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Harmonic Equivalence of the Impulse Loads in Vibration Fatigue

Primož Ogrinec - Janko Slavič* - Miha Boltežar

University of Ljubljana, Faculty of Mechanical Engineering, Slovenia

In vibration fatigue, three unique types of loads are typical: random, harmonic and impulse. In an application any of these loads are possible. A fatigue-life

analysis is possible in the time and frequency domains using the frequency-response function of a structure. Recent studies demonstrated that the impulse

loads influence the accuracy of a fatigue-life prediction in the frequency domain. The focus of this research is a theoretical study of an equivalent harmonic

load to the impulse load on a single-degree-of-freedom system in order to investigate the feasibility of impulse loads in vibration testing. This research shows

that there is a relationship between the impulse and harmonic loads that is related to the underlying dynamic properties (e.g., damping, natural frequency).

Based on a theoretical analysis an experimental procedure was developed for both cases of excitation, which was able to confirm the theoretical analysis.

Using the modal decomposition the single-degree-of-freedom approach can be generalized to multiple-degrees-of-freedom systems.

Keywords: vibration fatigue, random loads, spectral methods, fatigue life, stationary and non-stationary loading, non-Gaussian loading, vibration

testing

Highlights

• Non-stationary and non-Gaussian loads lead to significantly shorter fatigue lives of a structure.

• Impulses, that can occur in the loading signal, render the loading signal non-Stationary and non-Gaussian.

• The equivalence between impulse and harmonic loads, with regard to fatigue testing is presented with an analytical derivation.

• Control strategies for impulse and harmonic fatigue tests are presented.

• The theoretical procedure was experimentally verified on 18 samples, with impulse and harmonic loading.

• Material’s fatigue parameters were identified for G-AlSi8Cu3(226).

0 INTRODUCTION

As structures are becoming lighter and loads

optimised, the effects of structural dynamics [1]

and random loads on the fatigue life of flexible

structures are becoming more important. This is

known as vibration fatigue and has been the subject of

various studies in recent years [2] to [7].

Vibration fatigue is focused in loads well below

the yield stress (i.e., high-cycle fatigue), which

is typically researched in the time domain (e.g.,

rainflow-counting algorithm [8]) or in the frequency

domain (e.g., the narrow band [9], Dirlik [2] or

Tovo-Bennasciutti methods [5] and [3]). When

studying fatigue life in the frequency domain it is

common to assume that the excitation signals and

consequently the stress response of a structure are

Gaussian and stationary [10] and [11].

In recent years great efforts have been made

to develop the frequency-counting methods in the

analysis of the fatigue life of structures excited

with non-Gaussian and non-stationary excitation

signals [12] to [16]. Tovo and Bennasciutti studied

non-stationary switching random loads [4]. Song and

Wang [17] presented a spectral-moment-equivalence

lumped block method that improves the accuracy of the

fatigue-life analysis for non-stationary, non-Gaussian

loads and incorporates the material parameters into the

equivalent spectral moments formula. Bracessi et al.

[18] and Niu et al. [19] researched the influence of load

Kurtosis and skewness on the damage rate in the case

of non-Gaussian signals; Wolfsteiner and Sedlmair [20]

and Cianetti et al. [21] presented correction factors

based on those two characteristics of the loading

signal.

In real cases it is common to experience some

forms of non-Gaussian loading [22], which can also be

the result of the impulses superimposed on the random

loading of a structure [23]. These impulses can be

the consequence of geometric non-linearities, contact

conditions, clearances, wear, etc.

While the fatigue life under a combination of

harmonic and random loads can be studied in the

frequency domain [24], [25] and [6], the effects of these

impulse loads are not well researched. The presence

of impulses renders the signal non-stationary. Capponi

et al. [15] and Palmieri et al. [16] noted that in the

case of such signals the fatigue-life assessments with

spectral methods in the frequency domain return a

significantly longer life prediction than were observed

in the experimental testing. Hence, the development

of new methods that can account for the presence of

impulses in the stress response is of great importance.
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As was recently shown by Ogrinec et al. [23]

the most influential parameters on the accuracy of

the frequency-domain methods on the fatigue-life

prediction at impulse excitation are: the significant

natural frequency, the length of the impulse [26],

the coefficient of damping, the modal mass, and

the material parameters of the Wöhler curve. For

that reason, accurate identification of the material’s

fatigue parameters is crucial. The material parameters,

however, can sometimes vary based on the method

used to obtain them. It is known, for instance, that the

strain rate can significantly influence measurements of

the yield stress and the ultimate tensile strength [27].

Similarly, the identification of the material’s fatigue

parameters can be influenced [28].

For reasons of simplicity, it is common to use

a harmonic loading signal for fatigue testing [29],

although some other loading signals are possible [30]

and [31]. However, since the influence of the material’s

fatigue parameters on the fatigue-life estimation’s

accuracy was proven [23], the question of the validity

of the parameters of the Wöhler curve obtained

with a harmonic test remains open. Therefore, an

experimental exploration of the effects of impulse

loading on the identification of material’s fatigue

properties is necessary.

The main goal of this study is to analyse the

possibility to determine the parameters of the Wöhler

curve, based on a fatigue test, where the sample

is excited with impulses. An experimental setup is

presented, where only one significant mode shape

was excited. The system is free to respond to the

half-sine impulse; therefore, the sample experiences

a variety of cycles with varying amplitudes. To

produce an equivalent load, the hypothesis of a

linear accumulation of damage [32] is assumed. The

parameters of the Wöhler curve are compared to

an equivalent test, where the sample is excited

harmonically.

This manuscript is organised as follows. Sec. 1

presents the theoretical background. The theoretical

comparison between the damage accumulation due

to harmonic and impulse excitationx is presented in

Sec. 2. In Sec. 3 the experimental setup with control

algorithms for both load cases is presented. The results

are presented in Sec. 4. Sec. 5 draws the conclusions.

1 THEORETICAL BACKGROUND

When a dynamic system is excited in the frequency

range of its natural frequencies the response of the

system is amplified. If the system is excited with a

half-sine impulse, the frequency range of the excitation

is determined with the length of the impulse. To

take advantage of the response amplification, which is

particularly useful in fatigue testing, the impulse has to

be specified with this range of excitation in mind.

However, when the system is excited

harmonically, the frequency of excitation has to

be close enough to a significant natural frequency to

obtain the dynamic amplification.

1.1 Structural Dynamics

Any real structure can be regarded as a

continuum and can therefore be modelled as a

multi-degrees-of-freedom (MDOF) system. The

equation of motion for a general MDOF structure is

[33], [34]:

M ẍ+ C ẋ+Kx = f , (1)

where M, C and K are the mass, viscous damping

and stiffness matrices of the structure, respectively. f

represents the vector of the excitation forces and x is

the displacement vector of the stucture’s degrees of

freedom. After introducing the proportional viscous

damping ξ and modal coordinates q, the equations of

motion become uncoupled [35].

I q̈+
[

�2ξξξ ωωω000�

]

q̇+
[

�ωωω222
000�

]

q = ΦΦΦ
T f, (2)

where:

x = ΦΦΦ q. (3)

ΦΦΦ is the mass-normalized modal matrix [35]. I

represents the identity matrix,
[

�222ξξξ ωωω000�

]

is the

diagonal damping matrix and
[

�ωωω222
000�

]

is the diagonal

matrix of the natural frequencies. For the i-th modal

coordinate qi the uncoupled equation of motion is [35]:

q̈i +2ξiω0,i q̇i +ω2
0,i qi = Φ

T
i f, (4)

where Φi is i-th mass-normalized eigenvector. It

is worth noting that the transformation to the

modal coordinates transforms a MDOF system

with N degrees of freedom, to N decoupled

single-degree-of-freedom (SDOF) systems.

1.2 Impulse Response

When a SDOF system [35] is excited with an ideal unit

impulse, which can be defined with the Dirac delta

function:

δ (t) =

{

∞, t = 0

0, t �= 0
, (5)



Strojniški vestnik - Journal of Mechanical Engineering 65(2019)11-12, 631-640

633Harmonic Equivalence of the Impulse Loads in Vibration Fatigue

the system responds with the impulse response

function g(t) [33] and [35]:

g(t) =
e−δω0t sin

(√
1−δ 2ω0t

)

√
1−δ 2ω0

. (6)

When the damping coefficient is small (δ << 1,√
1−δ 2 ≈ 1) then Eq. (6) simplifies to:

g(t) =
e−δω0t sin(ω0t)

ω0
. (7)

In order to obtain the response for a general force

excitation f (t), the convolution integral of the impulse

f (t) and the impulse-response function g(t) are

required [36].

x(t) = f (t)∗g(t) =
∫ t

−∞
f (τ)g(t − τ)dτ , (8)

where t is the time variable and x(t) is the time

response of the SDOF system.

The half sine impulse excitation and the impulse

load of a SDOF structure are presented in Fig. 1.

1.3 Fatigue-life Estimation

In order to obtain the fatigue damage in the case of

an impulse excitation a counting method has to be

employed. In this paper the rainflow counting method

[8] will be used in combination with the hypothesis of

linear damage accumulation [32] and [37]. Here, the

basics (used later in this paper) of the time-domain

high-cycle approach to the fatigue-life estimation are

presented (for details see, e.g. [38]).

The rainflow algorithm [8] transforms the

stress-time history into a series of stress reversals.

After the stress-time history is determined, the Miners

rule of damage accumulation is applied and the

damage is calculated as:

DRF =
P

∑
i=1

ni

Ni

, (9)

where P is the number of ranges in the stress-reversal

series that are identified by the rainflow algorithm and

ni is the number of stress reversals at each individual

stress level. Together with the fatigue parameters,

which determine the expected number of cycles Ni at a

stress level σi, Eq. (9) leads to the accumulated damage

in the structure. The number of expected cycles Ni that

a structure survives at the stress level σi is theoretically

described with the Wöhler curve [39]:

σ k
i Ni =C, (10)

where k and C are the material’s fatigue parameters.

It is important to be aware that this simple S-N

relationship does not account for the material’s

endurance limit and can only be used when dealing

with high-cycle fatigue [40] or with materials that do

not exhibit a fatigue limit.

2 HARMONIC EQUIVALENCE OF THE IMPULSE LOADS

2.1 Damage at impulse excitation

In order to compare the harmonic and impulse

excitations, the accumulated fatigue damage, which

is the consequence of the individual loads, has to be

determined analytically. The modal decomposition,

as presented in Sec. 1, makes it possible to apply the

methods developed for the single-degree-of-freedom

(SDOF) system, to multiple-degree-of-freedom

(MDOF) systems [35]. As was shown in [23] the

dynamic stress response to an impulse excitation can

be simplified to a scaled impulse-response function

Eq. (7) for the analysis of the fatigue damage in

the time domain, assuming the impulses are well

separated, meaning that the response of the impulse

is completely damped before the next impulse occurs.

Therefore, the relatively complex solution of the

convolution integral Eq. (8) is not necessary. The

stress response of the structure σI can be written as a

scaled impulse-response function:

σI(t) = σP

e−δω0t sin(ω0t)

ω0
, (11)

for small coefficients of damping δ << 1. In Eq.

(11) the ω0 stands for the natural frequency of a

SDOF system and σP the peak stress of the response

(envelope). As the rainflow algorithm [8] considers

only the peaks and valleys of the stress response, Eq.

(11) can be further simplified for the peaks:

σI(i) = e−
1
2 πδ (2i+1)(−1)iσp, (12)

where i is an integer. In this manner the stress response

can be discretized to a series of local maximum and

minimum values of the stress response, also known as

a turning-point sequence. Since the rainflow algorithm

requires only the amplitudes of the extreme stress

values, the individual stress cycles χi can be defined as

the summation of the absolute values of the successive

extreme points:

χi =
1

2
(σI(i)+σI(i+1)) . (13)

After introducing Eq. (12), Eq. (13) becomes:

χi =
1

2

(

eπδ +1
)

e−
1
2 πδ (2i+3)σp. (14)
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Fig. 1. a) Normalised half-sine impulse excitation, and b) the impulse response of a SDOF structure

The Palmgren-Miner rule of linear damage

accumulation Eq. (9) can now be employed to

determine the damage D as:

D = NI

∞

∑
i=0

1

Ni

, (15)

where Ni is the number of cycles until failure at the

level χi and NI is the number of impulse excitations

(resulting in the impulse-response cycle load χi). By

using the definition of the cycles Eq. (14) and the

Wöhler curve Eq. (10), the respective number of

cycles Ni that the structure would endure for any given

stress-cycle amplitude can be determined as:

DI = NI

∞

∑
i=0

(

χk
i

C

)

. (16)

The Cauchys criterion for convergence [41] states that

for each ε > 0 a pair k > n exists for which:
∣

∣

∣

∣

∣

r

∑
j=n+1

χ j

∣

∣

∣

∣

∣

= |χn+1 +χn+2 + · · ·+χr|< ε. (17)

Since the stress cycles of a damped SDOF structure

limit towards 0, lim
n→∞

χn = 0, the Cauchys criterion is

satisfied and the sum in Eq. (16) is final:

DI =−
NI 2−k

(

e−
1
2 (3πδ )

(

eπδ +1
)

σp

)k

C
(

(

e−πδ
)k
−1

) . (18)

2.2 Damage at Harmonic Excitation

If the load on the structure is harmonic with a constant

stress amplitude σeq, using the Palmgren-Miner rule

for linear damage accumulation [32], the cumulative

damage is:

DH = NH

σ k
eq

C
, (19)

where NH is the number of stress cycles at σeq.

2.3 The Equivalent Impulse Load to Harmonic Excitation

Here, the damage DI Eq. (18) of the NI repetitions

of impulse excitation, where the response load is a

damped impulse response as shown in Fig. 1, will be

related to the damage DH Eq. (19) due to the harmonic

excitation with NH harmonic cycles at amplitude σeq:

DI = DH . (20)

Using Eqs. (18) and (19) and the assumption that

the fatigue parameters are the same for impulse and

harmonic excitations:

−
NI2

−k
(

e−
1
2 (3πδ )

(

eπδ +1
)

σp

)k

C
(

(

e−πδ
)k
−1

) = NH

σ k
eq

C
, (21)

which can be simplified to:

σeq = cosh

(

πδ

2

)

σp

(

NI

NH

(

eπδk −1
)

)1/k

. (22)

For small coefficients of damping δ << 1, which is

often the case in real structures, this can be further

simplified to:

σeq = σp

(

NI

NH

(

eπδk −1
)

)1/k

. (23)

As can be seen from this derivation, the influencing

factors on the relation between the impulse and

harmonic loads are the coefficient of damping δ , the

amplitudes σeq for harmonic and σP impulse loads,

the number of harmonic cycles NH and impulses NI

and the slope of the Wöhler curve k. This analytical

derivation proves that for any impulse-response load

there exists an equivalent harmonic load that yields the
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same damage. Eq. (22) can be rearranged into a form

that resembles the notation for the Wöhler curve:

σeq

σP

=

(

1

eπδ k −1

)1/k (
NI

NH

)1/k

. (24)

3 EXPERIMENTAL SETUP

For the experimental validation an electrodynamic

shaker capable of impulse and harmonic excitations

with closed-loop control was used. In order to

obtain the parameters of the Wöhler curve at impulse

excitation, the sample’s mode shape of interest must be

excited with a translational movement in the axis of the

shaker. Additionally, the sample’s natural frequency

of interest must be distinct, well separated from the

other natural frequencies and be within the shaker’s

frequency range [42]. The area where the maximum

stresses in the sample occur, must be on a surface

where strain-gauge measurements are possible. It is

also preferable to correlate strain with the relative

displacements, since they can be measured throughout

the test more reliably [40],[42].

The Y-shaped sample was chosen as it meets all

of these criteria. Its natural frequencies are well

separated; therefore, only one mode can be excited.

Subsequently, the sample can be regarded as a SDOF

system. The specimen consists of three rectangular

cross-sections, 10 mm × 10 mm in size, that are

arranged at 120◦ around the main axis. A circular hole

in the centre ensures the fatigue zone is concentrated

in the centre between the arms of the specimen.

The samples are cast from the aluminium alloy

G-AlSi8Cu3(226). The thickness is determined by

milling and the overall shape by wire EDM (electrical

discharge machining). The fatigue zones, which can

be clearly seen in Fig. 2, are additionally ground and

polished in order to remove any initial surface defects,

which could start the crack growth prematurely. On

the arms of the specimen two steel dead-weights

can be positioned; using different dead-weights the

natural frequency and the damping of the system can

be changed. The design idea of the specimen is

explained in detail in [40]. A total of 18 samples were

experimentally tested: 9 of them at impulse excitation

and the other 9 samples at harmonic excitation, similar

to the description in [23] and [40].

During preparation of the Y-sample, extreme care

was taken while machining, as well as during the

preparation of the fixture of the sample in order

to excite only one significant mode. The material

G-AlSi8Cu3(226) was chosen because of its good

casting properties that reduce the porosity of the cast

sample. The material is, however, notorious for

relatively large silicon inclusions, which affect the

variance in the fatigue lives between samples.

The natural frequency of the system was varied

with the selection of different weights; three different

system setups were researched (each setup was

researched with 3 samples with impulse and 3 with

harmonic excitation), see Tables 1 and 2 for the natural

frequency of the samples, while other parameters given

in the table will be discussed later.

3.1 Impulse Test

During the fatigue testing the sample was excited with

well-separated half-sine impulses. In the first step an

experimental modal analysis was performed to obtain

the natural frequencies of the samples. The duration of

the impulse was determined with:

ti =
2π

aω0
, (25)

where ω0 is the focused natural frequency that was

excited and a is a constant a = 2, as proposed in [23].

Due to the fatigue damage the natural frequency will

decrease. In vibration fatigue a change in the natural

frequency of 2 % is considered as fatigue failure [43];

with the small change it is reasonable to assume that

the mechanical system is still linear. The control loop

for impulse testing is presented in Fig. 3. If xS is the

amplitude of displacement of the shaker base and xA is

the amplitude of displacement of one of the Y-sample

arms, then the relative displacement amplitude ∆x can

be related to the stress σ in the fatigue zone via the

coefficient kσ [23]:

kσ =
σ

∆x
=

E ε ω2

ẍS − ẍA

, (26)

where ε is the strain, measured in the fatigue zone, ω

is the frequency of excitation, ẍA is the acceleration

of the arm of the sample, ẍS is the acceleration

of the armature of the shaker, and E is the elastic

modulus. The relation between the accelerations and

deflections is simple since the response of the structure

is harmonic in both excitation cases. This calibration

was performed on a separate sample, so as not to

induce any initial damage to the samples that were

used for the identification of the material’s fatigue

properties.

As the natural frequency was well excited in the

impulse testing, it was possible to identify and track

the natural frequency for every impulse-excitation

response. Thus it was possible to identify the critical
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Fig. 2. Experimental setup

Table 1. Samples for the impulse test

Sample nr. Natural frequency [Hz] σP [MPa] NI [/] δ init [/] Dinit
I [/] δ f in [/] D

f in
I [/]

1.1 300.0 126.1 7 300 0.0241 1.64 0.0301 1.19

1.2 300.0 88.34 155 000 0.0218 1.29 0.0236 1.16

1.3 300.0 125.9 6 460 0.0246 1.38 0.0253 1.33

2.1 330.0 88.4 105 560 0.0178 1.16 0.0188 1.08

2.2 334.0 84.0 226 180 0.0189 1.40 0.0363 0.55

2.3 328.0 83.2 233 080 0.0165 1.57 0.0186 1.34

3.1 402.0 74.2 309 660 0.0145 0.82 0.0153 0.76

3.2 398.5 78.3 120 420 0.0100 0.83 0.0169 0.44

3.3 402.0 82.7 206 140 0.0170 1.27 0.0183 1.15

Table 2. Samples for the harmonic test

Sample nr. Natural frequency [Hz] δ [/] σH [MPa] NH [/] DH [/]

4.1 298.0 0.0276 55.3 13 122 486 1.11

4.2 300.0 0.0284 65.0 2 629 897 1.06

4.3 300.0 0.0232 50.0 37 004 975 1.19

5.1 331.0 0.0169 60.3 4 463 862 0.83

5.2 333.0 0.0171 40.1 508 457 676 1.94

5.3 330.0 0.0181 49.9 26 809 448 0.85

6.1 400.5 0.0138 44.2 68 807 660 0.68

6.2 399.0 0.0145 80.0 284 920 0.85

6.3 402.0 0.0121 46.1 67 629 488 1.00

damage of the sample when the natural frequency fell

by 2 %.

During the fatigue test, as the damage increases,

the damping can change [29]. For an accurate damage

estimation it is therefore important to identify the

damping coefficient throughout the test. Table 1

shows the initial δ init and the final δ f in values of

the coefficient of damping. Due to the open-loop

strategy, also the stress load, estimated from the

two accelerometers, can slightly change. During the

fatigue test, a peak amplitude deviated less than to 2 %

for all samples, but the sample 1.1, a 6 % decrease was

observed.

3.2 Harmonic Test

Under the harmonic test, the samples were excited

harmonically with a frequency close to the significant

natural frequency. A control strategy was used, where

the phase shift Φ between the accelerometer mounted

on the shaker’s armature and the arm of the sample

(see Fig. 2) was monitored to adjust the excitation

frequency and to control the stress amplitude [40], see

Fig. 4. During the harmonic test, the amplitude and

natural frequency were updated every 500 ms.

The damping coefficient does not influence

the fatigue-life prediction in the case of harmonic

excitation. The excitation amplitudes can, however,

still vary. Although a closed-loop control algorithm

was used, the excitation amplitudes could vary by up

to 0.5 %.

3.3 Damage Criteria

As the structural dynamics of the sample changes long

before its complete failure, it is practical to identify



Strojniški vestnik - Journal of Mechanical Engineering 65(2019)11-12, 631-640

637Harmonic Equivalence of the Impulse Loads in Vibration Fatigue

Correlation of the excitation
amplitude Y
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Labview, NI9263

Sample excitation
Shaker LDS V555
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Stress amplitude 
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Fig. 3. Control loop for impulse excitation

--
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Stress amplitude 
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Correlation of the excitation
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Correlation of the excitation
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Phase angle
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Fig. 4. Control loop for harmonic excitation

a failure when the natural frequency starts to change

rapidly [40] and [42]. Therefore, in this research a

drop of 2 % in the natural frequency was considered

as a failure. For details about the failure on damage

identification from the natural frequency, the interested

reader is referred to [44].

During the impulse test the identification of

the natural frequency is fairly straight forward, as

it can be identified as the frequency at the peak

value in the Fourier transform of the stress signal,

see Fig. 5. During the harmonic test, the natural

frequency had to be identified indirectly, from the
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phase difference between the signals of the top

and bottom accelerometers. As the frequency falls,

the excitation frequency required to keep the same

dynamic gain and the phase shift between the signals

falls likewise. Therefore, the fall of the significant

natural frequency can be determined by recording the

excitation frequency. The tracked excitation frequency

is shown in Fig. 6.
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Fig. 5. Decreasing of natural frequency during the impulse fatigue test
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Fig. 6. Fall of excitation frequency during harmonic excitation.

4 RESULTS

4.1 Identification of the Wöhler Curve

Since the goal of this paper is to prove the equivalence

of the impulse and harmonic loads, the Wöhler curve

was identified on the harmonic test results, only.

The fatigue parameters for the equiprobability curve

identified on the harmonic test results were:

CH = 7.2450×1023
, (27)

kH = 9.6347. (28)

The parameters were identified with the cost

function:

ε(k̃,C̃) = min

[

S

∑
i=1

Di(k̃,C̃)−1

]

, (29)

where S is the number of samples, k̃ and C̃ are the

material parameters used in each individual iteration

of the optimisation, and ε(C̃, k̃) is the error between the

optimal value of the damage and the damage in current

iteration.

4.2 Comparing the Two Loading Strategies

With the fatigue parameters obtained from the

harmonic test Eq. (27), Eq. (19) is used to theoretically

estimate the damage for the harmonic test. As the

fatigue parameters were fitted to the experimental

results of the harmonic test it is expected that DH

would be close to 1. From Table 2 we can see that

this is the case for most of the samples; the deviation

from 1 is reasonable and expected in the fatigue test.

It is reasonable to assume that the fatigue

parameters between the harmonic and the impulse

test are the same. Therefore, the fatigue parameters

obtained from the harmonic test Eq. (27) can be

used with the damage estimation at impulse excitation

Eq. (18). The resulting damage Dinit
i and D

f in
i based

on the damping identified at the beginning and the end

of the test are given in Table 1. We can see that the

damage is reasonably close to 1.

This experimental result validates the theoretical

relation between the impulse and the harmonic load

introduced in Eq. 24.

5 CONCLUSIONS

The harmonic loads for high-cycle fatigue are

well understood and can be theoretically and

experimentally researched relatively easily. The

contrary is true for the impulse loads; the impulse

excitation is frequently exciting mechanical systems,

leading to a damped free response related to the

structural dynamic’s of the system. Based on the

structural dynamics theoretical background and classic

fatigue theory in the time domain, a theoretical relation

between the vibration-fatigue damage in the case of the

impulse load and the harmonic load is introduced.

The theoretical model was experimentally

evaluated using the Y-sample. A total of 18 samples

were experimentally tested; 9 for harmonic loads

and 9 for impulse excitation. The samples were

grouped in sets of 3. Using different mass loadings

to the Y-sample, three different dynamic systems

were researched (different natural frequencies and

damping). Based on the time-domain experimental

data from the harmonic test, the fatigue parameters

were identified. The identified material parameters

were then used to recalculate the damage at failure for

every individual sample, for both excitation strategies.

The identified damage was reasonably close to 1

confirming the introduced theoretical relation between

the impulse and harmonic excitations.

The introduced relation between the impulse

and harmonic excitations can be used for the
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