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HARMONIC DIVISORS AND RATIONALITY OF ZEROS OF JACOBI
POLYNOMIALS

HERMANN RENDER

Abstract. Let P (�;�)n (x) be the Jacobi polynomial of degree n with parameters �; �:
The main result of the paper states the following: If b 6= 1; 3 and c are non-zero rel-

atively prime natural numbers then P (k+(d�3)=2;k+(d�3)=2)n

�p
b=c
�
6= 0 for all natural

numbers d; n and k 2 N0:Moreover, under the above assumption, the polynomial Q (x) =
b
c

�
x21 + :::+ x

2
d�1
�
+
�
b
c � 1

�
x2d is not a harmonic divisor, and the Dirichlet problem for

the cone fQ (x) < 0g has polynomial harmonic solutions for polynomial data functions.

1. Introduction

A polynomial Q (x) is called a harmonic divisor if there exists a polynomial p (x) 6= 0
such that the product Q (x) p (x) is harmonic, i.e. that

�(Q (x) p (x)) = 0 for all x 2 Rd;

where � = @2

@x21
+ :::+ @2

@x2d
is the Laplace operator in the euclidean space Rd. The notion

of a harmonic divisor arises naturally in the investigation of stationary sets for the wave
and heat equation [1],[2], and the injectivity of the spherical Radon transform [3]. In the
study of the Cauchy problem in the category of formal power series it is often necessary
to assume that a given polynomial Q (x) is not a harmonic divisor, see [15], [16], [17],
[18].
Let  2 (0; 1) : In this paper we are interested in the Dirichlet problem for the closed

cone

(1) 
 :=
�
(x1; :::; xd) 2 Rd : xd � 0 and 2

�
x21 + :::+ x

2
d�1
�
�
�
1� 2

�
x2d
	
:

Using some standard arguments we shall see that the Dirichlet problem for polynomial
data functions has unique harmonic polynomial solutions provided that the quadratic
homogeneous polynomial

(2) Q (x1; :::; xd) = 
2
�
x21 + :::+ x

2
d�1
�
+
�
2 � 1

�
x2d

is not a harmonic divisor.
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2 HERMANN RENDER

Throughout the paper N denotes the set of all natural numbers n = 1; 2; 3; ::: and N0
denotes the set N [ f0g : D. Armitage has shown in [6] that Q is not a harmonic divisor
if and only if

(3) C
k+(d�2)=2
m�k () 6= 0

for all m 2 N0 and for all k 2 f0; :::;mg. Here C�n (x) is the Gegenbauer polynomial (or
ultraspherical polynomial) of degree n and parameter �: Using the fact that Gegenbauer
polynomials are expressible by Jacobi polynomials P (�;�)n (x) (see Section 2) the condition
(3) is equivalent to

(4) P (k+(d�3)=2;k+(d�3)=2)n () 6= 0 for all k; n 2 N0:
Since Jacobi polynomials have rational coe¢ cients it is clear that (4) is satis�ed for tran-
scendental numbers . The question arises whether one may �nd rather simple numbers
, say rational numbers, such that (4) holds. In this paper we shall prove that

(5) P (k+(d�3)=2;k+(d�3)=2)n

�p
b=c
�
6= 0 for all k; n 2 N0

for all relatively prime natural numbers b; c with b 6= 1; 3: Our method of proof relies on
simple divisibility arguments and an old result of Legendre about the divisibility properties
of binomial coe¢ cients.
The paper is organized as follows. In Section 2 we shall recall some standard identities

for Jacobi polynomials which will be essential for our arguments. Section 3 contains the
main result which will be derived from a more general theorem for Jacobi polynomials
P
(�;�)
n where the parameters �; � are integers or half-integers.
In Section 4 we apply our results to Chebyshev polynomials providing a new proof of

the following fact proven by D. H. Lehmer in [27]: Let k be an integer and m 2 N0. If
there exist a natural number c and b 2 N0 such that

xk;m := cos
k�

m+ 1
=
p
b=c

then xk;m is equal to one of the numbers 0; 1; 1=2; 1=
p
2; 3=

p
2:

In Section 5 we give applications to the Dirichlet problem as explained above.

2. Jacobi polynomials

Let us recall that the Pochhammer symbol (�)k for a complex number � and k 2 N0 is
de�ned by

(�)k = � (�+ 1) ::: (�+ k � 1)
with the convention that (�)0 = 1: The Gegenbauer polynomial C

�
n (x) can be expressed

through Jacobi polynomials by the formula (see [5, p. 302])

C�n (x) =
(2�)n

(�+ (1=2))n
P (��(1=2);��(1=2))n (x) ;
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where the Jacobi polynomial P (�;�) (x) for complex parameters � and � is de�ned by

P (�;�)n (x) = (�1)n (�+ 1)n
n!

nX
k=0

(�n)k
k!

(n+ �+ � + 1)k
(�+ 1)k

�
1� x
2

�k
;

see [5, p. 99]. For our purposes the following formula

P (�;�)n (x) =
(�+ 1)n
n!

�
1 + x

2

�n nX
k=0

(�n)k
k!

(�n� �)k
(�+ 1)k

�
x� 1
x+ 1

�k
;

is very convenient, see [5, p. 117]. Using that

(�n)k
k!

=
(�1)k

k!
n (n� 1) ::: (n� (k � 1)) = (�1)k

�
n

k

�
and (�1)k (�n� �)k = (n+ � + 1� k)k one obtains the formula

(6) P (�;�)n (x) =
(�+ 1)n
n!

�
1 + x

2

�n
Q(�;�)n

�
x� 1
x+ 1

�
where we de�ne the polynomial Q(�;�)n (y) by

(7) Q(�;�)n (y) =
nX
k=0

(n+ � + 1� k)k
(�+ 1)k

�
n

k

�
yk:

Clearly (6) implies that

(8) P (�;�)n

�
2x2 � 1

�
=
(�+ 1)n
n!

x2nQ(�;�)n

�
x2 � 1
x2

�
:

We recall from [5, p. 117] that

(9) P
(�;�)
2n (x) =

� (2n+ �+ 1)n!

� (n+ �+ 1) (2n+ 1)!
P (�;�1=2)n

�
2x2 � 1

�
:

Taking the parameter � equal to �1=2 in formula (8) one obtains from (9) the formula

(10) P
(�;�)
2n (x) =

� (2n+ �+ 1) (�+ 1)n
� (n+ �+ 1) (2n+ 1)!

x2nQ(�;�1=2)n

�
x2 � 1
x2

�
:

For x =
p
b=c this means that

(11) P
(�;�)
2n

�p
b=c
�
=
� (2n+ �+ 1) (�+ 1)n
� (n+ �+ 1) (2n+ 1)!

bn

cn
Q(�;�1=2)n

�
b� c
b

�
:

Similarly we have (see [5, p. 117])

P
(�;�)
2n+1 (x) =

� (2n+ �+ 2)n!

� (n+ �+ 1) (2n+ 1)!
� x � P (�;1=2)n

�
2x2 � 1

�
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and

(12) P
(�;�)
2n+1 (x) =

� (2n+ �+ 2) (�+ 1)n
� (n+ �+ 1) (2n+ 1)!

x2n+1Q(�;1=2)n

�
x2 � 1
x2

�
:

Thus

(13) P
(�;�)
2n+1

�p
b=c
�
=
� (2n+ �+ 2) (�+ 1)n
� (n+ �+ 1) (2n+ 1)!

x2n+1Q(�;1=2)n

�
b� c
b

�
:

In the next section we shall analyse the polynomial Q(�;�)n (x).

3. The main result

At �rst let us introduce some de�nitions and notations: for an integer a 6= 0 and a
prime number p (so by de�nition p � 2) de�ne vp (a) as the largest number m 2 N0 such
that pm divides a; and de�ne vp (0) = 1: Thus, vp (a) is the multiplicity of the prime
factor p occurring in the prime decomposition of a: For a rational number r = a

b
one

de�nes vp (r) := vp (a)� vp (b) :
Let n be a natural number and p be a prime number. Let us write its p-adic decompo-

sition by n = ntpt + nt�1pt�1 + :::+ n1p+ n0 where n0; :::; nt 2 f0; 1; :::; p� 1g : The sum
of the p-digits of n is de�ned by �p (n) = n0+ :::+ nt: A beautiful result due to Legendre
says that

vp (n!) =
n� �p (n)
p� 1 ;

see e.g. [40]. Since the sum n0 + :::+ nt is positive for n � 1 we conclude that

Lemma 1. For any prime number p and any natural number n one has

vp (n!) �
n� 1
p� 1 :

The following simple lemma will be our main tool. For convenience of the reader we
include the proof although it might be part of mathematical folklore.

Lemma 2. Let Qn (x) =
Pn

k=0 akx
k be a polynomial with rational coe¢ cients and an 6= 0

and a0 6= 0. Let b and c be non-zero integers and let p be a prime number dividing c and
not b: Assume that

(14) vp

�
ck
an�k
an

�
� 1

for k = 1; :::; n. Then Qn
�
b
c

�
6= 0:

Proof. We write Qn (x) =
Pn

k=0 an�kx
n�k and obtain

(15)
cn

an
Qn

�
b

c

�
= bn +

nX
k=1

bn�kck
an�k
an

:
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Note that in the sum in (15), each term has p-adic valuation � 1: On the other hand, bn
is not divisible by p: Hence Qn

�
b
c

�
can not be zero and we actually have proved that

(16) vp

�
Qn

�
b

c

��
= vp

�an
cn

�
:

�
Remark 3. Let Dn be the least natural number such that Dnan�k=an is an integer for all
k = 1; :::; n: Multiplying (15) with Dn shows that Dn

cn

an
Qn
�
b
c

�
is a non-zero integer and

therefore the following inequality holds:

(17)

����Qn�bc
����� � janj

jcnj �
1

Dn

:

We shall need the following elementary lemma. The proof is included for convenience
of the reader:

Lemma 4. If m is a natural number and k 2 N0 then

(18) 22k�1 �
�
m� 1

2

�
k

=
(2m+ 2k � 3)! (m� 1)!
(m+ k � 2)! (2m� 2)! :

Proof. For k � 1 the term 22k�1 � (m� 1=2)k is equal to
2k�1 (2m� 1) (2m+ 1) ::: (2m+ 2k � 3) :

Clearly this is equal to

2k�1
(2m� 1) (2m) (2m+ 1) ::: (2m+ 2k � 4) (2m+ 2k � 3)

(2m) (2m+ 2) :::: (2m+ 2k � 4)
and from this one obtains the right hand side of (18). For k = 0 one easily checks that
(18) holds as well. �
Now we will state the main result of the paper and it is convenient to recall formula

(7):

(19) Q(�;�)n (y) =

nX
k=0

(n+ � + 1� k)k
(�+ 1)k

�
n

k

�
yk:

Theorem 5. Let n 2 N; and �; � 2 N0 and � 2 f0; 1g. Then

(20) Q
(� �

2
+�;� 1

2
+�)

n

�
b

c

�
6= 0

for all non-zero relatively prime integers b and c if either (i) 2 divides c or (ii) there exists
a prime number p � � + 3 dividing c and but not 2� + 1; or (iii) there exists a prime
number p > (� + 3) =2 such that p2 divides c:
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Proof. 1. Replace � in (19) by �1
2
+ �: Lemma 4 (put m := n+ � � k + 1 � 1) yields

(n+ 1=2 + � � k)k =
1

22k�1
(2n+ 2� � 1)! (n+ � � k)!
(n+ � � 1)! (2n+ 2� � 2k)! :

2. In the �rst case suppose that � = 0: Since � 2 N0 we have (�+ 1)k = (�+ k)!=�!:

Thus the k-th coe¢ cient of the polynomial Q(�;�1=2+�)n (y) is given by

(21) ak :=

�
n

k

�
�!

(�+ k)!

1

22k�1
(2n+ 2� � 1)! (n+ � � k)!
(n+ � � 1)! (2n+ 2� � 2k)! :

Then
an�k
an

= 22k
�
n

k

�
(�+ n)!

(�+ n� k)!
(� + k)!

�!

(2�)!

(2� + 2k)!
:

Note that

(22) 2k
(� + k)!

�!

(2�)!

(2� + 2k)!
= 2k

(� + 1) ::: (� + k)

(2� + 1) :::: (2� + 2k)
=

1

Tk (�)

where

(23) Tk (�) := (2� + 1) (2� + 3) ::: (2� + 2k � 1) :
Thus

an�k
an

= 2k
�
n

k

�
(�+ n)!

(�+ n� k)!
1

Tk (�)
:

3. In the second case we have � = 1; so the �rst parameter in (19) is equal to �1=2 + �:
By formula (18) applied to m = �+ 1 we obtain

(�+ 1)k =

�
m� 1

2

�
k

=
1

22k�1
(2�+ 2k � 1)!�!
(�+ k � 1)! (2�)! :

Thus the k-th coe¢ cient of Q(�1=2+�;�1=2+�)n (x) is equal to

(24) ak =

�
n

k

�
(2n+ 2� � 1)!
(n+ � � 1)!

(2�)! (�+ k � 1)! (n+ � � k)!
�! (2�+ 2k � 1)! (2n+ 2� � 2k)! :

Hence

(25)
an�k
an

=

�
n

k

�
(n� k + �� 1)!
(n+ �� 1)!

(2n+ 2�� 1)!
(2n� 2k + 2�� 1)!

(� + k)! (2�)!

(2� + 2k)!�!
:

Since

fk :=
(n� k + �� 1)!
(n+ �� 1)!

(2n+ 2�� 1)!
(2n� 2k + 2�� 1)!

=
(2n� 2k + 2�) (2n� 2k + 2�+ 1) ::: (2n+ 2�� 1)

(n� k + �) ::: (n+ �� 1)
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it is easy to see that fk = 2kgk with

gk := (2n� 2k + �+ 1) (2n� 2k + �+ 3) ::: (2n+ 2�� 1) :

Thus using (22) we obtain the following formula for the case � = 1:

an�k
an

=

�
n

k

�
gk

1

Tk (�)
:

4. Let now p be a prime number dividing c: In both cases, � equal to 0 or 1; the natural
number Tk (�) is a denominator of an�k=ak:We shall show that condition (14) in Lemma
2, namely

(26) vp

�
ck
an�k
an

�
� vp

�
ck

Tk (�)

�
� 1 for k = 1; ::::; n;

is satis�ed under the assumptions of the theorem, and therefore the proof will be �nished.
If p = 2 we see that v2 (Tk (�)) = 0 for k = 1; :::; n since Tk (�) is a product of odd

numbers, so (26) is satis�ed.
Assume now that p � � + 3: Then it is easy to see that the inequality

(27)
2� + 2k � 2
p� 1 � k � 1

holds for all k = 3; :::; n: Indeed, (27) says that the function f (k) = (k � 1) (p� 1) �
(2� + 2k � 2) is non-negative for k = 3; :::; n: Since f is a linear map, we have only to
check that f (3) � 0; so 2 (p� 1) � 2� � 4 � 0; which is obviously true since p � � + 3:
By Lemma 1 we have

(28) vp (Tk (�)) � vp ((2� + 2k � 1)!) �
2� + 2k � 2
p� 1

and by (27) we infer vp (Tk (�)) � k � 1 that for k = 3; :::; n; so (26) is satis�ed for
k = 3; :::; n: We consider now the cases k = 1; 2. By assumption we know that

(29) vp (T1 (�)) = vp (2� + 1) = 0:

Thus (14) holds for k = 1. Moreover, (29) implies

vp (T2 (�)) = vp ((2� + 1) (2� + 3)) = vp (2� + 3) :

Suppose that vp (2� + 3) � 2: then 2� + 3 � p2 � (� + 3)2 = �2 + 6� + 9 which is
obviously nonsense. Thus vp (T2 (�)) � 1 and vp (c2=T2 (�)) � 1: Hence (26) holds for all
k = 1; :::; n and the result follows.
5. Now assume that p2 divides c: If p is an integer > (� + 3) =2 then clearly

p � 2� + 7

4
=
� + 3

2
+
1

4
:
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We have to show that (26) holds for all k = 1; :::; n: Note that by Lemma 1

vp

�
ck

Tk (�)

�
� 2k � vp (Tk (�)) � 2k �

2� + 2k � 2
p� 1 :

We conclude that vp
�
ck=Tk (�)

�
� 1 for k = 3; :::; n since h (k) := (2k � 1) (p� 1)� 2��

2k + 2 � 0 for k = 3; :::; n: The latter is true since h (k) � h (3) = 5 (p� 1)� 2� � 4 and
by our assumption p � (2� + 7) =4: Now we check that vp

�
ck=Tk (�)

�
� 1 for k = 1; 2:

Suppose that vp (2� + 1) � 2 or vp (2� + 3) � 2: then p2 � 2� + 3 and our assumption
(2� + 7)=4 � p yields

4�2 + 28� + 49 = (2� + 7)2 � 16p2 � 32� + 48:

Hence (2� � 1)2 � 0; a contradiction since � is an integer. Thus vp (2� + 1) � 1 and
vp (2� + 3) � 1 and therefore

vp

�
c

T1 (�)

�
� 2� 1 � 1 and vp

�
c2

T2 (�)

�
� 4� 2 � 2 � 1:

The proof is complete. �

Let us consider the case n = 1: From (19) we infer that Q(�;�)1 (x) = 1 + �+1
�+1
x, and

specializing to our case of half-integers we obtain

Q
(��=2+�;� 1

2
+�)

1 (x) = 1 +
2� + 1

2�+ 2� �x:

Thus x1;�;�;� := � (2�+ 2� �) = (2� + 1) is a rational zero. This already shows that the
assumption that the prime number p does not divide 2� + 1 in (ii) of Theorem 5 can
not be omitted. In Section 4 we shall see similar examples where the degree n may be
arbitrarily high.
Note that Theorem 5 does not give any information if the denominator c is equal to 1.

Indeed, in this case we may have integer zeros, e.g. for � = 1 and � = 0 and � = 5 we
have

Q
(5; 12)
4 (x) =

1

256
(x+ 4)

�
5x3 + 100x2 + 176x+ 64

�
:

Now we are going to prove the main result announced in the introduction:

Theorem 6. Let d be a natural number and let b and c be relatively prime natural numbers.
If m is even and b 6= 1 then

P (k+(d�3)=2;k+(d�3)=2)m

 r
b

c

!
6= 0 for all k;m 2 N0:

If m is odd and b 6= 1; 3 then the same conclusion holds.
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Proof. Assume that m is even, say m = 2n: For x =
p
b=c use the identity (11), namely

P
(�;�)
2n

�p
b=c
�
=
� (2n+ �+ 1) (�+ 1)n
� (n+ �+ 1) (2n+ 1)!

bn

cn
Q(�;�1=2)n

�
b� c
b

�
:

Clearly b � c and b are relatively prime. Since b 6= 1 there exists a prime number p � 2
dividing b: Theorem 5 for the case � = 0 shows that Q(�;�1=2)n

�
b�c
b

�
6= 0: For m = 2n+ 1

we use (13). Since b 6= 1; 3 there exists either a prime number p 6= 3 dividing b; or 32

divides b: Theorem 5 for the case � = 1 �nishes the proof. �

In Theorem 5 it is assumed that the prime number p divides the denominator c. We are
now turning to a criterion where the prime number p divides the nominator. In the case
� = 1 we may deduce a result by using a symmetry property of the polynomials Q(�;�)n (y):

Proposition 7. Let �; � be complex numbers. Then for any y 6= 0

Q(�;�)n (y) =
(� + 1)n
(�+ 1)n

� ynQ(�;�)n

�
1

y

�
:

Proof. One may derive this result directly from the de�nition. Alternatively, one may use
the well known fact that P (�;�)n (x) = (�1)n P (�;�)n (�x) and use formula (6). Then the
substitution y = (x� 1) = (x+ 1) �nishes the proof. �
Theorem 8. Let n 2 N and �,� 2 N0: Then

Q(�1=2+�;�1=2+�)n

�
b

c

�
6= 0

for all non-zero relatively prime integers b and c if either (i) 2 divides b or (ii) there exists
a prime number p � � + 3 dividing b but not 2� + 1;or (iii) there exists a prime number
p > (� + 3) =2 such that p2 divides b.

Proof. By Proposition 7 there exists a non-zero rational number rn (�; �) such that

(30) Q(�1=2+�;�1=2+�)n (b=c) = rn (�; �)
bn

cn
Q(�1=2+�;�1=2+�)n

�c
b

�
:

Now apply Theorem 5 for the case � = 1 to the right hand side of (30). �

Let us recall that the Jacobi polynomials P (0;0)n (x) coincide with the Legendre polyno-
mials. It is still an unsolved question whether the Legendre polynomials are irreducible
over the rationals, see [23], [24], [30], [40] and [41]. H. Ille has shown that P (0;0)n (x) has

no quadratic factors which implies that P (0;0)n

�p
b=c
�
6= 0 for all n; b; c 2 N (even for

the case b = 1; 3): In passing we note that recent research is devoted to the study of
irreducibility of the Laguerre polynomials L�n (x) initiated by I. Schur, see [20], [22], [36],
and for a family of Jacobi polynomials see [12]. For general questions about irreducibility
of polynomial with rational coe¢ cients we refer to [28], [31] and [38].
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4. Applications to Chebyshev polynomials

Note that Q(�;�)n (x) > 0 for all x > 0 whenever �; � are real numbers � �1=2: Let us
take in Theorem 5 and 8 the parameters � and � equal to zero. Then we infer that

(31) Q(�1=2;�1=2)n

�
b

c

�
6= 0 for all b

c
6= �1:

Taking � and � equal to 1 we infer that

(32) Q(1=2;1=2)n (b=c) 6= 0 for all b
c
6= �1;�3;�1=3:

Next we shall show that indeed

(33) Q
(1=2;1=2)
3m�1 (�1=3) = 0 and Q(1=2;1=2)3m�1 (�3) = 0 and Q(1=2;1=2)2m�1 (�1) = 0

for all natural numbers m; in particular one can not omit in Theorem 5 the condition
that the prime number p does not divide 3 = 2� + 1 (with � = 1): For the proof of (33)
we use that the relationship of the polynomial P (1=2;1=2)n (x) to the Chebyshev polynomial
Un (x) of the second kind, namely

(34) P (1=2;1=2)n (x) =
(2n+ 2)!

2n+1 [(n+ 1)!]2
Un (x) =

(2n+ 2)!

2n+1 [(n+ 1)!]2
sin (n+ 1) �

sin �
;

where x = cos �; cf. [5, p. 241], and

cos
��
3

�
=
1

2
and cos

�
2�

3

�
= �1

2
and cos

��
2

�
= 0:

If we set � = �=3 then x = cos � = 1=2 and P (1=2;1=2)3m�1 (1=2) = 0 by (34). Using (6) we infer
that Q(1=2;1=2)3m�1 (�1=3) = 0: The cases � = 2�=3 and � = �=2 are similar.
Now we use Theorem 5 to derive the following result (see [27] and [39]):

Theorem 9. The number x := cos k�
m+1

is rational if and only if x is equal to one of the
numbers 0;�1;�1=2:

Proof. We may assume that m > 0 and we put � = k�=(m+1): By (34), P (1=2;1=2)m (x) = 0
for x = cos �: Assume that x 6= 0;�1 and x = b=c: Then b� c 6= 0 and b 6= 0 and by (6)

0 = P (1=2;1=2)m (b=c) = dmQ
(1=2;1=2)
m

�
b� c
b+ c

�
for some non-zero constant dm: By (32) we conclude that b�cb+c

2 f�1;�3;�1=3g. It follows
that either b � c = � (b+ c) which implies b = 0; or b � c = �3b � 3c; so 4b = �2c; so
b=c = �1=2; or 3 (b� c) = �b� c which implies that 4b = 2c; so b=c = 1=2: �
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Theorem 9 is a special case of the following result due to D.H. Lehmer [27]: Let n > 2
and k and n relatively prime. Then 2 cos (2�k=n) is an algebraic integer of degree ' (n) =2
where ' is Euler�s '-function, see also [32, Theorem 3.9]. For example, we have

cos (�=4) = 1=
p
2 and cos (�=6) =

p
3=2:

The question when cos (2�k=d) is the square root of a positive rational number was dis-
cussed by J. L. Varona in [39] using recurrence relations, see also [4, Chapter I]. We shall
give here an alternative proof based on Theorem 9.

Theorem 10. Let k be an integer and m 2 N0. Suppose that there exist natural numbers
b; c such that

cos
k�

m+ 1
=
p
b=c:

Then cos (k�=(m+ 1))is equal to one of the numbers 0; 1; 1=2; 1=
p
2;
p
3=2:

Proof. This is a simple consequence of Theorem 9 using that 2 cos2 � � 1 = cos (2�) :
Thus, if cos (k�=(m+ 1)) is a square root of a rational number, then cos (2k�=(m+ 1))
is a rational number and by Theorem 9 is one of 0;�1;�1=2: �

5. Applications to the Dirichlet problem

Let G � Rd be a domain and @G the boundary of G:We say that the Dirichlet problem
is solvable if for each continuous function f on @G there exists a continuous function u
de�ned on the closure of G such that u is harmonic in G and f (�) = u (�) for all � 2 @G:
It is well known that the Dirichlet problem can be solved explicitly if G is a ball or an

ellipsoid, see [7]. An elegant proof of this fact was presented in [25] (see also [8] and [9]),
which can be extended to domains de�ned by quadratic polynomials in the following way:

Theorem 11. Let Q (x) be a polynomial of degree � 2. If Q is not a harmonic divisor
then for each polynomial f (x) of degree � m there exists a harmonic polynomial u of
degree � m such that

(35) u (�) = f (�) for all � 2 Q�1 f0g :=
�
x 2 Rd : Q (x) = 0

	
Proof. Let P

�
Rd
�
be the set of all polynomials in the variables x1; :::; xd: The so-called

Fischer operator FQ : P
�
Rd
�
! P

�
Rd
�
is de�ned by

FQ (p) := � (Pq) for all q 2 P
�
Rd
�
:

The fact that Q (x) is not a harmonic divisor is equivalent to the injectivity of FQ:
Since Q (x) is a polynomial of degree � 2 the Fischer operator FQ maps the space of all
polynomials of degree � m into itself. Therefore injectivity of FQ implies the bijectivity
of FQ. To �nd the solution u of the Dirichlet problem one de�nes

u = f �Q � F�1Q (� (f)) :

Then u obviously satis�es (35) and u is harmonic since�u = �f�FQ�F�1Q (�f) = 0: �
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Theorem 12. Let  :=
p
b=c < 1 with relatively prime natural numbers b; c with b 6= 1; 3:

Let 
 be the cone de�ned in (1). Then for each polynomial f of degree � m there exists
a harmonic polynomial u of degree � m such that f (�) = u (�) for all � 2 @
.

Proof. The assumptions of Theorem 12 imply that Q is not a harmonic divisor. By
Theorem 11 there exists a harmonic polynomial u such that u (�) = f (�) for all � 2
Q�1 (0) : Since @
 � Q�1 (0) the proof is complete. �

For more applications of the Fischer operator we refer to [35] and [37]. For a discussion
of polynomial solutions in the Dirichlet problem (Khavinson-Shapiro conjecture) we refer
to [10], [11], [13], [14], [19], [26], [29], [34].

Acknowledgements: The author wishes to thank Prof. Dr. G. Skordev for valuable
discussions, and an unknown referee for improving condition (iii) in Theorem 5 and for
providing elegant proofs of Lemma 2 and Theorem 10.
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