HARMONIC FOLIATIONS ON A COMPACT RIEMANNIAN MANIFOLD OF NON-NEGATIVE CONSTANT CURVATURE

Dedicated to Professor Shingo Murakami on his sixtieth birthday

Hisao Nakagawa and Ryoichi Takagi

(Received May 1, 1987)

Introduction. Let M be a compact oriented manifold and \mathscr{F} a Riemannian and harmonic foliation with respect to a bundle-like metric. Kamber and Tondeur [3] proved the fundamental formula for a special variation of \mathscr{F}, and making use of it they showed in [4] that the index of a Riemannian and harmonic foliation on the sphere $S^{n}(n>2)$ for which the standard metric is bundle-like is not smaller than $q+1$, where q is the codimension of \mathscr{F}.

The purpose of this paper is to prove that any harmonic foliation on a compact Riemannian manifold of non-negative constant curvature for which the normal plane field is minimal (see $\S 1$ for the definition) is totally geodesic. As a corollary we can state that any Riemannian and harmonic foliation on the sphere $S^{n}(n>2)$ for which the standard metric is bundlelike is totally geodesic. Moreover, Escobales [1] has classified recently all totally geodesic foliations on the spheres for which the standard metrics are bundle-like. This means that harmonic foliations on the spheres for which the standard metrics are bundle-like have been completely classified.

On the other hand, a theorem of Ferus [2] gives an estimate for the codimension of a totally geodesic foliation of the sphere S^{n}. Thus we can apply these results to the foregoing theory of Kamber and Tondeur to sharpen their result.

The authors wish to thank the referee for his useful advice.

1. Preliminaries. We shall be in the C^{∞}-category. Let (M, g) be an n-dimensional Riemannian manifold, and \mathscr{F} a foliation of codimension q on M. Then there arise two tensor fields associated with a foliated Riemannian manifold (M, g, \mathscr{F}) as follows. Denote by $V(M)$ the space of vector fields on M, and by ∇ the Riemannian connection on M. For any $X \in V(M)$ we decompose it as

$$
X=X^{\prime}+X^{\prime \prime}
$$

where X^{\prime} (resp. $X^{\prime \prime}$) is tangent (resp. normal) to \mathscr{F}. Actually, choosing
a suitable Riemannian metric on the tangent bundle $T(M)$ of M, we may decompose $T(M)$ as the direct product $\mathscr{F} \oplus \mathscr{F}^{\perp}$, where \mathscr{F}^{\perp} is called a normal plane field. Then we define two tensors A and h of type (1,2) on M by

$$
\begin{align*}
& A(X, Y)=-\left(\nabla_{Y^{\prime}}, X^{\prime \prime}\right)^{\prime} \\
& h(X, Y)=\left(\nabla_{Y^{\prime}} X^{\prime}\right)^{\prime \prime}, \quad X, Y \in V(M) \tag{1.1}
\end{align*}
$$

The restriction of h to each leaf of \mathscr{F} is what is called the second fundamental form of the leaf. From now on we express them with respect to a locally defined orthonormal frame field, and derive some basic formulas among them and their derivatives. As for the range of indices we use the following convention unless otherwise stated:

$$
\begin{aligned}
& A, B, C, \cdots=1, \cdots, n \\
& i, j, k, \cdots=1, \cdots, p \\
& \alpha, \beta, \gamma, \cdots=p+1, \cdots, n
\end{aligned}
$$

where $p=n-q$ denotes the dimension of \mathscr{F}. The summation \sum is taken over all repeated indices. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a local field of orthonormal frames on M such that e_{1}, \cdots, e_{p} are always tangent to \mathscr{F}. Denote its dual forms by $\omega_{1}, \cdots, \omega_{n}$. The connection forms $\omega_{A B}$ with respect to ω_{A} are defined by the equations

$$
\begin{align*}
& \omega_{B A}+\omega_{A B}=0 \\
& d \omega_{A}+\sum \omega_{A B} \wedge \omega_{B}=0 \tag{1.2}
\end{align*}
$$

The Riemannian connection ∇ on M is given by

$$
\begin{equation*}
\nabla_{e_{A}} e_{B}=\sum \omega_{C B}\left(e_{A}\right) e_{C} \tag{1.3}
\end{equation*}
$$

It follows from (1.1) and (1.3) that

$$
\begin{align*}
& h\left(e_{i}, e_{j}\right)=\sum \omega_{\alpha i}\left(e_{j}\right) e_{\alpha} \tag{1.4}\\
& A\left(e_{\alpha}, e_{\beta}\right)=\sum \omega_{\alpha j}\left(e_{\beta}\right) e_{j}
\end{align*}
$$

Thus the only components $h^{A}{ }_{B C}$ (resp. $A^{B}{ }_{C D}$) of h (resp. A) which may not vanish are

$$
\begin{equation*}
h^{\alpha}{ }_{i j}=\omega_{\alpha i}\left(e_{j}\right) \quad\left(\operatorname{resp} . A_{\alpha \beta}^{i}=\omega_{\alpha i}\left(e_{\beta}\right)\right) . \tag{1.5}
\end{equation*}
$$

Moreover the connection forms $\omega_{\alpha i}$ are given by

$$
\begin{equation*}
\omega_{\alpha i}=\sum h^{\alpha}{ }_{i j} \omega_{j}+\sum A^{i}{ }_{\alpha \beta} \omega_{\beta} . \tag{1.6}
\end{equation*}
$$

The foliation \mathscr{F} is said to be harmonic or minimal (resp. totally geodesic) if $\sum h^{\alpha}{ }_{i i}=0$ (resp. $h^{\alpha}{ }_{i j}=0$).

After Kitahara [5] and Reinhart [9], we define the second fundamental form B of the normal plane field \mathscr{F}^{\perp} by

$$
\begin{equation*}
B(X, Y)=\{A(X, Y)+A(Y, X)\} / 2, \quad X, Y \in V(M) \tag{1.7}
\end{equation*}
$$

The normal plane field \mathscr{F}^{\perp} is said to be minimal (resp. totally geodesic) if $\operatorname{Tr} B=\sum A^{j}{ }_{\alpha \alpha} e_{j}=0$ (resp. $B=0$).

The curvature form $\Omega=\left(\Omega_{A B}\right)$ of M is defined by

$$
\begin{equation*}
\Omega_{A B}=d \omega_{A B}+\sum \omega_{A C} \wedge \omega_{C B} \tag{1.8}
\end{equation*}
$$

We put

$$
\begin{equation*}
\Omega_{A B}=-\sum\left(R_{A B C D} / 2\right) \omega_{C} \wedge \omega_{D}, \quad R_{A B C D}+R_{A B D C}=0 \tag{1.9}
\end{equation*}
$$

Then the components $R_{A B C D}$ of Ω satisfy

$$
\begin{equation*}
R_{A B C D}=-R_{B A C D}=R_{C D A B} . \tag{1.10}
\end{equation*}
$$

Since the distribution $\omega_{\alpha}=0$ is integrable by definition, we have

$$
\begin{equation*}
h^{\alpha}{ }_{i j}=h^{\alpha}{ }_{j i} . \tag{1.11}
\end{equation*}
$$

The distribution $\omega_{i}=0$ is integrable if and only if

$$
\begin{equation*}
A_{\alpha \beta}^{i}=A_{{ }_{\beta \alpha}}^{i} . \tag{1.12}
\end{equation*}
$$

On the contrary, the Riemannian metric g is bundle-like (see Molino [6] or Reinhart [8]) if and only if

$$
\begin{equation*}
A_{\alpha \beta}^{i}=-A^{i}{ }_{\beta \alpha} . \tag{1.13}
\end{equation*}
$$

Thus, the Riemannian metric is bundle-like if and only if $B=0$, and then the normal plane field \mathscr{F}^{+}is minimal.

Now, for a tensor filed $T=\left(T^{A_{1} \cdots A_{B_{1}} \cdots B_{s}}\right.$) on M, we define the covariant derivative ($\left.T^{A_{1} \cdots A_{A_{1}} \cdots B_{8} c}\right)$ by

$$
\begin{align*}
& \sum T^{A_{1} \cdots A_{A_{1}}}{ }_{B_{1} \cdots B_{g}} \omega_{c}=d T^{A_{1} \cdots A_{B_{1}} \cdots A_{s}}{ }^{r} \sum_{a=1}^{r} T^{A_{1} \cdots A_{a-1} C}{ }^{C_{a+1} \cdots A_{B_{1}}}{ }_{B_{1} \cdots B_{g}} \omega_{C_{A_{a}}} \tag{1.14}\\
& -\sum_{b=1}^{s} T^{\Lambda_{1} \cdots \cdots_{B_{1}} \cdots B_{b-1} C B_{b+1} \cdots{ }^{B} \omega_{C B_{b}}} .
\end{align*}
$$

Then the exterior derivative of (1.6) gives

$$
\begin{gather*}
h^{\alpha}{ }_{i j k}-h^{\alpha}{ }_{k k j}=R_{\alpha i j k}, \tag{1.15}\\
h^{\alpha}{ }_{i j \beta}-A_{\alpha \beta j}^{i}-\sum h^{\alpha}{ }_{i k} h^{\beta}{ }_{k j}-\sum A^{i}{ }_{\alpha \gamma} A^{j}{ }_{\gamma \beta}=R_{\alpha i j \beta}, \tag{1.16}\\
A^{i}{ }_{\alpha \beta \gamma}-A^{i}{ }_{\alpha \gamma \beta}+\sum h^{\alpha}{ }_{i j}\left(A^{j}{ }_{\beta \gamma}-A^{j}{ }_{\gamma \beta}\right)=-R_{\alpha i \gamma \beta} . \tag{1.17}
\end{gather*}
$$

Moreover, from the definition of ($h^{A}{ }_{B C D}$) and (1.6) it follows that we have

$$
\begin{align*}
& h_{i j k}^{l}=-\sum h^{\alpha}{ }_{i j} h^{\alpha}{ }_{l k}, \tag{1.18}\\
& h_{i j \alpha}^{l}=-\sum h^{\beta}{ }_{i j} A^{l}{ }_{\beta \alpha}, \tag{1.19}\\
& h^{\alpha}{ }_{i \beta j}=-\sum h^{\alpha}{ }_{i k} h^{\beta}{ }_{k j}, \tag{1.20}
\end{align*}
$$

$$
\begin{align*}
h^{\alpha}{ }_{i \beta \gamma} & =-\sum h^{\alpha}{ }_{k i} A^{k}{ }_{\beta r}, \tag{1.21}\\
h^{\alpha}{ }_{\beta i j} & =-\sum h^{\alpha}{ }_{i k}{ }^{\beta}{ }_{k j}, \tag{1.22}\\
h^{\alpha}{ }_{\beta i \gamma} & =-\sum h^{\alpha}{ }_{i k} A^{k}{ }_{\beta \gamma} . \tag{1.23}
\end{align*}
$$

The Ricci formulas on the second covariant derivatives of h are given by the exterior derivative of the definition of the components $h^{A}{ }_{B C D}$. For later use we write down these equations:

$$
\begin{align*}
& h^{\alpha}{ }_{i j k l}-h^{\alpha}{ }_{i j l k}=\sum h^{\beta}{ }_{i j} R_{\alpha \beta k l}+\sum h^{\alpha}{ }_{m j} R_{i m k l}+\sum h^{\alpha}{ }_{i m} R_{j m k l}, \tag{1.24}\\
& h^{\alpha}{ }_{i j k \beta}-h^{\alpha}{ }_{i j \beta k}=\sum h^{\gamma}{ }_{i j} R_{\alpha \gamma k \beta}+\sum h^{\alpha}{ }_{l j} R_{i l k \beta}+\sum h^{\alpha}{ }_{i l} R_{j l k \beta}, \tag{1.25}\\
& h^{\alpha}{ }_{i j \beta \gamma}-h^{\alpha}{ }_{i j \gamma \beta}=\sum h^{\delta}{ }_{i j} R_{\alpha \delta \beta \gamma}+\sum h^{\alpha}{ }_{k j} R_{i k \beta \gamma}+\sum h^{\alpha}{ }_{i k} R_{j k \beta r}, \tag{1.26}\\
& A^{i}{ }_{\alpha \beta j k}-A^{i}{ }_{\alpha \beta k j}=\sum A^{l}{ }_{\alpha \beta} R_{i l j_{k}}+\sum A^{i}{ }_{\gamma \beta} R_{\alpha \gamma j k}+\sum A^{i}{ }_{\alpha \gamma} R_{\beta \gamma j_{k}}, \tag{1.27}\\
& A^{i}{ }_{\alpha \beta j \gamma}-A^{i}{ }_{\alpha \beta \gamma j}=\sum A^{k}{ }_{\alpha \beta} R_{i k j r}+\sum A^{i}{ }_{j \beta} R_{\alpha \delta j r}+\sum A^{i}{ }_{\alpha \delta} R_{\beta \delta j r}, \tag{1.28}\\
& A^{i}{ }_{\alpha \beta \gamma \delta}-A^{i}{ }_{\alpha \beta \delta \gamma}=\sum A^{k}{ }_{\alpha \beta} R_{i k r \delta}+\sum A^{i}{ }_{6 \beta} R_{\alpha \varepsilon \gamma_{\delta}}+\sum A^{i}{ }_{\alpha \varepsilon} R_{\beta \varepsilon \gamma_{\delta}} . \tag{1.29}
\end{align*}
$$

2. Proof of Theorem. Let (M, g, \mathscr{F}) be a foliated Riemannian manifold. We keep the notation in §1. The global vector field $v=\sum v_{A} e_{A}$ on M is defined by

$$
v_{k}=\sum h^{\alpha}{ }_{i j} h^{\alpha}{ }_{i j k}, \quad v_{\alpha}=0
$$

The divergence δv of v is first calculated.
Lemma 2.1.

$$
\begin{aligned}
\delta v= & \sum v_{i} A^{i}{ }_{\alpha \alpha}+\sum h^{\alpha}{ }_{i j k} h^{\alpha}{ }_{i j k}+\sum h^{\alpha}{ }_{i j} R_{\alpha i j j_{k k}}+\sum h^{\alpha}{ }_{i j} R_{\alpha k i k j} \\
& +\sum h^{\alpha}{ }_{i j} h^{\beta}{ }_{k k} h^{\alpha}{ }_{i j \beta}+\sum h^{\alpha}{ }_{i j} h^{\alpha}{ }_{k k i j}+\sum\left(h^{\beta}{ }_{i k} R_{\alpha \beta j k}+h^{\alpha}{ }_{l k} R_{i l j_{k}}+h^{\alpha}{ }_{i l} R_{k l j_{k}}\right) h^{\alpha}{ }_{i j} \\
& +\sum h^{i j} h^{\alpha}{ }^{\alpha}{ }_{l k} h^{\beta}{ }_{i j} h^{\beta}{ }_{l k}+2 \sum h_{i j} h^{\beta}{ }_{i k} h^{\alpha}{ }_{j l} h^{\beta}{ }^{{ }_{l k}} .
\end{aligned}
$$

Proof. From the definition of $\left(v_{A B}\right)$, we have

$$
\sum v_{\alpha A} \omega_{A}=d v_{\alpha}-\sum v_{A} \omega_{A \alpha}=-\sum v_{i} \omega_{i \alpha},
$$

which implies

$$
\begin{equation*}
\sum v_{\alpha \alpha}=\sum v_{i} A_{\alpha \alpha}^{i} . \tag{2.1}
\end{equation*}
$$

Moreover we have

$$
\begin{aligned}
& \sum v_{k A} \omega_{A}=d v_{k}-\sum v_{A} \omega_{A k}=d\left(\sum h^{\alpha}{ }_{i j} h^{\alpha}{ }_{i j k}\right)-\sum v_{i} \omega_{i k} \\
& =\sum h^{\alpha}{ }_{i j_{k}}\left(h^{\alpha}{ }_{i j \Lambda} \omega_{A}-h^{\beta}{ }_{i j} \omega_{\alpha \beta}+h^{\alpha}{ }_{i j} \omega_{l i}+h^{\alpha}{ }_{i l} \omega_{l j}\right) \\
& +\sum h^{\alpha}{ }_{i j}\left(h^{\alpha}{ }_{i j k A} \omega_{A}-h^{l}{ }_{i j_{k}} \omega_{\alpha l}+h^{\alpha}{ }^{1 j_{k}} \omega_{l i}+h^{\alpha}{ }_{i l k} \omega_{l j}\right. \\
& \left.+h^{\alpha}{ }_{i j l} \omega_{l k}-h^{\beta}{ }_{i j_{k}} \omega_{\alpha \beta}+h^{\alpha}{ }_{\beta j_{k}} \omega_{\beta i}+h^{\alpha}{ }_{i \beta k} \omega_{\beta j}+h^{\alpha}{ }_{i j \beta} \omega_{\beta k}\right) \\
& -\sum h^{\alpha}{ }_{j l} h^{\alpha}{ }_{j l_{i}} \omega_{i k} \\
& =\sum h^{\alpha}{ }_{i j_{k}} h^{\alpha}{ }_{i j A} \omega_{A}+\sum h^{\alpha}{ }_{i j}\left(h^{\alpha}{ }_{i j_{k A}} \omega_{A}-h^{l}{ }_{i j_{k}} \omega_{\alpha l}+2 h^{\alpha}{ }_{i{ }_{\beta k}} \omega_{\beta j}+h^{\alpha}{ }_{i j \beta} \omega_{\beta k}\right),
\end{aligned}
$$

which together with (1.18) and (1.22) gives

$$
\begin{align*}
\sum v_{i i}= & \sum h^{\alpha}{ }_{i j k} h^{\alpha}{ }_{i j k}+\sum h_{i j}^{\alpha} h^{\alpha}{ }_{i j k l}+\sum h_{i j}^{\alpha} h^{\beta}{ }_{i j} h^{\alpha}{ }_{k l} h^{\beta}{ }_{k l} \tag{2.2}\\
& +2 \sum h^{\alpha}{ }_{i j} h^{\alpha}{ }_{j k} h^{\beta}{ }_{k l} h^{\beta}{ }^{\prime}+\sum h_{i j}^{\alpha} h^{\beta}{ }_{k k} h^{\alpha}{ }_{i j \beta} .
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
h^{\alpha}{ }_{i j k k} & =R_{\alpha i j_{k k}}+h^{\alpha}{ }_{i k j k} \\
& =R_{\alpha i j k k}+\sum h^{\beta}{ }_{i k} R_{\alpha \beta j_{k}}+\sum h^{\alpha}{ }_{l k} R_{i l j_{k}}+\sum h^{\alpha}{ }_{i l} R_{k l j k}+h^{\alpha}{ }_{i k k j} \quad \text { (by (1.24)) } \\
& =R_{\alpha i j k k}+\sum h^{\beta}{ }_{i k} R_{\alpha \beta j_{k}}+\sum h^{\alpha}{ }_{l k} R_{i l j k}+\sum h^{\alpha}{ }_{i l} R_{k l j k}+R_{\alpha k i k j}+h^{\alpha}{ }_{k k i j} . \tag{1.15}
\end{align*}
$$

This, (2.1) and (2.2) complete the proof.
Lemma 2.2. If the foliation is harmonic, then we have

$$
\begin{gather*}
\sum h^{\alpha}{ }_{i i A}=0, \tag{2.3}\\
\sum h^{\alpha}{ }_{i i j k}=-2 \sum h_{i i l}^{\alpha} h^{\beta}{ }_{l j} h^{\beta}{ }_{i k} . \tag{2.4}
\end{gather*}
$$

Proof. From the definition of ($h^{A}{ }_{B C D}$) we have

$$
\sum h^{\alpha}{ }_{i t A} \omega_{A}=\sum d h^{\alpha}{ }_{i i}+\sum h_{i i}^{A} \omega_{\alpha A}+\sum h^{\alpha}{ }_{A i} \omega_{i A}+\sum h^{\alpha}{ }_{i A} \omega_{i A}=0,
$$

which proves (2.3). Similarly, we have

$$
\begin{align*}
\sum h^{\alpha}{ }_{i i j A} \omega_{A} & =\sum d h^{\alpha}{ }_{i i j}+\sum h^{A}{ }_{i j} \omega_{\alpha A}+\sum h^{\alpha}{ }_{A i j} \omega_{i A}+\sum h^{\alpha}{ }_{i j j} \omega_{i A}+\sum h^{\alpha}{ }_{i i A} \omega_{j A} \\
& =\sum h^{k}{ }_{i j i} \omega_{\alpha k}+2 \sum h^{\alpha}{ }_{\beta i j} \omega_{i \beta} . \tag{2.3}
\end{align*}
$$

Hence we have from (1.18) and (1.20)

$$
h^{\alpha}{ }_{i i j k}=\sum h_{i i j}^{l} h^{\alpha}{ }_{l k}-2 \sum h^{\alpha}{ }_{\beta i j} h^{\beta}{ }_{i k}=-2 \sum h_{i l}^{\alpha} h^{\beta}{ }_{l j} h^{\beta}{ }_{i k} . \quad \text { q.e.d. }
$$

Now we can prove the following:
TheOrem 2.3. Let (M, g) be a compact Riemannian manifold of constant sectional curvature $c(\geqq 0)$. Let \mathscr{F} be a harmonic foliation such that the normal plane field \mathscr{F}^{\perp} is minimal. Then the foliation \mathscr{F} is totally geodesic.

Proof. We may assume that M is orientable, because otherwise we may consider its double covering space instead. Then for the vector field v defined above we have

$$
\int_{M} \delta v * 1=0
$$

where $* 1$ denotes the volume element of M. Since M is of constant curvature c, we have

$$
R_{A B C D}=c\left(\delta_{A D} \delta_{B C}-\delta_{A C} \delta_{D B}\right),
$$

and so $R_{A B C D E}=0$. By assumption we have $\sum A_{\alpha \alpha}^{i}=0$. Then Lemma 2.1 and (2.4) imply

$$
\begin{align*}
& \int_{M}\left[\sum h^{\alpha}{ }_{i j k} h_{i j k}^{\alpha}+c p \sum h^{\alpha}{ }_{i j} h^{\alpha}{ }_{i j}+\sum h_{i j}^{\alpha} h_{i j}^{\beta} h_{k l}^{\alpha} h_{k l}^{\beta}\right. \tag{2.5}\\
& \left.\quad+2 \sum \operatorname{Tr}\left(H^{\alpha} H^{\alpha} H^{\beta} H^{\beta}-H^{\alpha} H^{\beta} H^{\alpha} H^{\beta}\right)\right] * 1=0
\end{align*}
$$

where H^{α} denotes the $p \times p$ matrix $\left(h^{\alpha}{ }_{i j}\right)$. Since the matrix $H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}$ is skew-symmetric, we find

$$
\begin{aligned}
0 & \geqq \sum \operatorname{Tr}\left[\left(H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}\right)\left(H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}\right)\right] \\
& =2 \sum \operatorname{Tr}\left(H^{\alpha} H^{\beta} H^{\alpha} H^{\beta}-H^{\alpha} H^{\alpha} H^{\beta} H^{\beta}\right)
\end{aligned}
$$

Therefore each term in (2.5) is non-negative. In particular, we have $\sum h_{i j}^{\alpha} h^{\alpha}{ }_{k l}=0$, and so $h^{\alpha}{ }_{i j}=0$. q.e.d.

Corollary 1. Let (M, g) be a compact Riemannian manifold of constant curvature $c(\geqq 0)$. Let \mathscr{F} be a harmonic foliation such that the Riemannian metric is bundle-like. Then the foliation \mathscr{F} is totally geodesic.

In the case of $c=0$ in Corollary 1, it follows from (1.16) and the fact that \mathscr{F} is totally geodesic that A vanishes identically (cf. Ranjan [7]). Thus we have:

Corollary 2. Let (M, g) be a compact flat Riemannian manifold. Let \mathscr{F} be a harmonic foliation such that \mathscr{F}^{\perp} is minimal. Then \mathscr{F}^{\perp} is integrable and tatally geodesic.

Remark. Theorem 2.3 does not hold if we replace the assumption "of constant curvature $c(\geqq 0)$ " by "with positive Ricci curvature" (cf. Takagi and Yorozu [10], Theorem 3.4).

References

[1] R. H. Escobales, Jr., Riemannian foliations of the rank one symmetric spaces, Proc. Amer. Math. Soc. 95 (1985), 495-498.
[2] D. Ferus, Totally geodesic foliations, Math. Ann. 188 (1970), 313-316.
[3] F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tôhoku Math. J. 34 (1982), 525-538.
[4] F. W. Kamber and Ph. Tondeur, The index of harmonic foliations on spheres, Trans. Amer. Math. Soc. 275 (1983), 257-263.
[5] H. Kitahara, Differential geometry of Riemannian foliations, to appear at SpringerVerlag, Berlin, Heidelberg, New York.
[6] P. Molino, Feuilletages riemanniens, Lecture notes, Université des Sciences et Techniques du Languedoc, 1982-1983.
[7] A. Ranjan, Structural equations and integral formula for foliated manifolds, Geom. Dedicata, 20 (1986), 85-91.
[8] B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
[9] B. Reinhart, Differential geometry of foliations, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
[10] R. Takagi and S. Yorozu, Minimal foliations on Lie groups, Tôhoku Math. J. 36 (1984), 541-554.

Institute of Mathematics and Department of Mathematics
University of Tsukuba Faculty of Science
Ibaraki, 305
Chiba University
Japan
Chiba, 260
Japan

