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In this article, a novel pitch determination algorithm based on harmonic differences method (HDM) is proposed. Most of the
algorithms today rely on autocorrelation, cepstrum, and lastly convolutional neural networks, and they have some limitations
(small datasets, wideband or narrowband, musical sounds, temporal smoothing, etc.), accuracy, and speed problems. &ere are
very rare works exploiting the spacing between the harmonics. HDM is designed for both wideband and exclusively narrowband
(telephone) speech and tries to find the most repeating difference between the harmonics of speech signal. We use three vowel
databases in our experiments, namely, Hillenbrand Vowel Database, Texas Vowel Database, and Vowels from the TIMITcorpus.
We compare HDM with autocorrelation, cepstrum, YIN, YAAPT, CREPE, and FCN algorithms. Results show that harmonic
differences are reliable and fast choice for robust pitch detection. Also, it is superior to others in most cases.

1. Introduction

Pitch is an extraordinarily complicated and distinct feature
of human speech and plays a major role in the perception of
human conversations as well as in human-computer in-
teractions. Pitch detection has a strong and disputed
background spanning more than a century. Myriad of
methods have been proposed, but it is still a formidable task
especially in narrowband (telephone), noisy, multipitch, and
multitalker speech with reasonable resolution and fast
implementation due to extremely complicated structure of
frequency spectrum. Pitch helps us to identify some of the
important cues about the speaker, such as the identity,
gender, emotional state, or about the tones of a musical
instrument. It has a wide range of applications in emotion
and gender recognition, speech synthesis, human-computer
interaction, and detection of symptoms of pathological
disorder at early stages. Fundamental frequency is the

quantity of pitch and is measured on the periodic signals
(musical tones) or quasiperiodic signals (speech). Pitch
detection algorithms (PDA) and pitch tracking algorithms
are extensively used to extract the fundamental frequency of
a person’s speech or of a musical tone. Fundamental fre-
quency is the frequency of vocal cord oscillation, and it can
highly vary among the men, women, boys, and girls.
&erefore, exact calculation is a crucial factor in variety of
applications spanning from human-computer interaction to
early detection of pathological symptoms.

&is article is organized as follows: in Section 1, we discuss
the foundations and importance of pitch detection and
tracking, Section 2 deals with literature overview, historical
background, algorithms, novelties of this article, datasets,
ground truth methods, error measures, difficulties, applica-
tion areas, and related algorithm domains, Section 3 describes
the novel HDM algorithm, Section 4 delineates datasets used
in this article and experimental setup, Section 5 presents the
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results of wide and narrowband experiments, Section 6 is
devoted to gender detection results, and finally, in Section 7,
we conclude this work with the evaluations and future studies.

2. Literature Review

2.1. Historical Background. &e saga of pitch determination
and tracking begins with the dispute between August See-
beck and George Simon Ohm on the mysterious missing
fundamental concept. In 1841, August Seebeck showed that
the pitch of a sound did not depend on the tone having a
fundamental frequency component of the pitch frequency.
&e debate overmissing fundamental began shortly after this
[1–3]. In 1843, Ohm severely rejected this idea and stated
that the quality of a tone depends solely on the number and
relative strength of its partial simple tones [4]. &is law is
championed by Helmholtz in his masterpiece work [5].

Rayleigh, in his famous study, &e &eory of Sound
(1877), claimed that pitch could not be simply associated
with period using his experiments with sirens. But similar to
loudness and timbre, pitch is not a thing to be measured
directly [6]. In 1924, Harvey Fletcher proved that even if
several lower harmonics of a waveform were removed, the
pitch remained the same. &e pitch was very closely related
to the difference in frequency, even though that frequency
did not exist in the sound source [7]. &is idea is one of the
bases of this study to exploit these differences to extract the
fundamental frequency.

In 1938, Schouten proved that the missing fundamental
effect could not be explained as a nonlinear difference as
Helmholtz had claimed and strongly supported the Seebeck
[8]. Schouten’s theory is known as the residue theory of
pitch, periodicity pitch, or virtual pitch [9–11]. Today, sci-
entists agreed that Seebeck disproved the Ohm’s idea.
Missing fundamental has a practical implementation in our
telephone conversation. In telephone signals, the frequency
spectrum is limited between 300Hz and 4000Hz. But we can
still perceive the voice clearly and discriminatively to capture
the talker’s identity, gender, and even emotional state. For
instance, if we have a signal with harmonics at 400Hz,
600Hz, 800Hz, 1000Hz, and 1200Hz, the pitch of the signal
is still perceived as 200Hz, and autocorrelation of both
signals remains nearly same as depicted in Figure 1 [12].

&e autocorrelation model of pitch perception dates back
to Licklider’s “duplex” and “triplex” models. Licklider solved
the dilemma between Seebeck and Ohm definitely in favor of
Seebeck. Periodicity pitch theory succeeded place pitch theory
after Licklider’s “duplex” and “triplex” theories [13–16]. &is
theory was investigated deeply by Ritsma, and some of its
limitations were shown [17]. Today, the debate is far from
over, and two mainstream theories compete against each
other paving the way for Place Code of Ohm&Helmholtz and
Temporal Code &eory of Seebeck & Wever of hearing.

2.2. Algorithms. First works started around 1950s with
AMDF because in the early days of computers, the multi-
plication of autocorrelation function was replaced with
subtraction due to the high computational cost of

multiplication. &e fierce debate on missing fundamental led
to the calculation of fundamental frequency, and many al-
gorithms flourished to extract and track the pitch of a signal.
Among themost notables are AMDF [18–20], autocorrelation
[13–16, 21–25], cepstrum [26–28], harmonic product spec-
trum, period histograms [29–31], parallel processing methods
[32–34], simplified inverse filter tracking (SIFT) [35], comb
filters [36], data reduction [37], LPC-based spectral equal-
ization (unpublished), spectral sieves [38], harmonic spacings
and structures [39–41], LPC inverse filtering [20], feature
based [42], IPTA [43], harmonic pattern recognition [44],
envelop analysis, threshold-crossing analysis (ZXABE, TABE,
TTABE) [45, 46], subharmonic summation [47], subband
processing [48], superresolution [49], two-way mismatch
[50], resolution improvement [51], TEMPO [52], RAPT
(NCCF) [53], instantaneous frequency [54–57], STRAIGHT-
NDF [58, 59], wavelet based [60–62], joint time-frequency
analysis (JTFA) [63], PRAAT [64], FIR filter, subharmonic-to
harmonic ratio [65], YIN [66], YAAPT [67, 68], HMM for
multipitch tracking, PEPSI_LITE, ESACF, PEBS (block
sparsity), PEARLS [69–78], chirp transform [79], sawtooth
waveform inspired pitch estimator (SWIPE) [80], perturba-
tion spectrum (TANDEM STRAIGHT) [81], ANLS [82],
vocal fold vibration (DIO) [83], ensemble empirical mode
decomposition and entropy [84, 85], event-based instanta-
neous fundamental frequency with impulse-like character-
istics of excitation in glottal vibrations [86], tandem algorithm
[87], summation of residual harmonics (SRH) [88], glottal
closure instants, EGG, glottal opening instants (GOI, GCI)
[89–91], PEFAC [92], SAFE [93], SAcC [94], BANA [95, 96],
adaptive harmonic model (aHM) with adaptive iterative re-
finement (AIR) [97], MPM [98], BSURE-IR [99], time-
warping for fast f0 changes [100], robust harmonic features
with multilayer perceptron [101], HARVEST [102], Pyin
[103], off-grid [104], harmonics of impulse-like excitation
[105], phase space [106], normalized squared difference
function, LASSO regression based [107], adaptive total var-
iation penalty, single frequency filtering and temporal en-
velopes [108, 109], CNN and DNN (CREPE, Deep Pitch,
FCN) [110–117] are among these methods.

Schroeder histogram, Brown comb filter, modified
Maher–Beauchamp pitch detector, Meddis–Hewitt model,
McAulay–Quatieri’s method, and cepstral detector are used
in pitch detection and tracking of musical signals. &e
challenges in multipitch tracking are overlapped harmonics
(octaves, fifths), noise, threshold of detection, scarcity of
labeled datasets, timbre complexity (one pitch played by
multiple instruments), and efficiency. F0 is also an important
feature in emotional speech recognition [118–120].&ere are
many reviews about the methods and datasets of pitch
detection and pitch tracking [12, 121–134].

2.3. Innovations in (is Article. Pitch detection is an ex-
tensively studied research field. Today pitch detection
methods are successful in wideband, clean human speech.
But there are still too many formidable obstacles that need to
be resolved particularly in narrowband (telephone speech)
[67, 68], multipitch [69–78], multitalker, and noisy speech
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signals [69, 95, 96, 108, 109]. Various techniques have been
implemented including autocorrelation, cepstrum, phase
based, and lastly, CNN methods. However, an interesting
clue for pitch determination is highly neglected and rarely
used. Harmonic spacings are strong pieces of evidence for
pitch determination even though human speech is ex-
traordinarily quasiperiodic. &is method was first used by
Seneff [39] for narrowband speech on real-time data be-
tween 210Hz and 1050Hz band by iteratively assigning
weight factors to the pitch candidates obtained from har-
monic spacings with LDVT (Lincoln Digital Voice Termi-
nal). Seneff’s work is too old, and dataset and results are not
clearly presented.&ere are other works till 21st century. Wu
[40] tried harmonic spacings in guitar sound using GCD
(Greatest Common Divisor of largest peak) with a table, and
Dziubiński and Kostek in various musical instruments with
an Artificial Neural Network on a matrix of sets of har-
monics. We will apply this method both for wideband and
narrowband speech (400Hz–3400Hz) signals on large
speech datasets, eliminating some of the limitations while
spurring the accuracy and speed via determining the most
repeated difference between the harmonics using a histo-
gram.&is article will revive this technique and demonstrate
that harmonic spacings can reliably be used to obtain state-
of-the-art results fast and efficiently both in wideband and
narrowband telephone speech samples. More detailed ex-
planations are presented in Section 3.

2.4. Datasets. As usual with the other experiments, creation
and use of proper datasets is essential in pitch tracking
experiments. &ere are numerous datasets used in this field

and among them Keele Studio, PTDB-TUG [135], Keele
Telephone [136], TIMIT [137], NTIMIT [138], CSTR [139],
FARSDAT [140], Mocha TIMIT [141], RWC Music Data-
base [142], MedleyDB [143], Vowel-CVC [144], NOIZEUS
[145], and SPEECON [146] datasets. Some authors used
CMU ARCTIC, KED TIMIT [147], APLAWD [148],
BACH10 [149], SyncRWC60, Saarland Music Data [150],
and Mazurka Dataset [151]. Vowel datasets can also be used
for pitch determination. Because f0 tracking is specifically
important in music transcription, many music datasets are
available in ISMIR (https://www.ismir.net/resources/) web
pages.

Pitch detection can be implemented in clean wideband,
narrowband telephony, noisy speech, and multipitch musical
sounds. In telephony speech, signal is usually band-passed
between 300Hz and 4000Hz to save the bandwidth. In this
study, we applied band-pass filter twice to remove all remains
between 400Hz and 3400Hz. &ere are many types of noises
that can be added to the pitch datasets, including babble noise,
exhibition noise, HF (high-frequency) channel noise, res-
taurant noise, street noise, white noise, pink, brown, and pub
noises. NOISEX [153] dataset is a publicly available noise
dataset. Pitch datasets can be recorded in studio, office, living
rooms, and car interior environments.

In pitch datasets, speaker profiles, distribution of
gender, distribution of age, mother tongue, distribution of
dialect, distribution of profession or education, patholo-
gies, number of speakers, contents, speaking style, read
speech, answering speech, command and control speech,
descriptive speech, nonprompted speech, spontaneous
speech, neutral and emotional speech, general recording
setup (telephone, on-site, field, wizard-of-oz), annotation,
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Figure 1: (a) A signal with multiple harmonics and (b) its autocorrelation function. (c) Same signal with the first harmonic removed and
(d) its autocorrelation function.
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technical specifications (sampling rate, sample type,
number of channels, file formats), corpus structure, release
plan and validation procedure, meta data, recording pro-
tocol (session id, speaker id, recording date, environmental
conditions, technical recording conditions), postprocess-
ing, pronunciation dictionary, and validation are impor-
tant issues [135].

2.5. Ground Truth Determination of Pitch Datasets.
Another important issue for pitch datasets is the exact
determination of ground truth. Hand-editing, EGG, and
Laryngograph are widely used as ground truth methods.
SIGMA, Hilbert Envelope-based detection (HE), the Zero
Frequency Resonator-based method (ZFR), the Dynamic
Programming Phase Slope Algorithm (DYPSA), the
Speech Event Detection using the Residual Excitation
And a Mean-based Signal (SEDREAMS), and Yet An-
other GCI Algorithm (YAGA) are some other methods
used for finding ground truth of pitch samples [154–158].
&ey have some advantages and disadvantages, and we
usually need hand-editing by an expert. In some cases,
detecting f0 manually by human experts can be quite
difficult. EGG, laryngogram, particularly differentiated
laryngogram provides a signal, which makes automatic f0
calculation easier using available methods as shown in
Figure 2.

2.6. Error Measures and Pitch Refinement Techniques.
Gross Pitch Error (GPE), Fine Pitch Error (FPE), Voicing
Decision Error (VDE), f0 Frame Error (FFE) [88, 159, 160],
MOS (Mean Opinion Score) [161], Diagnostic Rhyme Test
(DRT) [162], Perceptual Evaluation of Speech Quality
(PESQ) [163], and Perceptual Objective Listening Quality
Analysis (POLQA) [164] are prominent metrics used to
evaluate pitch detection algorithms.

Pitch estimation derived from the discrete Fourier
spectrum can be improved using techniques, such as
Spectral Reassignment (phase based) [165–167], super
sampling, interpolation (Grandke, quadratic, Gaussian)
[168–171], Matching pursuit [172], Synchrosqueezing
[173–176], and Empirical Mode Decomposition [177], to
compensate for the resolution problem of FFT.

Vocal Tract Model, Uniform Lossless Tube, and Two-
Tube Model can be used to model the f0 and other formant
frequency structures [178–186]. Using the laws of conser-
vation of mass, momentum, and energy, it can be proved
that sound wave propagation inside a lossless tube satisfies
the equations:
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where p� p (x, t) is the pressure of sound at position x and
time t, u� u (x, t) is the velocity at position x and time t, ρ is air

density inside the tube, c is sound velocity, and A�A (x, t) is
the cross-sectional area function of the distance and time.

2.7. Difficulties in Pitch Tracking. It may be helpful at this
point to summarize the difficulties in f0 tracking and voiced
detection:

(i) F0 may change in each glottal period

(ii) Subharmonics and spurious harmonics

(iii) Inharmonicity and quasiharmonicity

(iv) Doubling or halving of f0

(v) Formants and band-limiting

(vi) Irregularity of voicing at voice onset and offset

(vii) Even experts cannot always agree on the locations
of voice onset and offset

(viii) Narrowband filtering of unvoiced excitation may
create periodic signals

(ix) &e amplitude of voiced speech may vary in a
wide range

(x) Background noise

(xi) Some voiced speech may have very little glottal
pulse duration

(xii) Determining the start and end of each pitch
period in voiced speech parts

(xiii) Shimmer: amplitude variation from one cycle to
the next

(xiv) Jitter: frequency variation from one cycle to the
next

(xiv) Breathy voice

(xvi) Inherent quasiperiodicity of human speech

(xvii) Multiple periodicities in music signals

(xviii) Multitalker signals

(xix) Transient regions

(xx) Estimation of pitch with low energy can be
difficult

(xxi) Low formant F1 may interfere with high f0 of
females and children

Speech signal (beginning of [ja])

Laryngogram

Differentiated laryngogram

t

t

t

Figure 2: Speech signal, laryngogram, and differentiated lar-
yngogram [156].
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(xxii) In telephony systems, nonlinear effects such as
phase distortion, crosstalk, clipping of high-level
sounds, and amplitude modulation

2.8.ApplicationAreas. Today determination of fundamental
frequency is an important factor used in a wide range of
solutions:

(i) Emotion recognition and human-computer
interaction

(ii) Gender determination (male/female/boy/girl)

(iii) Detection of the pathological characteristics of the
voice

(iv) Speech understanding systems

(v) Prosody analysis

(vi) Speaker identification and separation

(vii) Data-driven speech synthesis

(viii) Digital hearing prostheses

(ix) Computer-aided intonation teaching

2.9. Domains of Methods. Pitch detection algorithms can be
classified as time, frequency, and hybrid methods. Some of
these algorithms use temporal smoothing (median filter,
HMM, Viterbi etc.).

2.9.1. Time-Domain Methods. Many methods rely only on
the time-related information for pitch calculation.

(i) &reshold-crossing pitch detectors (ZXABE,
TABE, and TTABE, Zero-Crossing Rate, Peak rate,
Slope event rate)

(ii) Parallel processing method

(iii) Average Magnitude Difference Function (AMDF)

(iv) Envelope analysis methods

(v) Autocorrelation

(vi) YIN

(vii) Phase space

(viii) Deep learning and convolutional neural networks
(end to end).

2.9.2. Frequency-Domain Methods. Frequency spectrum is
widely used to detect the pitch value of a signal.

(i) Optimum comb filter

(ii) Tunable IIR filter

(iii) FIR filter

(iv) Cepstrum

(v) Harmonics

(vi) Multiresolution methods

(vii) Statistical frequency-domain methods

(viii) Neural networks

(ix) Maximum likelihood estimators

2.9.3. Time- and Frequency-Domain (Hybrid) Pitch
Detectors. Some algorithms combine time and frequency
domain to calculate fundamental frequency:

(i) Schroeder histogram

(ii) Brown comb filter method

(iii) Maher–Beauchamp pitch detector

(iv) Meddis–Hewitt model

(v) McAulay–Quatieri method

(vi) Neural networks

(vii) YAAPT

3. HDM Algorithm

&e novel harmonic differences method (HDM) tries to
exploit the differences between the harmonics of power
spectrum of the signal with the goal of finding the most
repeating difference. Harmonic spacings have been tried by
Seneff [39] for telephony speech on real-time data with
LDVT,Wu on guitar sound [40], and Dziubiński and Kostek
[187] for various musical instrument sounds. Seneff used the
area under the hump in frequency spectrum, creating a list of
8 estimates and applies temporal smoothing using median
filter. We try to find the most repeating difference without
temporal smoothing. We will extend these works by elim-
inating many steps in the implementation and generalizing
the method to all kinds of sound waves, improving the speed
and the accuracy. Matlab 2019 student version is used for
HDM, autocorrelation, cepstrum, YIN, and YAAPT. Python
3.6.5 is used for CREPE and FCN implementations. General
outline and pseudocode of the algorithm is as follows:

(1) Take the discrete Fourier transform and run the peak
picking algorithm between the minimum f0 and
maximum threshold frequency Fth. Length of the
samples is taken as 1024 and Hamming windowed
before the processing to smooth the signal and avoid
the edge effects. Windowing is necessary due to the
DFT’s vulnerability to discontinuities. Windowed
Fourier Transform is given as follows:

Hk � ∑
N− 1

i�0

xiwie
− (j2πki/N). (2)

Sampling rate is 16000Hz yielding a frequency
resolution of 15.625Hz. Despite this low FFT reso-
lution, the results of HDM are very promising.
During this search, the minimum power of a partial
should be at least (1/c) times the magnitude of the
largest partial. Here, c is a prespecified constant such
that

Hk

∣∣∣∣ ∣∣∣∣> Hmax

∣∣∣∣ ∣∣∣∣
c

, (3)

α, β, c, f0min, Fth (upper-limit threshold frequency)
are determined empirically with more than 7 million
experiments on Hillenbrand dataset. &ere is no
limit in the number of peaks to collect, but we set a
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threshold frequency value Fth, and we collect all
peaks below that threshold. &is threshold frequency
is also determined empirically.

(2) To decide a true peak, its amplitude must be larger
than the previous and next Fast Fourier coefficient.

J⟵ 0
if f̂i >f0min and f̂i <Fth then

if Ai− 1 <Ai >Ai+1 then
if Ai > (|Hmax|/c) then
F̂i⟵ f̂i, J � J + 1

end if
end if

end if

(3) In this list, remove the unnecessary peaks that are
closer than minimum f0 value to one another.

if f̂i < f̂i− 1 + f0min and Âi < Âi− 1 then
remove f̂i from F̂, J⟵ J − 1

end if
if f̂i > f̂i+1 − f0min and Âi < Âi+1 then
remove f̂i from F̂, J⟵ J − 1

end if

(4) In this list, remove the spurious peaks that are
weaker than a predefined empirical ratio of the
previous and next spectrum value.

if Ai < (Ai+1/α) or if Ai < (Ai− 1/α) then
remove f̂i from F̂, J⟵ J − 1

end if

(5) Handle some special cases such as frequencies below
110 so that if the amplitude of first entry is less than
1/5 of the second entry remove first entry.

if f̂1 < 110Hz andA1 < (A2/β) then
remove f̂1 from F̂, J⟵ J − 1

end if

(6) Find the differences between the adjacent entries in
the list

D̂: d̂i | d̂i � f̂i − f̂i+1, d̂i >f0min, i � 1, 2, . . . , N{ }.
(4)

(7) Sort the list according to the repetition counts with a
histogram.

//f0wb: wideband fundamental frequency.
//f0nb: narrowband fundamental frequency.
//A0wb: amplitude of wideband fundamental
frequency.
//A0nb: amplitude of narrowband fundamental
frequency.

list � sort(list, repeat count),

f0nb � list(1, 1),

D̂ � F̂ − f0nb,

D̂ �[F̂, D̂], d̂i > 0.

(5)

(8) Sort the final list according to the differences. First
entry is the most repeating difference

//remove zero elements if any

list � sort list, d̂i( ),
f0wb � list(1, 1),

A0wb � list(1, 2),

A0nb � A0wb,

(6)

if abs(f0wb − f0nb)< (f0min/2) then
f0wb � f0nb
end if
else
f0wb⟵ 0, f0nb⟵ 0
return f0wb, f0nb{ }

HDM does not use temporal smoothing. Although it is
possible to obtain better results using different parameters
for each dataset, we use the same parameter set for all 3
datasets and for all wide and narrowband experiments. Our
goal is to find a global parameter set that can achieve best
results for wideband and narrowband telephone speech in all
datasets.

&e relation between GPE and α is shown in Figure 3. In
the small values of α, GPE goes too high, and after 5, it
remains nearly constant. A typical value for α is between 6
and 12. &is parameter is used to eliminate the spurious
peaks in the list F̂ of candidate pitches. Elimination of
redundant peaks is a key point in capturing the correct
spacing between the harmonics.

β parameter is used to handle some special cases such as
frequencies below 110Hz. Due to nonlinearity and com-
plexity of equal loudness curves, different regions of human
speech spectrum have different loudness. &erefore, we used
β parameter for handling low-frequency components. &e
effect of α and β parameters on GPE is depicted in Figure 4.
Linear region of human auditory system is usually con-
sidered between 20 and 1000Hz (we do believe that a value
between 1100 and 1200Hz is a better choice for upper limit),
and logarithmic region is the rest of the audible spectrum
[188–190].

Another important parameter is the value of minimum
f0, and it heavily affects the GPE as shown in Figure 5.
Hillenbrand and Texas datasets provide ground truth value
for f0, and minimum fundamental frequency value is
82Hz.

4. Datasets and Experimental Setup

In this study, we employ 3 vowel datasets: Hillenbrand
dataset (http://homepages.wmich.edu/∼hillenbr/voweldata.
html) [191–193], Texas Vowel dataset (https://personal.
utdallas.edu/∼assmann/KIDVOW1/North_Texas_vowel_da
tabase.html) [194, 195], and vowel part of TIMIT [137]
dataset including the SA samples. Hillenbrand dataset is a
collection of 1668 vowels, including boy, girl, man, and
woman speech samples. Total length of the samples is
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223.878 seconds and length of files ranges from 2049 to 6872
with mean 2147.515 and standard deviation 489.218. Texas
dataset is a collection of 3314 vowels with kid, female, and

male vowels. Total length is 698.4711 seconds and length of
files ranges from 1110 to 24257 with mean 3372.22 and
standard deviation 1010.025. TIMIT is a large collection of
words and phones. Usually, it is divided into training,
development, and test sets. In this work, we use all vowels,
including SA samples. SA samples are not used in classi-
fication applications due to overfitting concerns; however,
this is not relevant in our case. TIMIT vowel set comprises
78374 samples, including 24017 female and 54357 male
voices. Total length is 7521.265 seconds, length of files
ranges from 74 to 7735 with mean 1535.461, and standard
deviation of 778.7452. Detailed information is shown in
Table 1.

In Hillenbrand and Texas datasets, there are 12 Amer-
ican English vowel classes /i/ (heed), /ɪ/ (hid), /ε/ (head), /æ/
(had), /e/ (hayed), /ɑ/ (hod), /ɔ/ (hawed), /o/ (hoed), /ʌ/
(hud), /ʊ/ (hood), /u/ (who’d), /ɝ/ (heard). Vowels are
obtained from the /hVd/ syllable context. In TIMIT dataset,
20 vowels are included: /i/ (beet), /ɪ/ (bit), /ε/ (bet), /æ/
(had), /e/ (hayed), /ɑ/ (bott), /ɔ/ (bought), /o/ (boat), /ʌ/
(but), /ʊ/ (hood), /u/ (boot), /ɝ/ (herd) with additional /aɪ/
(bite), /ə/ (about), /ɔɪ/ (boy), [ü] (toot), [ɪ] (debit), [əh]
(suspect), [aw] (bout), and [ɚ] (butter). TIMIT vowel classes
can be reduced to 14 from 20 by eliminating the stress and
semivowel intonations [137, 196, 197].

In Hillenbrand dataset, fundamental frequency ground
truth is calculated using autocorrelation followed by hand-
editing. In Texas Vowel dataset, fundamental frequency
ground truth is calculated by visual inspection together with
semiautomatic LPC analysis. In the TIMIT corpus, tran-
scriptions have been hand-verified. Transcriptions are ob-
tained using the program SPIRE of MIT and then hand-
verified by experienced acoustics phoneticians. But there is
no fundamental frequency ground truth for TIMIT vowels.
&erefore, we used average f0 values found by HDM, au-
tocorrelation, cepstrum, YAAPT, CREPE, and FCN
methods in a consistent manner in conjunction with the
gender labels provided by the TIMIT dataset. In some
samples of TIMIT dataset, finding the ground truth is very
difficult even by visual expert inspection on the frequency
spectrum. &e harmonics and spacing between them can be
spread nearly randomly. Such a sample from TIMITdataset
is depicted in Figure 6.

Autocorrelation of a signal with the symmetry property
can be obtained using the following equation:

Aac(k) � ∑
N− 1

i�k

xixi− k, (7)

where k is the lag number.
Cepstrum has the complexity ofO(N log N), and power

cepstrum can be calculated using the following formula:

Cp � F
− 1 log |F f(t){ }|2( ){ }∣∣∣∣∣ ∣∣∣∣∣2. (8)

As can be seen from Table 2, HDM is the fastest method
followed by cepstrum and autocorrelation. For autocorre-
lation and cepstrum, we used Naotoshi SEO’s (http://note.
sonots.com/SciSoftware/Pitch.html) implementations, but
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in cepstrum, we changed the maximum pitch value as
500Hz to obtain better results. Timings are average values of
10 consecutive runs on Hillenbrand dataset for a single
speech sample. YIN, YAAPT (version 2016), FCN (2019),
and especially CREPE (2018) are too far away from HDM,
cepstrum, and autocorrelation in terms of speed. YIN [66],
YAAPT [67, 68], and FCN [113] employ temporal
smoothing, whereas HDM, autocorrelation, cepstrum, and
CREPE [110] do not use temporal smoothing. HDM pro-
duces nearly identical results without hamming windowing,
but the rest of the algorithms have worse results without
hamming window, particularly, cepstrum doubles the error
margin in TIMIT dataset. No other preprocessing was ap-
plied to the waveforms. In cepstrum and autocorrelation, we
imposed an upper-limit frequency of 500Hz. Without this
limit, their performances are going only worse. &is makes
them unsuitable for the detection of high pitch values. In
angry emotional speech samples, it is possible to see up to
700Hz pitch values.

5. Results

Many error measures are used to evaluate the pitch detection
algorithms. Gross Pitch Error (GPE) is the average error,
voicing detection error (VDE) if applicable are among the
most used. Additionally, we introduce two different error
measures. &e first is the e10, which denotes the number of
samples with more than 10% sway from the ground truth

value. Another useful application of pitch estimation is the
gender detection. Gender detection error can be very useful
for the evaluation of these algorithms. GPE and e10 error are,
respectively, defined as

GPE �
1

N
∑N
i�1

f̂i − fi

∣∣∣∣∣ ∣∣∣∣∣,

e10 � # i | i � 1, . . . , N, f̂i − fi

∣∣∣∣∣ ∣∣∣∣∣> fi
10

{ }.
(9)

In Hillenbrand and Texas Vowel datasets, ground truth
pitch values are given, and we can make a solid comparison
with our predictions. In Figure 7, such a comparison is
depicted for Hillenbrand dataset. Boy, girl, man, and woman
samples can clearly be seen to make an intuition over the
frequency regions of these samples. Male voices have defi-
nitely lower f0 values compared with the boys, girls, and
woman. It is nearly impossible to separate boy, girl, and
woman voices using only f0 values. In Hillenbrand dataset,
average f0 is 236.0Hz for boys, 238.35Hz for girls, 131.21Hz
for man, and 220.40Hz for woman. Maximum f0 for boy,
girl, man, and woman are 320, 303, 224, and 307Hz, re-
spectively. Minimum f0 for boy, girl, man, and woman are
183, 188, 90, and 149Hz, respectively. &ere is no boy or girl
sample with f0 value of lower than 180Hz. Only 7males have
pitch values of greater than 190, and only 5 women have
pitch values of lower than 160Hz. In Texas dataset, there are
kid, man, and woman classes. In Texas dataset, the difference

Table 2: Average speeds of used methods on the Hillenbrand dataset in microseconds.

HDM (2021) AC (2008) CEPS (2008) YIN (2002) YAAPT (2016) CREPE (2018) FCN (2019)

108 192 132 14544 8327 263965 82522

Table 1: Datasets used in this work.

Boy Girl Male Female

Hillenbrand 324 228 540 576
Texas 1232 972 1110
TIMIT 54357 24017
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Figure 6: &e near random distribution of harmonics and the spacing between them can make extraction of fundamental frequency too
complicated.
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between woman and kid classes is clearer than Hillenbrand
dataset. In Texas dataset, we have 3-, 5-, and 7-year-old kid
samples. &is suggests that as age decreases, pitch values
tend to be higher. Maximum f0 for kid, man, and woman
samples are 392, 202, and 271Hz, respectively. Minimum f0
for kid, man, and woman samples are 105 (sample k7bree05,
this is a strange value for a kid so that we felt to check it
manually), 82, and 141Hz, respectively. In Texas Vowel
dataset, only 1 kid sample has f0 value of lower than 180Hz
(abovementioned sample k7bree05), and only 3 males have
f0 value of greater than 140Hz. Only 7 woman samples have
f0 value of lower than 160Hz. In TIMIT dataset, we have
only male and female classes, and average values conform
well to the other two datasets as shown in Table 3. In TIMIT
dataset, there are no supplied ground truth pitch values.

As seen from Table 4, in wideband Hillenbrand dataset,
the proposed HDM has the smallest GPE, and AC has the
smallest e10 error. Although autocorrelation is an old
technique, it is highly successful in this dataset. In Texas
dataset, FCN has the smallest GPE error, and AC has the
smallest e10 error. In TIMIT dataset, FCN is the best
performing method followed closely by HDM and ceps-
trum in GPE and the proposed HDM is the best method in
e10 error. YIN produces too many outliers, and for YIN, we
tried many different parameters to find better results. A box
plot of the abovementioned algorithms is depicted in
Figure 8. We need to emphasize that in the AC and
cepstrum implementations, we imposed an upper-limit
frequency of 500Hz; otherwise, these methods produce
worse results. No upper limit is applied in the remaining
methods. Convolutional neural network methods are quite
successful in wideband implementations, but as we will see
right now, they are nearly blind in narrowband telephone
speech data.

From now on, we extend our experiments to the tele-
phony speech. For this purpose, we will apply band-pass
filter to our datasets twice to completely remove the fre-
quencies below 400Hz and above 3400Hz. In some tele-
phony speech, this bandwidth can be applied between
300Hz and 4000Hz. We selected the low frequency as
400Hz because the highest f0 value is 392Hz in our datasets,
and by selecting 400Hz as threshold value, we remove the

fundamental frequency from all samples in all datasets. &is
is one of the objectives of this algorithm.

In band-passed Hillenbrand dataset, cepstrum remark-
ably is the most successful algorithm in all error types as
shown in Table 5. HDM is the second in GPE, and AC is the
second in e10 error measures. Performance of CREPE and
FCN is very disappointing in band-passed speech. In nar-
rowband Texas dataset, cepstrum is the most successful
algorithm in all error types as shown in Table 5. HDM is the
second in GPE, and AC is the second in e10 error type.

In narrowband TIMIT dataset, our novel HDM algo-
rithm is superior to all other methods in GPE and e10 error
measures as seen in Table 5. YAAPT is the second best in
GPE, and AC is the second in e10 error. YAAPT is primarily
designed for telephone speech. In TIMIT dataset, 22670
samples are shorter than 1024 in length.&ismay explain the
failure of cepstrum in narrowband TIMITdataset. To further
clarify the underlying essence of this failure, we removed the
samples that are shorter than 1024 and rerun cepstrum on

Table 4: Experimental results on wideband Hillenbrand, Texas,
and TIMIT datasets.

Hillenbrand Texas TIMIT

GPE e10 GPE e10 GPE e10

HDM 7.65 6.41 9.46 11.41 6.39 4.68
AC 8.17 4.68 10.36 7.09 22.74 8.79
CEPS 7.86 6.00 14.53 11.38 11.27 7.45
YIN 16.71 8.63 16.67 8.90 43.88 12.58
YAAPT 17.18 13.55 12.87 14.76 16.00 15.13
CREPE 8.97 9.53 8.45 8.12 12.33 6.84
FCN 9.10 8.75 8.17 7.42 5.82 5.29

Bold values denote the best performance in the specified dataset and error
type.
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Figure 8: Box plot of all algorithms for wideband TIMIT dataset.
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Figure 7: f 0 ground truth (red) and HDM estimations (blue) in
Hillenbrand Vowel dataset.

Table 3: Average f0 values for Hillenbrand, Texas, and TIMIT
datasets by gender.

Boy Girl Man Woman

Hillenbrand 236 238.35 131.21 220.40
Texas 245.76 110.86 217.23
TIMIT 119.07 207.21
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narrowband TIMIT data. In this scheme, cepstrum GPE
error dropped to 49.85 from 75.17 and e10 error to 17.41
from 25.36. Arguably, we can conclude that zero padding
can severely affect the performance of the cepstrum. Box plot
of these algorithms for narrowband TIMIT dataset are

shown in Figure 9. CREPE and FCN are nearly useless in
narrowband speech. &is may be due to the fact that their
training is done only on the wideband speech. &ey need to
be trained for narrowband speech as well. Convolutional
neural networks are quite successful in wideband speech
data, however, we must keep in our mind that they are
extremely slow compared with HDM, AC, and cepstrum as
shown in Table 2. HDM is the fastest method in these
experiments.

6. Gender Detection Implementations

Gender detection is an application of fundamental frequency
detection. Although gender is not restricted to pitch value, it
is highly related to its value. Pitch has specific ranges be-
tween men, women, boys, and girls. &erefore, gender
evaluation of the f0 algorithms is a good measure for the
robustness. Here, we present the gender detection errors for
wideband and band-passed TIMIT dataset. In TIMIT
dataset, the gender information is given with the first letter
of the name of the speech sample.

As seen from Table 6, in wideband TIMITdataset, HDM
is the best method in gender detection by a significant
margin, FCN is the second, and cepstrum is the third.
Cepstrum’s success is well known in male speech samples. In
the TIMIT dataset, there are 24017 female and 54357 male
samples. &is may explain the success of cepstrum in this
large dataset. In Table 7, we can clearly conclude that HDM
has no match specifically in male samples.

7. Conclusions

&e experimental results show that proposed harmonic
differences can safely be used to detect fundamental fre-
quency in wideband and narrowband telephony speech. &e
new algorithm shows great success particularly in the large
TIMIT dataset. Fast Fourier Transform has a natural reso-
lution problem, but in this article, despite the low resolution
of the implementation, the results are satisfactory. It is
robust to band-limiting and moderate inharmonicity. HDM
algorithm is the fastest method, and further speed im-
provements can be expected. FCN and CREPE are per-
forming remarkably well in wideband data, but they are too
slow compared with the other methods. &erefore, they
cannot be used for real-time applications, but they can be
helpful in ground truth determination. An interesting
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Figure 9: Box plot of all algorithms for narrowband TIMITdataset.

Table 6: Gender detection results on wideband TIMIT dataset.

Male incorrect Female incorrect Error (%)

HDM 832 1476 2.94
AC 5331 2403 9.86
CEPS 2999 3219 7.93
YIN 8136 2674 13.79
YAAPT 5475 2483 10.15
CREPE 3435 2295 7.31
FCN 1302 1724 3.86

Bold value denotes the best performance.

Table 7: Gender detection results on narrowband TIMIT dataset.

Male incorrect Female incorrect Error (%)

HDM 363 6561 8.83
AC 15091 3919 24.25
CEPS 16258 4248 26.16
YIN 24393 7359 40.51
YAAPT 6129 5124 14.35
CREPE 29155 10331 50.38
FCN 34398 17717 66.49

Bold value denotes the best performance.

Table 5: Experimental results on narrowband Hillenbrand, Texas, and TIMIT datasets.

Hillenbrand Texas TIMIT

GPE e10 GPE e10 GPE e10

HDM 34.72 19.30 39.42 29.06 15.26 17.88
AC 37.33 15.53 55.71 22.24 69.47 23.30
CEPS 11.23 7.37 37.89 17.50 75.17 25.36
YIN 72.64 25.12 130.29 34.85 160.97 40.83
YAAPT 51.93 50.18 45.83 42.18 27.10 28.14
CREPE 111.52 42.51 134.87 46.11 162.44 50.66
FCN 185.53 70.08 191.81 71.73 194.79 67.28

Bold values denote the best performance in the specified dataset and error type.
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finding is the highly disappointing results of the FCN and
CREPE algorithms in narrowband speech. Although they are
quite successful in wideband speech datasets, they produced
low success rates in all band-passed datasets. We should bear
in mind that FCN and CREPE are end-to-end algorithms,
and they take the raw waveform as input without using the
frequency-domain descriptors. Most of the useful pitch
information is hidden in the low part (0–400Hz) of band-
passed signal and without this data, FCN and CREPE are
unable to extract the necessary features for pitch determi-
nation. &e cepstrum algorithm is very old compared to
YIN, YAAPT, CREPE, and FCN, but in some cases, it can
present better predictions. FCN and CREPE are CNN-based
methods; FCN is using temporal smoothing, whereas
CREPE does not use temporal smoothing but FCN is still
much faster than CREPE.

In the future works, we plan to implement temporal
smoothing in HDM. Temporal smoothing can be quite ef-
ficient in f0 detection and is used by many algorithms,
including YIN, YAAPT, and FCN. Another future direction
is testing the ability of HDM in noisy environments and
musical sounds that needs to be handled. Pitch refinement is
another technique that can be incorporated inside HDM.
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