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Introduction

1. Throughout this paper we denote by R an open Riemann surface and by R0

a relatively compact subdomain of R with the relative boundary 8R0 consisting of a

finite number of mutually disjoint closed analytic Jordan curves. The open set

RX=R — R0 can be considered to be a neighborhood of the ideal boundary ß of R.

For the sake of simplicity, we denote by a the common relative boundary BR0 = dRx

and we fix the orientation of a positively with respect to the domain R0.

A harmonic differential a defined on RX = RX'U a is called a harmonic singularity

at ß and in case J"B a a *o < oo, we say that the singularity a at ß is removable. A

harmonic differential A on R is said to have the harmonic singularity o at ß if A—a

is a removable harmonic singularity at ß. The purpose of this paper is to discuss

the following

Problem A. Find a harmonic differential X on R having a given harmonic

singularity a at ß.

It is known (Ahlfors-Sario [1, p. 300]) that Problem A is solvable if a and *a are

the restrictions to Rx of some closed ^-differentials on R. We shall prove that if

R <£ 0G, then Problem A is always solvable, and if R e Oa, then Problem A is

solvable if and only if ja o = J*a *o = 0 (Theorem 2).

2. In Problem A, we may assume without loss of generality that o is a ^-differen-

tial on R whose restriction to Rx gives a harmonic singularity at ß. In fact, take a

subdomain Ra of R such that RacR0 and o- is harmonic on R—Ra. We find a C1-

function </> on R such that </> = 1 on a neighborhood of Rx and c4=0 on a neighbor-

hood of Ra. Then <f>o can be considered to be a ^-differential on R and <f>a\Rx = a.

Let F = T(P) be the Hubert space of all square integrable differentials on R which

is the completion of square integrable C'-differentials on R with respect to the

inner product (mx, a¡2)=§ wxa*co2. We denote by re0 = rc0(P) the closure of

Pe? = Te$(R) = {df ;fe Q°(P)} in T, where C0°°(P) is the totality of C"-functions on

R with compact supports. We also denote by *Te0 = *re0(R)={*oj ; w e Te0(R)}.

Then we have the de Rahm decomposition of F :

(i) r(p) = re0(p) © *rc0(p) e rh(P),

Received by the editors August 16, 1965.

F) This work was sponsored by the U.S. Army Research Office, Durham, Grant DA-

AROD-31-124-G499, University of California, Los Angeles.

297

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



298 MITSURU NAKAI [May

where Th = Th(R) is the totality of harmonic differentials in T(R). From these

remarks, it follows at once that Problem A is equivalent to the following:

Problem B. Given a C1-differential a on R whose restriction to Rx is a harmonic

singularity at ß, find a harmonic differential X on R such that X —a e Te0(R) ®*Te0(R).

The advantage of this reformulation is that we can now see the precise nature of

the solution. That is, we shall show that if the solution A of Problem B exists, then

it is unique and if a is exact (resp. *exact), then the solution À is also exact (resp.

*exact). A differential is *exact, if, by definition, its *conjugate is exact (Theorem 2).

3. The key to the solution of our problem is the following: let 2(a) be the

totality of continuous differentials w defined on neighborhoods Va of a and 20(a)

the subclass of 2(a) consisting of differentials co such that Jaco = 0. For each

tu e 2(a), we consider the quantity

(2) K(a, of) = supH Jy» |Y£ df A *df ; fe C<f(R),f^ o|-

We shall show that if R $ 0G, then K(a, w) < oo for any co e 2(a), and if A s 0G,

then K(a, co) <co if and only if co e 20(a) (Theorem 1).

Fundamental inequality

4. Fix a point z0 in R0 and consider the space HD0 = HD0(R0) of /FD-functions

on R0 vanishing at zQ. HD0 is a Hubert space with respect to the norm J"B duA*du.

For two fu.i'tions u and v in HD0, we set

(u, v)g =  i   (1 +g(z, z0)) du(z) A *dv(z),

where g is the Green's function on R0. HD0 is a pre-Hilbert space with this inner

product, and we denote it by HD0g. Let {un}„=x be a Cauchy sequence in HD0g.

Since it is also a Cauchy sequence in HD0, there exists an element u e HD0 such that

dun -> du in each parametric neighborhood. Then by Fatou's lemma

(l+g(z,z0))d(u-un) A *d(u-un) S Um inf (um-un,um-un)g.
Jr0 m->oo

Thus we have that u e HD0g and

lim inf (u-un, u-un) S   lim   (um-un, um-un) = 0.
n-*oo n,m-*co

This shows that HD0g is a Hubert space. Clearly u -> u is a continuous isomorphism

of HD0g onto HDQ. By the closed graph theorem, the norm (u, u)g is equivalent to

jRo du A *du. Hence in particular, there is a constant Kx such that

(3) Í   g du A *du S Kx f   du A *du
JRo JRo

for any u in HD0 and hence for any u in HD(R0).
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Let u e HD0 r\ C(R0). Since d*du2=2 du A* du, by Green's formula,

(4) f u2*dg = 2 f   gdu A *du.
Ja Jr0

Hence if cü e @0(a) and u e HD(R) n C(R0), then by (3), (4), and the fact ja uw

= j (u — u(z0))oj, we deduce

(5) «eu    g K2\    du A *du,

where K2 = 2KX Ja Q2 *dg with Q. *dg=<o on a. Hence by using Dirichlet's principle,

we obtain the following :

Lemma 1 [3]. Let w e @0(a). Then there exists a constant Cm depending only on o>

such that for any fe CX(R0) n C(R0),

(6) I f/wNc«, f   dfA *df
I Ja Jr0

5. Assume that R$0G. RX = R-R0 consists of a finite number of components

RXX), Rlx2),..., R{k\ Let a¡ = a n dRf. If Rf has positive (resp. null) ideal boundary,

then we put Ft = Rf (resp. Ft = R—(Rf) ~) and orient ai = dFt positively with respect

to F¡. Take the harmonic measure w¡ on F¡ such that w¡=0 on oF¡. Since P £ 0G, at

least one of Pi0 and P—(Pi°)~ has positive ideal boundary and by our choice of Fb

H'j>0. Take an /in Cq(R) arbitrary but fixed for the time being. Let F[ be a sub-

domain of F¡ such that F¡—{ft)~ is a neighborhood of the ideal boundary of F¡ and

/vanishes on Fi-F/ and such that dF( consists of a finite number of mutually

disjoint analytic closed Jordan curves with a^dF¡. We orient ßx = dF[ — a¡

positively with respect to F{. Let u be harmonic in F[ with boundary values / on

dF'i. Hence u=f on a¡ and u=0on j8t. By Green's formula

u2 *dwt — wt *du2 =       wtd *du2.
Jffi+ii Jat+ßi Jfí

Since *du2 = 2u*du = 0 on ft and d*du2 = 2 du A *du, we have

w2 VvVj = 2      w¡ c/m A *<7k.
Jai J.P('

Hence by noticing w(< 1,

If  um I   á ft" f   du A *du,

where eu e ^(<x) and K^ = 2 jai Q.2 *dw¡ with Q. *dw¡ = oj on a. Thus  by ¡r du

A *du -¿ jF. dfA *df^ jR dfA *df and u =f on ah we have

(7) \ ¡ ft»f è Kg \ df r\ *df.
I Jat Jr
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Let Ka=kmax(Kf? ; l<i£k). Then

li/coU   2     Í fœ    sJkJ  dfA*df.
I J a i = X    J ai y J R

Hence we obtain the following :

Lemma 2. Let R$ 0G and w e 2(a). Then there exists a constant Km depending

only on co such that for any fe Cl(R),

(8) \ Í faf S kJ df A *dfi

6. Assume that R e 0G. Let co e 2(a) and assume that there exists a constant

Ca depending only on co such that

(9) I \f«\= Ca f a? A *df
I Ja        I JR

for any/e Cq(R). Let Q be a subdomain of R such that Q.^R0 and 3D consists of

a finite number of mutually disjoint analytic closed Jordan curves. Let wn be the

continuous function on R such that wQ=l on R0, wn = 0 on R—Ü. and wn is

harmonic onü- R0. By applying the mollifier, we can find a sequence {/„} in C<?(R)

such that fB d(wn —fn) A *d(wci —/„) -> 0 (« -> co) and /„ converges uniformly to wn

on A. Then from

f /„cof ̂  CM f #nA *«/„;
|Ja I JR

|£(/n-l)co    ^  (£ |co|) SUp |/„- HV

it follows that

<o     ^ Cm c/n-n A *dwa.
Ja Jci-Ro

Since ReOa, (n_RodwnA*dwn^0 as Q/fA. Thus |aco=0. Hence this with

Lemma 1 gives the following:

Lemma 3. Let ReOG and co e 2(a). In order that there exists a constant Ca

depending only on œ such that for any fe Cl(R),

í/coN ca f *ya *df
I Ja JR

it is necessary and sufficient that co e 20(a).

7. Lemmas 2 and 3 complete the proof of the fact mentioned in 3 :

Theorem 1. If R$0G, then K(a, co) < oo for any co e 2(a), while if Re 0G, then

K(a, co) < co if and only if w e 20(a).
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Existence theorem

8. Theorem 2. Let a be a Cx-differential on R such that a\Rx gives a harmonic

singularity at the ideal boundary ß of R. If R$ 0G, then there exists a harmonic

differential X on R such that X-ae Te0(R) © *re0(P), and if Re 0G, then there

exists a harmonic differential Xon R such that X — a e Fe0(R) © *Te0(R) if andonlyif

5 ° = / *ff =
Ja Ja

(10) <7 =        *ff = o.
Ja Ja

In either case X is uniquely determined by a and X is exact (resp. *exact) if a is

exact (resp. *exact).

9. First, we prove the existence part. Let a be arbitrary if R $ 0G and let a

satisfy (10) if R e 0G. Let/e C0X(R). By Green's formula,

and

f    a A *df=  f    dfA *a=   f f*c
JRX J«! Ja

o A df= -\     df A a = - \ fir.
Jrx J Rx JaJRX JRX

Hence for anyfx andf2 in Cô(R), by Theorem 1 and (dfx, *df2)=0,

I f    or A *(dfx + *df2) ' Ú U \(dfx + *df2) A *(dfx + *df2),
1 J«! J

where T'„ is a constant depending only on c Thus the functional

T(8) = - f a a *d
JR

defined on reg(R) © *Te0"(R) satisfies

|r(0)|2 útA 6 A*e,
JR

where Ta=jR oA*o+T'a. Thus F can be extended to a bounded linear functional

on

re0(P) © *re0(P) = re?(P) ©* Te^(R).

Hence there exists a unique element w in re0(P) © *re0(P) such that T(9) = J* eu A *9.

Thus in particular,

f (a+w) A*df=  f (o+oj) a df= 0
JR JR

for any /in Cq(R). Take a compact subdomain Q. in R; then clearly o + œ e T(D).

Taking / in C^Q), the above equality shows that ct + cu e (Te$(Q.) © *re£(Q.)y.

By the de Rahm decomposition, I\(£2) = T(Q) © (r,S"(û) © *re0(Q)), we conclude
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that a + co e r„(Q). Thus A = <r+co is a harmonic differential on R and À—a

= coereO(£-)0*rcO(A).

10. Next assume that Re 0G and we can find a harmonic differential A on A

such that A-a = co e TeQ(R) © *re0(£) for a given <j. We have to show that (10)

holds. Clearly, for any/e C<T(R),

and similarly

f foj I* = I f    df A co 2 S ( [ co A *co) • f df A *df
Jet | JRX \Jr I    JR

| Jy *co 2á(^A *co) - £ df A *df

Hence by Theorem 1, we must have Ja co=Ja *co=0. On the other hand, J"a A

= rBo dX=0 and /„ *A = |So a"*A=0. Thus (10) follows.

11. Finally, we prove the last part of Theorem 2. Let Xx and A2 be harmonic

differential on R such that Xx — <r and A2 — a belong to re0(A) © *(re0(A)). Then

Xx-X2eFe0(R) ®*Te0(R). But Xx-X2 is harmonic and thus A!-A2=0 by the

de Rahm decomposition.

Assume that o is exact (resp. *exact). Then for 9e*Teo(R) (resp. reô(R)),

]rXa*9=(roA*9 = 0.  This implies jRwA*6 = 0. Thus co e (Fe0(R) © *re0(R))

© *rez(R)=re0(R) (resp. co e (re0(R)@ *re0(R)) © rez(R)=*re0(R)).

12. Application to the case of functions. Let j be a harmonic function on Rx,

arbitrary if R $ Oa, and ja *ai=0 if R e 0G. Thus by Theorem 2, there exists a

harmonic function p on R such that d(p—s) e Te0(R). This means that p — s is

bounded on A. Thus we constructed a harmonic function p on R which behaves

like í at ß. If Ja *aj=0, then fB *c/(p-i)=0 and c/(/?-i) s reO(A0. This implies

Lx(p—s)=p—s on Ai (see [3]), where £j is Sario's principal operator for Rx.

Such an approach to the principal function problem was initiated by Browder [2].

The author wishes to express his gratitude to Professor Leo Sario for his

stimulating suggestions.
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