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HARMONIC DIFFEOMORPHISMS OF NONCOMPACT
SURFACES AND TEICHMÜLLER SPACES

VLADIMIR MARKOVIC

Introduction

Let g :M −→ N be a quasiconformal harmonic diffeomorphism between noncompact
Riemann surfaces M and N. In this paper we study the relation between the map
g and the complex structures given on M and N. In the case when M and N

are of finite analytic type we derive a precise estimate which relates the map g

and the Teichmüller distance between complex structures given on M and N. As a
corollary we derive a result that every two quasiconformally related finitely generated
Kleinian groups are also related by a harmonic diffeomorphism. In addition, we
study the question of whether every quasisymmetric selfmap of the unit circle has
a quasiconformal harmonic extension to the unit disk. We give a partial answer to
this problem. We show the existence of the harmonic quasiconformal extensions for
a large class of quasisymmetric maps. In particular it is proved that all symmetric
selfmaps of the unit circle have a unique quasiconformal harmonic extension to the
unit disk.

Let us first mention some closely related results. In [29] Wolf showed that there is
a unique harmonic quasiconformal map in the homotopy class of a homeomorphism
between compact surfaces of finite genus. Sampson [21] constructed an injective map
between the Teichmüller space of compact surfaces and the space of holomorphic
quadratic differentials via the Hopf differentials of the harmonic maps. Wolf showed
that this map is a proper and surjective parametrization of the corresponding
Teichmüller space via the space of holomorphic quadratic differentials. The first
study of the connections between Teichmüller theory and harmonic maps appears
in the work of Earle and Eells [7]. Regarding this approach we also refer to the
work of Tromba [27] (see also [24, 29, 30]).

The case of noncompact surfaces carries additional difficulties. In particular, it
is not known whether the homotopy class of a quasiconformal selfmap of the unit
disk necessarily contains a unique harmonic quasiconformal representative. This
problem is also known as the Schoen conjecture. In [16] Li and Tam showed that
every regular diffeomorphism of the unit circle with nonvanishing first derivative
has a uniformly regular harmonic extension to the unit disk. This extension is a
quasiconformal map. In [17] the same authors proved the uniqueness part of the
Schoen conjecture in the unit disk.

Wan [28] showed that for every holomorphic function φ on the unit disk with
the bounded Bers norm there exists the associated quasiconformal harmonic diffeo-
morphism of the unit disk such that its Hopf differential is equal to φ. In particular
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he obtained an injective map from the Bers space into the universal Teichmüller
space. In this paper we show that the map introduced by Wan can be defined in the
case of an arbitrary hyperbolic Riemann surface.

An interesting question related to the Schoen conjecture is to compare the Bers
norm of the Hopf differential and the Teichmüller distance of the resulting point
in the Teichmüller space with the base point. In the case of Riemann surfaces of
finite analytic type we obtain the needed estimates by applying the main inequality
of Reich and Strebel for quasiconformal maps.

Symmetric selfmaps of the unit circle are a natural generalization of diffeo-
morphisms of the unit circle. They form a large class among all quasisymmetric maps.
In particular, there are symmetric maps which are not even absolutely continuous
(see [5]). It was conjectured that for symmetric maps there is a solution to the Schoen
conjecture (see for example [13]). As an application of the well-known characteriz-
ation of the symmetric maps (see [8, 9, 11, 25]) with some additional considerations
we prove this conjecture.

1. Preliminary results

We recall a few basic definitions. Let (M,σ) and (N, ρ) be Riemann surfaces
endowed with the hyperbolic metrics σ and ρ respectively. The hyperbolic metric is
complete and has constant Gaussian curvature −1. If f :M −→ N is a C2 map then
f is said to be harmonic with respect to ρ if

fzz̄ +

(
∂ log ρ

∂w
◦ f
)
fzfz̄ = 0, (1)

where z and w are the local parameters on M and N respectively. Also f satisfies
equation (1) if and only if

((ρ2 ◦ f)fz(fz̄))(z) dz
2 = ϕ(z) dz2 (2)

is a holomorphic quadratic differential on M. The differential ϕ(z) dz2 is called the
Hopf differential and we write Hopf(f) = ϕ(z) dz2.

For g :M −→ N the energy integral is given by

E(g, ρ) =

∫
M

∫
(|∂g|2 + |∂̄g|2) dVσ.

Here

∂g =
(ρ ◦ g)

σ
gz, ∂̄g =

(ρ ◦ g)

σ
gz̄

are the partial derivatives taken with respect to the metrics ρ and σ, and dVσ is the
volume element on (M,σ). Assume that energy integral of f is bounded. Then f is
harmonic if and only if f is a critical point of the corresponding functional where
the homotopy class of f is the range of this functional.

The following are Bochner’s well-known formulae (see [23, 24]).

∆σ log |∂f| = |∂f|2 − |∂̄f|2 − 1

∆σ log |∂̄f| = |∂̄f|2 − |∂f|2 − 1.

Here ∆σ denotes the Laplace operator taken with respect to the metric ρ.
If f is a harmonic diffeomorphism then the complex dilatation

Belt(f) =
fz̄

fz

dz̄

dz
= µ

dz̄

dz
,



noncompact surfaces and teichmüller spaces 105

is of the form

µ(z)
dz̄

dz
=
σ−2(z)ϕ(z)

|∂f|2(z)

dz̄

dz
. (3)

If g :M −→ N is a quasiconformal map then the pair (N, g) is said to be a marked
Riemann surface. We identify two marked surfaces (N1, g1), (N2, g2) if and only if

g2 ◦ g−1
1 :N1 −→ N2

is homotopic to a conformal map. The corresponding quotient space of all marked
surfaces M is called the Teichmüller space of M or just Teich(M). The Teichmüller
metric on Teich(M) is given by

d(τ1, τ2) = inf
f

1

2
log

1 + ‖µ‖∞
1− ‖µ‖∞ ,

where (N1, g1) and (N2, g2) are two representatives of the points τ1, τ2 ∈ Teich(M).
The infimum is taken over all quasiconformal maps f homotopic to g2 ◦ g−1

1 . Here
µ(z) dz̄/dz is the complex dilatation of the map f. Since f is quasiconformal, we
have µ ∈ B1(M), where B1(M) is the unit ball in the Banach space L∞(M).

Recall that the Bers space BQD(M) is the space of all holomorphic quadratic
differentials ϕ(z) dz2 on M, which are bounded in the following sense

‖ϕ‖ = sup
p∈M
|ϕ(p)|σ−2(p) < ∞.

‖ϕ‖ denotes the Bers norm of ϕ(z) dz2.
Wan [28] discovered a criteria for a harmonic diffeomorphism to be a quasi-

conformal map. Assume that a harmonic diffeomorphism f satisfies the condition
that (M,−|∂f|2|dz|2) is a complete metric space. The necessary and sufficient condi-
tion for f to be quasiconformal is that Hopf(f) ∈ BQD(M). In the same paper Wan
proved the following proposition.

Proposition 1.1. Let ∆ be the unit disk and ϕ(z) dz2 ∈ BQD(∆). Then there is
a unique harmonic diffeomorphism f : ∆ −→ ∆, which fixes the points 1, i, and −1
such that Hopf(f) = ϕ(z) dz2 and that (∆, |∂f|2|dz|2) is a complete metric space. This
induces an injection map F : BQD(∆) −→ Teich(∆) which is continuous with respect
to the Teichmüller metric.

Remark 1.1. Teich(∆) is called the universal Teichmüller space. The map F is
defined below for all hyperbolic surfaces. The case of the unit disk will be studied
in Section 3.

Before we consider the case of Riemann surfaces of finite analytic type we need to
generalize Proposition 1.1 to all hyperbolic Riemann surfaces. Let M be a hyperbolic
Riemann surface and let π : ∆ −→ M denote the standard universal covering map.
There is a Fuchsian group Γ such that the quotient surface ∆/Γ is conformally
equivalent to M. Thus we can replace M with the quotient surface ∆/Γ.

Let ϕ(z) dz2 ∈ BQD(∆) be a quadratic differential which is equivariant with the
action of the group Γ. By Proposition 1.1 there is a quasiconformal harmonic
diffeomorphism f : ∆ −→ ∆ such that

Hopf(f)(A′)2 = ϕ(z) dz2

and (∆, |∂f|2|dz|2) is a complete metric space. Since ϕ(z) dz2 is equivariant with the
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action of the group Γ we know that

Hopf(f ◦ A) = Hopf(f)

for all A ∈ Γ. By the uniqueness part of Proposition 1.1 we conclude that there is a
unique Mobiüs transformation B such that

B ◦ f = f ◦ A.
Therefore we obtain a new Fuchsian group Γ′, B ∈ Γ′ and

f−1Γ′f = Γ.

Since f is a quasiconformal map, ∆/Γ′ is a new Riemann surface.
Thus we have shown that for a fixed ϕ(z) dz2 ∈ BQD(∆,Γ) we have a unique

quasiconformal harmonic diffeomorphism f, such that Hopf(f) = ϕ(z) dz2 and

f : ∆/Γ −→ ∆/Γ′.

The fact that (∆/Γ, |∂f|2|dz|2) is a complete metric space follows from the complete-
ness of the metric space (∆, |∂f|2|dz|2).

We define the map F : BQD(∆/Γ) −→ Teich(∆/Γ) as

F(ϕ) = (∆/Γ′, f),

where (∆/Γ, f) is a marked Riemann surface and represents a point in Teich(∆/Γ).

Lemma 1.1. Let M be a hyperbolic Riemann surface conformally equivalent to the
quotient surface (∆/Γ). Then the map F : BQD(M) −→ Teich(M) defined above is an
injective and continuous map with respect to the Teichmüller metric on Teich(M).

Proof. It is well known that the Teichmüller space Teich(∆/Γ) is naturally
embedded in the universal Teichmüller space Teich(∆) (see [10, 14]). In other words,
each point in the space Teich(∆) is uniquely determined by the corresponding
quasisymmetric map of the unit circle. Li and Tam (see [17]) showed that every
quasisymmetric map of the unit circle has at most one quasiconformal harmonic
extension provided that (∆/Γ, |∂f|2|dz|2) is a complete metric space. Therefore the
map F is an injection. Continuity of the map F follows from the related result of
Proposition 1.1. q

Remark 1.2. It is easy to see that the map F is a diffeomorphism in the case of
an arbitrary hyperbolic surface M. In particular, F is an open map.

2. Estimates on the Teichmüller distance

Recall that a Riemann surface M is said to be of finite analytic type if and only
if M is obtained from a closed Riemann surface of finite genus g by deleting n

points, n ∈ N. Then M is said to be of type (g, n). Since we study the harmonic maps
with respect to the hyperbolic metric we need to make sure that our surfaces are
hyperbolic. A surface of finite analytic type is hyperbolic if and only if the inequality

3g − 3 + 2n > 0

holds.
If σ denotes the hyperbolic metric on a Riemann surface M then (M,σ) is a
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complete, but may be a noncompact, manifold. On the other hand, if M is of finite
analytic type then Teich(M) and BQD(M) are of finite dimension.

If ϕ(z) dz2 ∈ BQD(M), then

‖ϕ‖1 =

∫
M

∫
|ϕ|

defines a Banach norm on the space BQD(M). The norms ‖ϕ‖ and ‖ϕ‖1 are different,
but there is a positive constant C , depending only on the type (g, n) such that

C−1‖ϕ‖ 6 ‖ϕ‖1 6 C‖ϕ‖,
for all ϕ ∈ BQD(M).

Let (N, ρ) be a Riemann surface with the hyperbolic metric ρ and f, g :M −→ N

be two homotopic quasiconformal maps. Both maps have continuous extension
to the punctures and likewise it is assumed that the homotopy extends to the
punctures and keeps each puncture fixed. If µ(z) dz̄/dz and ν̃(w)dw̄/dw are the
complex dilatations of f and g−1 respectively then for every ϕ(z) dz2 ∈ BQD(M) we
have

‖ψ‖1 6

∫
M

∫
|ψ| |1− µ

ψ
|ψ| |2

1− |µ|2
|1 + (ν̃ ◦ f)θ ψ

|ψ| |2
1− |ν̃ ◦ f|2 , (4)

where

θ =
1− µ̄ ψ̄

|ψ|
1− µ ψ

|ψ|
.

Equation (4) is known as the main inequality and is due to Reich and Strebel.
This inequality holds for all hyperbolic Riemann surfaces if we assume that the
differential ψ(z) dz2 is integrable. For the proof of this inequality and its application
to the Teichmüller theory we refer to [4, 10, 20].

Suppose now that f is a harmonic diffeomorphism. The complex dilatation of f
is given by

µ(z)
dz̄

dz
=

(
|µ| |ϕ|

ϕ

)
(z)
dz̄

dz
,

where ϕ(z) dz2 = Hopf(f) ∈ BQD(M). We apply the main inequality (4). Take
ϕ(z) dz2 = ψ(z) dz2. Since |θ|ϕ|/ϕ| = 1 we estimate the expression under the integral
in (4) as

|1− µ ψ
|ψ| |2

1− |µ|2
|1 + (ν̃ ◦ f)θ ψ

|ψ| |2
1− |ν̃ ◦ f|2 6

1− |µ|
1 + |µ|

1 + |ν̃ ◦ f|
1− |ν̃ ◦ f| .

Therefore the right side in (4) becomes

‖ϕ‖1 6

∫
M

∫
|ϕ|1− |µ|

1 + |µ|
1 + |ν̃ ◦ f|
1− |ν̃ ◦ f| .

We obtain

‖ϕ‖1 6
1 + ‖ν̃‖∞
1− ‖ν̃‖∞

∫
M

∫
|ϕ|1− |µ|

1 + |µ| . (5)

Let τ denote the point in Teich(M) represented by the pair (N, f). If τ0 is the origin
in Teich(M) (τ0 is represented by (M, id)) then the Teichmüller distance d(τ0, τ) is
given by

d(τ0, τ) = inf
1

2
log

1 + ‖ν‖∞
1− ‖ν‖∞ , (6)
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where ν(z) dz̄/dz is the complex dilatation of g and the infimum is taken over all
quasiconformal maps g homotopic to f. It is well known that ‖ν‖∞ = ‖ν̃‖∞ (note
that ν(z) dz̄/dz is defined on M and ν̃(w) dw̄/dw is defined on N). By varying the
map g in (5) over the whole homotopy class of f and by applying (6) we have

‖ϕ‖1 6

(∫
M

∫
|ϕ|1− |µ|

1 + |µ|
)
e2d(τ0 ,τ), (7)

where d(τ0, τ) is the Teichmüller distance between τ0 and τ. If ∂f and ∂̄f are the
partial derivatives of f taken with respect to the metrics σ and ρ we have

|ϕ|1− |µ|
1 + |µ| = |ϕ| 1− |µ|2

(1 + |µ|)2
.

From |ϕ| = σ2|∂f||∂̄f| we obtain

|ϕ|1− |µ|
1 + |µ| =

|∂f|2 − |∂̄f|2
(1 + |µ|)2

σ2. (8)

Also ∫
M

∫
(|∂f|2 − |∂̄f|2)

(1 + |µ|)2
dVσ 6

∫
N

∫
dVρ = Area(N, ρ). (9)

By replacing the equality (8) in (7), we obtain

‖ϕ‖1 6

(∫
M

∫
(|∂f|2 − |∂̄f|2)

(1 + |µ|)2
dVσ

)
6 e2d(τ0 ,τ).

By using (9) we estimate the right side of the inequality (7) and we obtain

‖ϕ‖1 6 Area(N, ρ)e2d(τ0 ,τ). (10)

Let Area(N, ρ) = A(g, n). A(g, n) is a constant which depends only on the type (g, n).
Thus, we have proved the following theorem.

Theorem 2.1. Suppose that M and N are hyperbolic Riemann surfaces of finite
analytic type (g, n) and let f :M −→ N be a quasiconformal harmonic diffeomorphism.
If ϕ(z) dz2 denotes the Hopf differential of f then∫

M

∫
|ϕ| 6 A(g, n)e2d(τ0 ,τ). (11)

Here τ ∈ Teich(M) is the point in the Teichmüller space represented by the pair
(N, f) and τ0 is the origin in Teich(M).

Remark 2.1. The proof above can be used to prove a more general form of
Theorem 2.1. In fact, this theorem holds for all harmonic diffeomorphisms (not
necessarily quasiconformal) between any two hyperbolic Riemann surfaces if we
assume that Hopf(f) is an integrable (2, 0) holomorphic form (see [18] for the
extension of the main inequality to the case of nonquasiconformal diffeomorphisms).

Since the Banach norms ‖ϕ‖1 and ‖ϕ‖ are equivalent, inequality (11) can be
written as

‖ϕ‖ 6 C(g, n)e2d(τ0 ,τ), (12)

where C(g, n) is a constant depending only on the type (g, n).
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Let F : BQD(M) −→ Teich(M) be the map defined by Lemma 1.1. Then inequality
(12) yields an estimate on the behaviour of the function F . In particular F is a proper
map. This means that if ϕn(z) dz

2 is a sequence in BQD(M) and ‖ϕn‖ → ∞, then
d(τ0, τn)→∞ where τn = F(ϕn). Next we prove the following theorem.

Theorem 2.2. If M is a hyperbolic Riemann surface of finite analytic type (g, n),
then the map F : BQD(M) −→ Teich(M) satisfies the growth condition

‖Hopf(f)‖ 6 C(g, n)e2d(τ0 ,τ), (13)

where F(Hopf(f)) = τ and C(g, n) is a constant depending only on the type (g, n). In
particular F is a proper homeomorphism of BQD(M) onto Teich(M).

Remark 2.2. It is possible to show that the above estimate is the best possible
in the sense that the majorant function in inequality (13) is the best possible. This
can be verified when M is the square punctured torus.

Proof of Theorem 2.2. Inequality (13) follows from inequality (12). The fact that
the map f is proper follows directly from (13). We already know by Lemma 1.1 that
F is a continuous injection. The surjectivity of F is a consequence of the fact that
Teich(M) is a finite dimensional metric space. q

Remark 2.3. Actually F is a real analytic map. This follows from the corre-
sponding result for the universal Teichmüller space.

Corollary 2.1. Let M and N be hyperbolic Riemann surfaces of type (g, n),
and let p1, . . . , pn and p̃1, . . . , pn denote the punctures on M and N respectively. Let
g :M −→ N be a homeomorphism which extends continuously to the punctures such
that g(p̃i) = p̃i, 1 6 i 6 n. Then there is a unique quasiconformal harmonic diffeo-
morphism f :M −→ N such that f is homotopic to g and in particular f(pi) = p̃i.

Proof. It is well known that there is a quasiconformal h which is homotopic to
g (see [1, 10]). Then the theorem follows from the surjectivity of the map F which
is proved in Theorem 2.3 q

Remark 2.4. In [12], Jost asked whether the Teichmüller space of a closed
Riemann surface with finitely many disks removed, can be parametrized by the
harmonic diffeomorphisms. In this case the homotopy is not required to fix the
boundary of deleted disks and therefore the dimensions of the corresponding
Teichmüller space and the space of quadratic differentials are finite. One can apply a
similar procedure as in the proof of Theorem 2.2 and prove that there is the desired
parametrization by harmonic diffeomorphisms.

Theorem 2.2 can be applied to the deformation theory of Kleinian groups.

Corollary 2.2. Assume that Γ and Γ′ are finitely generated Kleinian groups
without elliptic transformations acting on the Riemann sphere C̄. Let g : C̄ −→ C̄
be a quasiconformal conjugation map between Γ and Γ′, g−1Γg = Γ′. Then there is a
unique quasiconformal map f such that

(1) f−1Γf = Γ′;
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(2) f−1 ◦ g is homotopic to the identity map relative the limit set of the group Γ;
(3) f is harmonic with respect to the hyperbolic metric which is given on each com-

ponent of the set of discontinuity.

Proof. Let Ω, Ω′ and Λ, Λ′ be respectively the domains of discontinuity and
the limit sets of the groups Γ and Γ′. Since Γ and Γ′ act freely and properly
discontinuously on Ω, Ω′ respectively, the quotients Ω/Γ, Ω′/Γ′ are well defined. By
the Ahlfors finiteness theorem, Ω/Γ and Ω/Γ′ are finite unions of Riemann surfaces
of finite analytic type, which are denoted by M1, . . . ,Mn and N1, . . . , Nn respectively.

The quasiconformal map g induces the maps g̃i :Mi −→ Ni, 1 6 i 6 n. Each
map g̃i is a quasiconformal map. By Corollary 2.1 we know that there are unique
quasiconformal harmonic maps f̃i :Mi −→ Ni, satisfying the condition that f̃i is
homotopic to g̃i (rel punctures if any). Let µ̃i be the Beltrami dilatation of f̃i (µ̃i is
given on Mi). Denote by µ the lift of µ̃i given on Ω. The differential µ is defined
on the set of the discontinuity. We extend the µ onto the whole complex plane by
letting µ to be zero on the limit set. Let h be the solution of the Beltrami equation
hz̄ = µhz . The map h is a quasiconformal map and it is conformal if and only if the
differential µ is zero almost everywhere. Therefore, h is equivariant with the action
of the group Γ, so we may define

hΓh−1 = Γ1.

Γ1 is a finitely generated Kleinian group. Denote by Ω1, Λ1 respectively the
corresponding domain of the discontinuity and the limit set of the group Γ1.
The quotient Ω1/Γ1 is a finite union of Riemann surfaces R1, . . . , Rn. The map h

induces the quasiconformal maps

h̃i :Mi −→ Ri,

and we have

Belt(h̃i) = Belt(f̃i).

We conclude that the maps ki = h̃i ◦ (f̃i)
−1 are conformal maps. Since ki is conformal

we find that the map h̃i is a harmonic quasiconformal map. h is the lift of harmonic
maps h̃i and we see that the map h is a harmonic quasiconformal map with respect
to the hyperbolic metric on Ω1.

Let

g ◦ h−1 = α.

Once again there are induced quasiconformal maps α̃iRi −→ Ni, satisfying the
equality α̃i = g̃i ◦ (h̃i)

−1. Since g̃i is homotopic to f̃i and fi ◦ (h̃i)
−1 is a conformal map,

we conclude that the maps α̃i are homotopic to some conformal maps. Therefore
the quasiconformal map α is a trivial deformation of Ω1/Γ1. The classical theorem
(see [19]) asserts that α is a trivial deformation of (C,Γ1) as well. Recall that the
deformation space Def(C) is the space of all quasiconformal maps defined on C,
where we identify two maps q1 and q2 if q1 ◦ (q2)−1 is a Möbius transformation. Also
QC0(C,Γ1) denotes the spaces of all trivial deformations, that is all quasiconformal
maps on C which are isotopic to the identity map rel Λ1. By the definition we have

Teich(C,Γ1) = Def(C)/QC0(C,Γ1).

Since α is a trivial deformation of (C,Γ1) we conclude that there is a Möbius
transformation A, which agrees with the map α on the limit set Λ1. Also A(Ω1) = Ω′.
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Now we construct the map f which satisfies the conditions of this corollary. Define
the map f by

f = A ◦ h.
The quasiconformal map f is also a harmonic map with respect to the hyperbolic
metric on the open set Ω′. Since g = α ◦ h and also A agrees with α on Λ1, we
conclude that f and g agree on the limit set Λ. In addition we have

f ◦ Γ ◦ f−1 = Γ′.

Therefore the map f satisfies conditions (1), (2) and (3), and the corollary is proved.
q

3. Symmetric maps of the unit circle

The aim of this section is to give a partial answer to the Schoen conjecture about
existence of harmonic quasiconformal maps with prescribed boundary values. We
study the map F : BQD(∆) −→ Teich(∆) introduced in Section 1. Let BQD0(∆) be a
closed linear subspace of BQD(∆) given by

BQD0(∆) = {ϕ(z) dz2 ∈ BQD(∆) : lim
r→1

( sup
1−ρ<|z|<1

ρ−2(z)|ϕ(z)|) = 0}.

BQD0(∆) is a Banach space. Our aim is to describe the range of the restric-
tion F |BQD0(∆). First we recall the following alternative definition of the universal
Teichmüller space. Let B1(∆) be the unit ball in the Banach space L∞(∆) of all
essentially bounded measurable functions defined on the unit disk ∆. We say that
two elements µ, ν ∈ M(∆) are equivalent µ ∼ ν if the normalized quasiconformal
maps fµ and fν of the unit disk coincide on the unit circle. We say that a map
is normalized if fixes the points 1, i and −1. Here we use the standard notation
Belt(fµ) = µ and Belt(fν) = ν. The quotient space M/ ∼ is the universal Teichmüller
space. If µ ∈M(∆), the corresponding point in Teich(∆) is denoted by [µ].

We introduce the following subspace T0(∆) of Teich(∆). For τ ∈ Teich(∆), the
boundary dilatation is given by

b(τ) = lim
r→0

(
{ sup
ν∈[µ]=τ

‖ν(z)‖∞ : 1− r < |z| < 1}
)
.

If b(τ) = 0 then τ ∈ T0(∆). T0(∆) is a closed subspace of the universal Teichmüller
space. Moreover T0(∆) is the maximal topological group contained in Teich(∆) (see
[11]). It was conjectured (see [13]) that

F(BQD0(∆)) = T0(∆). (14)

In order to prove equality (14) first we show that F(BQD0(∆)) ⊂ T0(∆). This fact is
already known (see [13]). For the sake of completeness we present another proof.

Lemma 3.1. F(BQD0(∆)) ⊂ T0(∆).

Proof. Given ϕ(z) dz2 ∈ BQD0(∆) set τ = F(ϕ(z) dz2) and let f : ∆ −→ ∆ be
the corresponding harmonic diffeomorphism Hopf(f) = ϕ(z) dz2. Then Belt(f) =
µ(z) dz̄/dz is an element of the equivalence class τ. Equation (3) asserts that

µ(z)
d(z̄)

dz
=
σ−2(z)ϕ(z)

|∂f|2(z)

dz̄

dz
.
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Since (∆, |∂f|2|dz|2) is a complete metric space, we have |∂f|(z) > 1 for all z ∈ ∆.
Also ϕ(z) dz2 ∈ BQD0(∆) and we obtain

lim
r→1

(sup{|µ(z)| : 1− r < |z| < 1}) = 0.

Therefore the boundary dilatation of τ is equal to zero, b(τ) = 0, and τ ∈ T0(∆). q

Let q :K −→ K be a quasisymmetric map of the unit circle. The map q is said to
be symmetric (see [11, 25]) if

lim
t→0

q(ei(t+t0))− q(eit0 )

q(eit0 )− q(e(it0−t))
= 1, (15)

uniformly in t for all points z0 ∈ K . Here K denotes the unit circle. The well-known
characterization of Strebel and Fehlmann (see [9, 10, 25]) states that τ ∈ T0(∆) if
and only if the corresponding quasisymmetric map is symmetric. Symmetric maps
form a very large class. For an example all maps of the class C1 with nonvanishing
first derivate are symmetric. This follows from the work of Strebel [25]. In general,
a symmetric map q may not be even absolutely continuous (see [5]). In particular
if q is a real analytic map with nonvanishing first derivate then the corresponding
point τ in the universal Teichmüller space belongs to the subspace T0(∆), τ ∈ T0(∆).

Denote by N(∆) the subset of T0(∆) such that τ ∈ N(∆) if the corresponding
quasisymmetric map q :K −→ K is a real analytic map with nonvanishing first
derivate. In [11] Gardiner and Sullivan showed that the set N(∆) is dense in T0(∆)
with respect to the Teichmüller metric.

Lemma 3.2. N(∆) is dense in T0(∆), with respect to the Teichmüller metric.

On the other hand Li and Tam [16] proved that every C1 quasisymmetric map
q :K −→ K with a nonvanishing first derivate has a quasiconformal harmonic
extension (see also [2]). By using the estimates of Yau and Chang, Tam and Wan
[26] proved the following proposition.

Proposition 3.1. There is a universal constant P > 0, such that the ball of radius
P , centred at an arbitrary element of N(∆), is contained in the open set F(BQD(∆)) ⊂
Teich(∆).

Now we prove the main results of this section.

Theorem 3.1. The map F : BQD(∆) −→ Teich(∆) satisfies F(BQD0(∆)) = T0(∆).
Moreover, let P be the constant given by Proposition 3.1. Then the ball of radius
P centred at τ, τ ∈ T0(∆), is contained in the open set F(BQD(∆)) ⊂ Teich(∆). In
particular, every symmetric map of the unit circle can be extended to a unique harmonic
quasiconformal map of the unit disk.

Proof. Let τ ∈ T0(∆). By Lemma 3.2 there is a sequence {τn}, τn ∈ N(∆) such that
d(τ, τn) −→ 0, where d is the Teichmüller distance. There exists an integer n0 ∈ N,
such that for n > n0 we have d(τ, τn) < P . This shows that every point τ ∈ T0(∆)
is contained in the open set F(BQD(∆)). Also, there is a quadratic differential
ϕ(z) dz2 ∈ BQD(∆), such that F(ϕ) = τ. We want to show that ϕ(z) dz2 belongs to
BQD0(∆).
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Let ϕn(z) dz
2 denote a sequence in BQD(∆) such that F(ϕn) = τn. Since the

quasisymmetric map associated to τn, is real analytic, by the result of Tam and
Wan (see [26]) we find that ϕn(z) dz

2 ∈ BQD0(∆). F is a diffeomorphism of BQD(∆)
onto the open set F(BQD(∆)) ⊂ T (∆). Therefore from the fact that τn → τ in
the Teichmüller metric, we have ϕn → ϕ in the Bers norm. BQD0(∆) is a closed
subspace of BQD(∆). Therefore ϕ(z) dz2 ∈ BQD0(∆). We have proved that T0(∆) ⊂
F(BQD0(∆)). In Lemma 3.1 we proved that the converse inclusion holds. Thus, the
equality

F(BQD0(∆)) = T0(∆)

is proved.
Finally if d(τn, τ) = εn, then the ball of radius P − εn centred at τ is contained in

the open set F(BQD(∆)). Since εn → 0, the second part of the theorem follows. q

Theorem 3.2. Let τ be an element of Teich(∆), such that the boundary dilatation
b(τ) satisfies the inequality b(τ) < P̃ . The constant P̃ is defined by

P̃ =
e2P − 1

e2P + 1
,

where P is the constant introduced in Proposition 3.1. Then τ ∈ F(BQD(∆)). In par-
ticular, every quasisymmetric map whose boundary dilatation is less than P can be
extended to a unique harmonic quasiconformal map of the unit disk.

Proof. To prove this result it is sufficient to show that there is τ0 ∈ T0(∆) such
that d(τ0, τ) < P . Since b(τ) < P̃ , there is a quasiconformal map f : ∆ −→ ∆, with
Belt(f) = µ, such that [µ] = τ. In fact, f can be chosen such that there exists
0 < r0 < 1 and ‖µ(z)‖ < P̃ for r0 < |z| < 1. Let α = Belt(f−1). Since |α◦f| = |µ|, one
can find 0 < r1 < 1 such that ‖α(z)‖∞ < P̃ for r < |z| < 1. Further, let β(z) = α(z)
for |z| < r0, and β(z) = 0 for r0 < |z| < 1. Also let g : ∆ −→ ∆ be the quasiconformal
map with Belt(g) = β. Set Belt(g−1) = ν, and [ν] = τ0. We show that d(τ, τ0) < P .
Indeed, by the definition of the distance d we have

d(τ, τ0) 6
1

2
log

1 + ‖Belt(g ◦ f)‖∞
1− ‖Belt(g ◦ f)‖∞ .

From the construction it follows that ‖Belt(g ◦ f)‖∞ < P̃ . Since P̃ =
(e2P − 1)/(e2P + 1) we establish the inequality d(τ, τ0) < P , and the theorem is
proved. q
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