomorphism f ∈ I3 to a Riemannian manifold (M, ḡ), then (M, g) also admits a
projective diffeomorphism to some (pseudo-)Riemannian manifold (M̃, ḡ). Furthermore,
if (M, g) admits a projective diffeomorphism to a Riemannian manifold (M̃, g̃), then
(M, g) also admits a harmonic diffeomorphism f ∈ I3 to some Riemannian manifold
(M, ḡ). �

We note that the theory of projective diffeomorphisms is well developed (see [6]), and
hence, when studying the geometry of harmonic diffeomorphisms of the third class, we
can use the known facts. For example, we prove the following result.

Corollary 2.8. Suppose (M1, g1) is a Riemannian 1-manifold and (M2, g2) is a Rie-
mannian (m − 1)-manifold. Then the cross-product M1 ×F M2 admits a harmonic dif-
feomorphism f ∈ I3 to some Riemannian m-manifold (M, ḡ).
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Proof. We recall that the cross-product M1×F M2 of two Riemannian manifolds (M1, g1)
and (M2, g2) is a manifold of the form (M, g) = (M1 × M2, g1 ⊕ Fg2) for a positive
F ∈ C∞M1 (see [19, p. 328]). It is known that if dimM1 = 1, then M1 ×F M2 admits
a projective diffeomorphism to some Riemannian manifold (M, ḡ) (see [6, pp. 98, 123]).
Applying Theorem 2.7, we obtain the assertion. �

For harmonic diffeomorphisms f ∈ I3, we have the following statement, which com-
pletely repeats Theorem 2.6.

Theorem 2.9. Suppose that (M, g) is a compact orientable Riemannian manifold of
nonpositive sectional curvature K and that K < 0 for at least one point. Then each
harmonic diffeomorphism f ∈ I3 of (M, g) to another Riemannian manifold (M, ḡ) is a
homothety.

Proof. We introduce the tensor field ψ with local components ψij = ϕij − (gklϕkl)gij =
ḡij − 2(m + 2)−1(gklḡkl)gij . By (2.8) and (2.9), the field ψ is Killing. Therefore, on
a compact orientable manifold (M, g) where K ≤ 0 and at least at one point we have
K < 0, the field ψ has the form ψ = Cg, where C = const (see [22]). The latter means
that

gklϕkl =
m− 2

(m+ 2)(m− 1)
gklḡkl = const,

whence
ḡ = Cg, where C = const. �

Remark. There is another method for classification of harmonic diffeomorphisms (see
[10]). In order to apply it, we must use the pointwise O(m,R)-irreducible decomposition
of the space TM ⊗ S2

0M , a section of which is the deformation tensor T . As a result,
we also distinguish seven classes of harmonic diffeomorphisms, and one of them, as was
shown in [10], is described by Theorem 1.3.

§3. Infinitesimal harmonic transformations of Riemannian
and complex manifolds

3.1. In a neighborhood U of any point of a Riemannian manifold (M, g), an arbitrary
vector field ξ ∈ C∞TM generates a local one-parameter group of infinitesimal transfor-
mations ϕt : U →M determined by the formulas

ϕt(x) = x̄k + tξk,

where {x1, . . . , xm} are local coordinates in U , t ∈ (−ε,+ε) ⊂ R is a parameter, and
ξ = ξk∂k (see [23, pp. 39–41] and [24, pp. 21–23]). For this reason, the vector field
ξ ∈ C∞TM is also called an infinitesimal transformation in (M, g).

As a result of an infinitesimal transformation, the local components gij of the metric
tensor g and the Christoffel symbols Γk

ij take the following form:

(3.1) ḡij = gij + t(Lξgij), Γ
k

ij = Γk
ij + t(LξΓk

ij)

(see [24, pp. 40, 41]). We have

(3.2) Lξgij = ∇iξj + ∇jξi, LξΓk
ij = ∇i∇jξ

k −Rk
ijlξ

l,

and the components Rk
ijl of the curvature tensor R of the connection ∇ are expressed in

terms of the Lie derivatives of the components gij of the tensor g (see [23, p. 37]) and of
the Christoffel symbols Γk

ij with respect to the vector field ξ.
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Definition 3.1. A vector field ξ is an infinitesimal harmonic transformation in (M, g)
if the local one-parameter group of infinitesimal transformations generated by ξ in a
neighborhood of any point of (M, g) consists of infinitesimal harmonic transformations.

Applying formulas (3.1), we see that ξ is an infinitesimal harmonic transformation if
ξ satisfies the equations

(3.3) gij(LξΓk
ij) = 0.

Theorem 3.1. A vector field ξ ∈ C∞TM is an infinitesimal harmonic transformation in
(M, g) if and only if the components of ξ satisfy the differential equations ∆ξk = 2Rk

j ξ
j .

Proof. The Laplace–Beltrami operator ∆ acts on an arbitrary vector field ξ by the for-
mula

∆ξk = −gij∇i∇jξ
k +Rk

j ξ
j ,

where Rij = gikR
k
j are the components of the Ricci tensor Ric of (M, g) (see [8, p. 203]).

On the other hand, using (3.2), we can write equations (3.3) in the following equivalent
form:

(3.4) gij∇iξ
k +Rk

j ξ
j = 0.

These two systems of equations imply that ∆ξk = 2Rk
j ξ

j . �

Remark. In the case of Euclidean space, equations (3.6) turn into the system of Laplace–
Beltrami equations ∆ξk =

∑m
j=1 ∂

2
j ξ

k = 0, whence the term “infinitesimal harmonic
transformation”.

3.2. Examples of infinitesimal harmonic transformations.

3.2.1. Our first example is an infinitesimal conformal transformation in (M, g), i.e., a
vector field ξ satisfying the condition

(3.5) Lξgij = ∇iξj + ∇jξj =
2
m

(∇kξ
k)gij

(see [21, p. 284]). The field ξ is called an infinitesimal homothety if ∇kξ
k = const, and

an infinitesimal isometry if ∇kξ
k = 0. The local one-parameter group of infinitesimal

transformations generated by ξ is conformal (homothetic or isometric) if and only if ξ is
an infinitesimal conformal transformation (an infinitesimal homothety or an infinitesimal
isometry, respectively).

If ξ is a conformal transformation, direct calculations show that

∆ξi = 2Rijξ
j +m−1(m− 2)∇i(∇kξ

k)

(see, e.g., [5]). Therefore, each infinitesimal conformal transformation of a Riemannian 2-
manifold (M, g) is harmonic. For other dimensions, this is possible only if the infinitesimal
transformation in question is a homothety or an isometry.

By [5, Chapter III, Theorem 6.15], an infinitesimal conformal transformation of a
compact Kähler manifold (M, g, J) is an isometry, whence the following result.

Corollary 3.2. An infinitesimal conformal transformation of a compact Kähler manifold
(M, g, J) is harmonic. �
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3.2.2. Suppose (M, g, J) is a Kähler manifold. As our second example, we consider a
vector field ξ on (M, g, J) that is an infinitesimal automorphism of the natural almost
complex structure of M (see [5, Chapter IV, §6]), i.e., Lξ J = 0. Since equations (3.4)
are fulfilled on a compact Kähler manifold (M, g, J) if and only if the vector field ξ is an
infinitesimal automorphism of the natural almost complex structure of M (see [5, 7]), we
obtain the following result.

Theorem 3.3. An infinitesimal automorphism of the natural almost complex structure
of a compact Kähler manifold (M, g, J) is a harmonic transformation. The converse is
also true. �

3.3. Properties of infinitesimal harmonic transformations.

Theorem 3.4. An infinitesimal harmonic transformation ξ of a Riemannian manifold
(M, g) is isometric if M is compact and the field ξ is solenoidal.

Proof. We recall that the relations ∆ξk = 2Rk
j ξ

j and ∇jξ
j = 0 are fulfilled if and only

if ξ is an infinitesimal isometry of (M, g) (see [8, p. 63]). It remains to use Theorem
3.1. �

Theorem 3.5. An infinitesimal harmonic transformation ξ of a compact Kähler man-
ifold (M, g, J) of constant scalar curvature splits into a sum of the form ξ = ξ′ + Jξ′′,
where ξ′ and ξ′′ are infinitesimal isometries in (M, g, J).

Proof. By Theorem 3.3, since (M, g, J) is a compact Kähler manifold, an infinitesimal
harmonic transformation ξ of (M, g, J) is an infinitesimal automorphism of the natural
almost complex structure of M . On the other hand, by the A. Lichnerowicz theorem
(see [5, Chapter IV, Theorem 8.1] and [8, p. 130]), since (M, g, J) is a compact Kähler
manifold of constant scalar curvature, each vector field ξ as above on (M, g, J) splits
into a sum of the form ξ = ξ′ + Jξ′′, where ξ′ and ξ′′ are infinitesimal isometries in
(M, g, J). �

Theorem 3.6. A complete Riemannian manifold (M, g) with negative Ricci curvature
admits no nonzero infinitesimal harmonic transformations.

Proof. Applying the Laplace–Beltrami operator ∆ to the function F = gijξ
iξj for an

arbitrary infinitesimal harmonic transformation ξ of (M, g), we obtain

(3.6) ∆F = gij∇i∇j(gijξ
iξj) = 2
−Rijξ

iξj + gklgij(∇kξ
i)(∇lξ

j)�.
Next, our assumption on the Ricci curvature of M implies that (M, g) is compact and
∆F ≥ 0. Finally, using the Hopf lemma (see [14, p. 308] and [24, p. 29]), we conclude
that if (3.6) is fulfilled, then ξ = 0. �
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