
HARMONIC FUNCTIONS AND GREEN'S INTEGRAL'
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§1.   Introductory.

In his monograph on the. Theory of Fourier's Series^ Bôcher has devoted
a section to Poisson's integral,

F(r^) = 2^ir/Wl-2rcos(V-,) + r^ (r<1)'
and has given for it the following simple and elegant interpretation:

" If we imagine that at each point of the unit circle the value off (a ) at that point
has been marked, then the value of F (r, <p) at any point P within the circle is equal
to the average of these values as they would be read off by an observer at P who turns
with uniform angular velocity and who is situated in a refracting medium which
causes the rays of light reaching his eye to take the form of circular arcs orthogonal
to the unit circle."

On the basis of this theorem, many of the theorems on harmonic functions
for the circle become intuitive, and the course which formal proof must take
becomes evident. It has therefore seemed worth while to undertake a general-
ization to other regions, including those of higher connectivity. In its broad
outlines, the generalization is easy. In fact, Poisson's integral is a special case
of Green's integral

u^'r,)==:tfofis)kG[^,'; *(*)'*<*)]*
where G (C,r¡ ;x,y) = log(l/p) plus a continuous function, p being

V(i-*)2+U-y)2.

If» (£> >;) regarded as fixed, H (£, r¡ ; x, y) is the negative of the function con-
jugate to G, so that d G¡dn = dll¡ds, the integral becomes

u(^,v) = ~£'f(s)dH.

* Presented to the Society December 28, 1906 and November 26, 1910.
t Annals of Mathematics, ser. 2, vol. 7 (1906), p. 94.
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Noticing, therefore, that the lines // = const, are the lines of greatest steepness
of Green's function, or the lines of flow, if Green's function is a velocity
potential, and that, in the neighborhood of the point P(£, r¡), H has the char-
acter of arctan (y — -n) ¡(x — £), we arrive at the following interpretation of
Green's integral:

" The value of u ( £, n ) is the average of the boundary values f (s) as they wotdd
appear to an observer stationed at P (£, n) in a medium refracting light so that
the rays take the form of the lines of flow of Green's function."*

Although this interpretation is easily obtained, it is a different matter to
show the existence of the derivatives involved, and to investigate the properties
of Green's integral. The attack on these problems led to the author's studies
which appeared in these Transactions of 1908.f It is the purpose
of the present paper to extend the results there established, and to make appli-
cations to Green's integral and to the question of the unique determination of
harmonic functions whose boundary values are discontinuous. Attention is
also called to Theorems IV, V, and VI, which are believed to be new and useful.

§2.    Derivatives of harmonic functions on tlie boundary of a multiply connected
region.

As the extension by conformai mapping of theorems on harmonic functions
for the circle seems feasible only in the case of simply connected regions, it
appears desirable to extend the results of the above cited papers to multiply
connected regions. % At the same time the extension will be made to derivatives
of higher order. In the matter of multiple connectivity a paper of Plemelj§
will be found useful.

Let R be a finite closed connected region bounded by a system of curves C,
consisting of a closed outer curve C0 and k closed curves Ci, C2, C3, ■ • ■ G\
lying within (70 and having no points in common with it or each other, and free

* It is of interest to note that this may also be considered a generalization of Gauss' theorem
that the value of a harmonic function at the center of a circle is the mean of its values on the
circumference. In fact, for this case, H = $ = s Ir. Bôcher, Noie on Poisson's integral,
Bulletinof theAmerican Mathematical Society, vol. 4 (1898), p. 424.

t Potential functions on the boundary of their regions of definition, vol. 9, (1908), pp. 39-50,
and Double distributions and the Dirichlet problem, vol. 9, pp. 51-66. Hereafter referred to as
P. F.

t To the literature of the subject previously cited should be added H. Petrini, Les dérivées
premieres el secondes du potentiel, Acta Mathematica, vol. 31 (1908), p. 127ff. G. Puc-
CIANO, Studio sui potenziali logarithmici di strato lineare semplice e doppio e delle loro derívate
primo, Rendiconti del Circolo Matemático di Palermo, vol. 23 (1907), pp. 374-
393. These papers consider dependence of potentials of various distributions of attracting
matter upon densities and moments of the distributions. The dependence upon boundary
values of the harmonic function is another question, related, but not simply related, to the
first.

§ Über lineare Randwertaufgaben der Potential!'heorie, Monatsheftefür Mathematik
und Physik, vol. 15 (1904), pp. 337-411.
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from double points. Let them have parameter equations x — x (a) ,y = y (s),
where a is the length of arc, the curve d corresponding to the interval /,_i = a < /,,
where Li = 0, and h = I is the sum of the lengths of all the curves of the
system C.    Continuity of a function / ( a ) at one of the points U is to mean

/(i,-0)=/(!« + 0)       and      / (li+l -0) =/(/,■ 4 0).

The following hypotheses will be employed (P. F., p. 41).
(A{r)) There exist three positive numbers, N, a and 5, independent of s

and As such that for \As\<S, | it/'0 (a 4 As) — xir'(s) | < X \ As \", and
] 2/(r) (a 4 As) - y(r) (s) | < N | As |a.

(Blr))   fr)(s) is continuous, and the integral

Îr\fr)(s+t)-r(s-t)'
t dt

vanishes with r uniformly with respect to s.
In both conditions, r is an integer greater than or equal to 1 and x{r) means

the rth derivative of x.    If they are fulfilled, we have the following theorem:
Theorem I. There exists a uniquely determined harmonic function on R,

u(x,y) which approaches the boundary values f (s) ; all its derivatives with
respect to x and y of order r are continuous in the closed region R.

The proof which follows depends upon the representation of the harmonic
function as the potential of double and simple distributions on C. The moments
and densities of these distributions will first be found and a study will then be
made of the properties of their potentials.

§3.    Representation of a harmonic function as the potential of distributions on C.

The attempt to determine the moment <p(t) of a double distribution so that
its potential

u (£, i?) =   j   v(t)   - log   dt,
J0 on      p

will assume the boundary values wf (a), leads to the integral equation

(1) f(s) = v(s) + \(<p(t)K(s,t)dt,
Jo

from which <p (s) is to be determined for X = 1, and where K(s,t) is the
function

Id y(»)-_y(t)
^dtaTCtanx(s)-x(t)'

K (s,t) is continuous for a 4= t> except at  the points a = Z¡, t = U+i, and
satisfies the same inequalities near the points of discontinuity as in the case of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



112 O. D. KELLOGG: [January-

simple connectivity.* The changes of order in the integrals may be justified,
and the Fredholm resolvent L (s, t ; X) established just as before. This done,
a difference arises, since in the present case X = 1 is a pole f of /j(«,<;X).
All the poles of this function are known to be simple, and in the neighborhood of
X = 1 it will have a development

(2)        L(s,t;\) = P(s,t)!(\- \) + Q(s,t) + R(s,t;\-l),

where R (s, t ; \ —. l)isa power series in X — 1 beginning with the first power
of this difference, converging uniformly in closed regions excluding the dis-
continuities of K (s, t), and satisfying an inequality of the same character as
K (s,t) for small X — 1 at the points of discontinuity. P (s,t) and Q (s, t)
have the continuity properties stated for K (s, t).

Setting the expression (2) in the following characteristic equations for the
resolvent

K(s,t) = L(s,t;\) + \ j  L(s,r; \)K(r,t)dr,

<3) rK(s,t) = L(s,t;\) + \ J   L(r,t;\)K(s,r)dr,

and equating the coefficients of like powers of X — 1, we have

0=P(s,t)+  f P(s,r)K(r,t)dr,
Jo

(4) r0=P(*,O + J   P(r,t)K(s,r)di,
and

K(s,t) = Q(s,t)+ f Q(s,r)K(r,t)dr+ f P (s, r) K (r,t)dr,
Jo Jo

K(s,t) = Q(s,t)+ fQ(r,t)K(s,r)dr+  f P (r ,t) K (s ,r)dr.
Jo Jo

The second equation (4) shows that P(s, t) is for any fixed t the moment of a
double distribution whose potential is 0 in R. We conclude! that this potential
is 0 also outside of Co and constant inside of each C¿ (i > 0). Hence P (s,t)
must, for fixed t, be 0 on Co and constant on each C¿ ( i > 0 ).   Let

Si(s),S2(s),S3(s),---,Sk(s)

(5)

*P. F., p. 53. Also Fredholm, Acta Mathematica, vol. 27 (1903), p. 384. It should
be added that if r =; 2 in the hypotheses ( A*-*' ) and ( Bir> ), K (s, t) is continuous throughout.

t See the article cited of Plemelj. The theorems there established may be applied here
with the one caution that for r = 1 the possible discontinuities of K ( s, ( ) must be con-
sidered.   The X of his article is minus the X of the present paper.

% The reasoning is well known.   See, for instance, P. F., p. 58.
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each equal 1 when a lies in the interval corresponding to the curve with the same
index, and be 0 for all other values of a.   Then P(s,t) may be written

P(s,t) = Si (a) Ti (t) + S2(s) T2 (t) 4 S3 (s)T3(t)+ ■•■
(6)

4 Sk (a) Tk (t)

where Tt (t) is the value of P (s, t) when a corresponds to a point of C¡.
Using this value in the first equation (4), and letting a lie in the various in-

tervals, we find the equations

(7) 0= Ti(t)+ f Ti(r)K (r,t) dr     (i -1.2,3, ...,*),
•/o

which show that the Ti (t) are the densities of ̂ simple distributions on C whose
potentials have vanishing normal derivatives in the region outside of C.   As

X(K(r,t)dt= 1,
/o

we find upon integrating the equations (7),

IiTt(t)dt = 0 (¿ = 1,2,3,...,*),

so that the total masses are 0 and each potential vanishes at infinity. Hence
each potential with density Ti (t) is 0 on C0 and constant on each d(i> 0).
We shall call them V,¡( £, ij ), and shall have use for them presently. They
are linearly independent.*

If the first equation (4) be multiplied by L ( t, q; X ) dt and integrated, we find
on comparing coefficients of X — 1

(8) P(a,<) = j*P(s,r)P(r,t)dt,
or

(9) t,Si(s)Ti(t) = t,Ti(t) f't.Si(s)Tj(r)dr.t=i i=i «/i(_i j=i
From this it follows, because of the linear independencet of the Tt(t), that

(10) pTi(t)dt   "J^T7'!!.       JTi(t)dt=-l   (i-1,2,3, ...,*).

the last equations following from the preceding ones because of the vanishing of
the total mass.

* See Plemelj, loc. cit., p. 389.
t A fact proven in the theory of integral equations. See Plemelj, Zur Theorie der Fred-

holmsehen Funüionalgleichung, Monatshefte für Mathematik und Physik, vol. 15
(1904), pp. 110 and 113.

Trans. Am. Math. Soc. 8
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Proceeding to the solving of the integral equation

(H) f(s) = <p(s)+ f<p(t)K(s,t)dt,
Jo

we multiply it by P (r, s) ds and integrate, using the first equation (4).    The
result is

jf'W(12) JJ(s)P(r,s)ds=0,

a condition which must be satisfied if the equation (11) is to be solvable.    If
f (s) does not satisfy this condition, the function

g(s)=f(s)- jj(t)P(s,t )dt

does, as may be seen by employing the relation (8).   The difference/ ( s ) — g (s)
is constant on each curve C,.    Let us consider the equation

(13) g(s) = <p(s) + f <p(t)K(s,t)dt.

Multiply it by Q(r,s)ds and integrate, using equations (5) and (4). The
result is

I  g(s)Q(r,s)ds=   I  <f>(s)Q(r,s)ds
Jo Jo

+  ¡ <p(t)[K(r,t)-Q(r,t) + P(r,t)]dt.
Jo

Equation (13) reduces this to

v(s) = g(s)-   f g(t)Q(s,t)dt+  ( <p(t)P(s,t)dt,
Jo Jo

or

(14) -(«)-»(*)- f 9(t)Q(s,t)dt+ZaSi(s),
Jo <=1

which must be the form of the solution, if it exists.   As

S,(s)+ f Si(t)K(s,t)dt = 0,

the added summation may be omitted if, as in the present case, a particular
solution suffices. That (14) actually does give a solution may be seen by mul-
tiplying it by K (s,r) ds and integrating.

It therefore appears that it is not always possible to find a double distribution
whose potential will take on the boundary values irf(s). It is, on the other
hand, possible to find one such that the boundary values of the potential will
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differ from x/(a) by a function which is 0 on C0 and constant on each of the
curves d(i> 0). Let W (£, v) be such a potential. Then as the functions
V ( £, ij ) are linearly independent, it will be possible to find constants ci, Cü ,
c3, • • • ck, such that the potential

ciVi (|, „) 4 <hV2 (£, „) 4 c3V3 ({,,)+... + CkVk (|, ,)

of a simple distribution on C takes on, on the boundary, a value equal to the
difference between irf(s) and the boundary values of W(£, 17).   Hence

u (£, n)=W (£, ,) 4 ciVi (*,,) + «*7, (£, „) 4 CsVs fj, ,)+■••

+ <*F*(£,u)
is a harmonic function on A taking on the boundary values irf(s).

§4. Character of certain functions occurring in the solution of the integral equation.

The functions

Ki(s,t)= j   Ki-i(s,r)K(r,t)dr     [K0(s,t)=K(s,t)}

have the same continuity properties as K(s,t), except that if the iteration
process is carried far enough, a bounded function is obtained (P. F., p. 54).
The result of the next iteration is a function continuous throughout. The only
proof that need be given here is for a point ( So, So ) of the line a = t. Let the
increment AK (s,t) due to the increments As and At be written as a sum Ji-\- J2,
where

/»•0+1

Ji= {K^.i(s,r)K(r>t)-K^i(so,r)K(r,So)]dr>
and

J2=  f'+f    [K^i(s,r)K(r,t)-K^i(so,r)K(r,so)]dr.
Then

|Ji|<5 [\K(r,t)\+\K(r,so)\]dr,
•/•o-i)

where B is an upper bound for | Ki-i (s,t) |, and by the inequality to which
K (s,t) is subject,

f*0+" iBAn'
|Ji|<45^ (r-ao)"-1dr = ^^-,

and so can be made less than Je by taking r¡ small enough.   Then because
of the uniform continuity of the integrand in the remaining intervals, As and
At can be made so small that | J21 < £«.   With these restrictions on As and
At, I AÜlí (*,<) I <«.

Referring now to a previous paper (P. F., pp. 55-57), we take n so large as
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to make Kn(s,t) continuous throughout. The function r (s, t; X) there given
is a power series in X with continuous coefficients, and such that a dominant
series with positive constant coefficients can be found, Cc 4" CiX -+- G2X2 4- • • •,
which is convergent for every X.   In the expression for L (s, t; X),

L (s, t; X) = — k (s, t;\)

(15)
+ aô \r (s, t; X) 4- X J r (r, t; X) k (s, r; X) dr J;

the same statement may be made for the functions

N (s,t;\) = T(s,t;\) + \ J   T(r,t;\)k(s,r;\)dr,

since multiplying a uniformly continuous function by K ( s, r ) dr and integrating
gives a continuous function, and since

XK(s,r)\dr

is bounded. Indeed, if M be a bound for this integral, a dominant series for
N(s,t; X) will be

Co4-CiX4-C2X2 + ••• +\[M+M2\+ ••• 4-M"X'-l][Co4-G1X+ •••],

which is the product of an always convergent series by a polynomial, and hence
is always convergent. The same is true of the development of N (s, t; X) about
any point of the plane, in particular of

N(s,t;\) = Np(s,t) (\-iy+Nf+x(s,t) (X- l)p+1+ •••.

As we have seen, the point X = 1 is a simple pole of L (s, t; X), so that the
development of 5 (X) about the point X= 1 will begin with the (p + l)th
power of X — 1. It follows that (X — 1) N (s, t;\)/5 (\) is a power series
in X — 1 with continuous coefficients and has a dominant series with finite
radius of convergence. A comparison of equations (2) and (15) therefore
leads to the results:

P (s, t) is continuous throughout.
Q(s,t) = K(s,t) - Ki(s,t) + K2(s,t)- ■•■ ±Kn_x(s,t) plus a func-

tion continuous throughout.
The first n — 1 coefficients of R (s, t; X — 1) are polynomials in K (s, t),

Ki(s,t), K2(s ,t), ••• Kn_x (s ,t) plus continuous functions, and all further
coefficients are continuous.

These statements hold for r = 1 in condition ( A(r) ); if r = 2, we may go
farther, and assert the continuity of all the functions of s and t considered. For
the study of the rth derivatives of harmonic functions, information will be
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needed concerning the (r— l)th derivative of K(t,s) with respect to a.
Since this derivative is a rational function oî x (t), y (t) and of x (a), y (a)
and their derivatives of order r or lower, the denominator being a power of
p2= [x (a) -x(t)]2 4 \y (a)- y (t)]2, Z(;-1,«,a) is uniformly alge-
braically continuous* in a in any closed region excluding the line a = t and
the points a = l¡,t = lii¡x. For the neighborhood of a = t, a special study must
be made (a similar study will yield similar results for the other points of dis-
continuity).   What is needed (P. F., pp. 63-66) is an inequality

(16) \Kr»(t,s)\<A\t-s\--\
as well as one of the form

(17) | Kir1) (t, a) - Kr° (1,0) [ < F**-1*'1,

the latter holding for t\ > t > t2 = a = 0, with  a similar one for the corre-
sponding negative values of the  arguments.   A, a, F, and ij  are  positive
constants.

To establish these inequalities, consider first q(? (a,t), where

q(s,t) = [y(s)-y(t)]/lx(s)-x(t)].

If this defining relation be cleared of fractions, and then differentiated r times
with respect to a, the resulting equations may be solved for qf,r)(s, t), and will
give

x(s)-x(t) 0 0 ..-0        y(s)-y(t)

x'(s)       x(s)-x(t) 0 •••        0 y'(s)

x"(s) 2x'(s)        x(s)-x(t)    •••        0 y"(s)

xrr-i)(s)    ->(7iXC'-2)(s) '-W-'Xs)  ••• x(s)-x(t)   jf-l\s)

M8ï «™, „        s(r)(«)       rC¿-lK»)     rCjT\*)    •••   rdx'(s)       y«(s)
(IX) <?, (s,V- [x(s)-x(t)]r+l >

TCi, rC2, • • ■ being binomial coefficients. Let us imagine t fixed, and the axes
so chosen that x'(t) — l,y'(t) = 0. Then by the law of the mean,
[x(s)-x(t)]^= (s-t)r+l[l + F(s, t) (s-t)], where F(s, t) is a
bounded function. Now add to the first row of the determinant above (f — a)
times the second row, (t — a)2/2! times the third, and so on to the last.   The

* That is, there are three positive numbers, î, A , and o, independent of s and I, such that
for|As| <«,|K(;-1)(t1s-|-As)-/iC<;-1)(<,s)| < A|As|a.
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law of the mean then shows that all the elements of the top row except the
first and last contain (t — s)^1. The quotients of the first and last elements
by | s — 11^1 will be bounded, a result of condition (A(r)). Since all the
other elements of the determinant are bounded, it follows that g(sr) ( s, t ) is a
bounded function times \s — t |a_1.   Finally, as

tf;-»(t, s) = -^r arctan q (s, t) = * ^xâi' ^ v   '   y      irds^l + [ q (s, t)]2'

and as all the derivatives of q ( s, t ) with respect to s of order lower than the
rth are bounded, the inequality (16) is established.

With respect to the inequality (17), it should be noticed that if a function
is subject to it, that function multiplied by a function which is uniformly al-
gebraically continuous in s is subject to an inequality of the same kind. We
need therefore only show that this inequality is a property of the quotients by
[x (s) — x (<)]r+1of the elements of the first row of the above determinant after
the addition of the specified multiples of the other rows. The first element
alone will be considered here, as it is typical.    It is

E(s,t) = x(s)- x(t) + x' (s) (t - s) 4- x" (s) (t- s)2/2\+ ■■■

+ xM(s) (t-sY/rl

As for the divisor, if we choose our axes so that x' ( 0 ) = 1, we may replace
it by (t — s)r+x since the multiplier necessary to correct this replacement,
= (s — ty+x/[x (s) — x (t) ]T+l, is uniformly algebraically continuous in s.
Indeed, its «-derivative is bounded for small s and t. If now x(t), and x (s)
and its derivatives in the expression E (s, t), be developed about the point 0,
the result will be

Xf^ll-^^={tr+1l^)(^)^+rClx^\^xs)s'-x(t-s)+...

+ rcr_xx<-r)(#r_xs)s(t-sy-x + x"(s)(t-sy-¿r)(&'t)tr]

- (t- s)r+x[x^(0)tr - x^(&'t)tr]} ^-r!ír+1(í-«)r+1,

in which it is important to notice that the two proper fractions &' are the same.
The numbers âa, • • • , «?r_, lie between zero and one. If the condition (A(r))
be consulted, and F be used to denote various bounded functions, it will be
seen that this expression may be written
{f+VHO) (s+ t-s)r + F ■(s+t-sys'-¿r)(d't)tr]

- (t-sy+ltr[¿r)(0)-x"(#'t)]} +r\r*x(t-s)r+x

= {t2r+xs°F+tT[xir)(0)-¿r)(Pt)][tr+l-(t-sy+x]}+r\tr+l(t-3)r+x

= F{sHT¡(t- s)T+x+ t-xs[r+xCxr- r+xC2tr-xs-\-hsr]/(t- s)r+x},
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and in the interval in question, this is less than F ■ a**^"-1.   The inequality
(17) is thus established.

§ 5.    Character of the moment and of the densities of the potentials W and Vi.

In this paragraph, f(s) will be regarded as subject to the condition (B(r));
g (s) will then be subject to the same condition. With the properties of Q(a, t )
obtained in the last paragraph, it is easy to show that the solution (14) of the
integral equation (15) is continuous. We proceed to a study of the derivatives
of <p ( a ), and to that end, consider the equation

(19) g'(s) = *(s)-  f $(t)K(t,s)dt.
Jo

The necessary and sufficient condition for its solvability turns out to be

o'(a)aa = 0,

which is satisfied.   A solution is

(20) *(a) = o'(a)4 f g'(t)K(t,s)dt,
Jo

¡:

where k (a, t) is the function corresponding to Q (a, t) in the development of
L ( a, t ; X ) about the point X = — 1. The function $ ( a ) is continuous. Equa-
tion (19) may be integrated with respect to a, with the result

$(s)ds-      $(<) j   K(t,s)dsdt + c(s),
Jo Jo

c(s) being constant on each interval ijSj< ltii.   As

J'  K(t,a)ds = - arctan —7-r-77T+ c(s,t),
0                         ir            x (a ) — x\t)

where c(s,t) is constant in each rectangle l{ = s < Zj+1, l} = t < lJ+l, we have,
on integrating by parts,*

0(a) = jr*(a)da+jT| jf *(t)dt]K(s,t)dt + c(s).
* The relations

J%(Od<-o
are needed here.   They are a consequence of equation (20).   It should be observed that from
equations (3) it follows that

Jh   L(s,t;\)dt

is independent of « on each «-interval, and hence this is true for * ( s, t ) also.
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From this it follows that

<p(s) = J   $(s)ds + c(s),

and hence <p' (s) = $(a),so that <p (s) is continuous, and satisfies the equation

(21) g'(s) = <p'(s)- ^<p'(t)K(t,s)dt.

This equation may be differentiated r — 1 times with respect to a. The in-
tegral in the resulting equation will then satisfy condition ( Bir) ) ,* and we
may therefore make the statement:

Theorem II. The moment ¡p ( a ) of the double distribution whose potential,
IF(£, n), takes on the boundary values irf(s) subject to condition (Blr)), the
boundary curve being subject to condition (A(r)), satisfies condition (Bir)).

Turning to the densities of the simple distributions whose potentials are
Vi(%, n), that is, to the functions Ti(s), we note that their continuity
follows from that of P(s, t). Moreover, as they satisfy equation (7), the
reasoning applied to equation (21 ) enables us to state further:

Theorem III. The densities Ti(s) of the simple distribution whose potentials
are Fi(£, 17) are subject to the condition (5(r_1)) if the boundary curve satisfies
condition ( Air) ).

§ 6.   Derivatives of harmonic functions on the boundary.

Let h\, h%, ... hr denote r fixed directions in the plane, or, as variables, let
hi = £ cos at 4 V sin on, on being constants.    Consider first

JF(£,,)=/^0¿log(l)d<,

where p2 = [ £ — x ( t) ]2 4 [ v — y ( t ) ]2. If it be transformed .by integration by
parts and by use of the function 0 (£, jj; t) = arctan [17 — y (t)] /£ — x(t)],
conjugate to log p, its derivative with respect to Ai will take the form

r) W f'1 r) Cl ct /1 \
(22)    wr l^{t)ôte(^^t)dt+i^{t)3tl^{-p)M
where

vi,i (0 = — <p (t) [x (t) cos«i4- y (t) sinai],

<Pi, ■>. ( I ) = — <P ( 0 [ y' ( 0 cos ai — x ( t ) sin eti ].

If integration by parts be applied to the formula (22) and the derivative taken
with respect to b¡, and so on, there is obtained the formula

(23)dhidhi ■ ■ ■ dh-1= const +1 ^-'.'(0e(£,,;0di4jo ^-,,2(<)log( -jdt,
* For method of proof, see P. F., pp. 63-66.
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in which, as a consequence of the condition ( Ar)) on x (t), y (t), and of the
condition (P/0) on. >p(t) (see Theorem III), <pr-i,i(l) and w-1,2(0 satisfy
conditions (£(1)).   Then, as

a,   /i\    ae        a,   /i\    aeä,;l0glpj = ̂ '      ^logUJ = ä7'
the derivative of W of order r + 1 obtained from (23 ) by one more differen-
tiation admits of exactly the same treatment as did W itself in the study Po-
tential Functions on the Boundary of their Regions of Definition,* with the result :

The potential W ( £, r¡ ) has continuous derivatives of order r in the closed region
R.

As for the functions

Vi(t,r,) = £Ti(t) log(^jdt,

the first derivatives may be written

aí=í^l(<)a1íe(^'';í)dí+í,^(<)ll0g(p)d<'
where

h,x(t)= Ti(t)[x'(t)cosai + y'(t)smai],

h,i(t)= - Ti(t)[y (t) cos ai — x (t) sinoü].

These expressions are seen to have the form of those for ^1(0 and <pi,2(i)>
except that they involve T7, ( t ) instead of its derivative. Hence, as Ti ( t )
is subject to condition (P(r_1)) by Theorem III, the functions ^v-i,i(i) and
^r-i.i(t), analogous to <pr-x,x(t) and yr-1,2(0 above, satisfy the condition
( P/1' ).    We may therefore conclude that

The potentials Vi ( f, r¡ ) have continuous derivatives of order r in the closed
region R.

The proof of Theorem I is thus completed.

§ 7.    Green's function and some of its properties.

Green's function is defined by the equation

(24) G(Z,ti;x,y) = log  , . - g({, r, *,v)
p\K) v> * > y 1

where g (£, r¡; x,y) is harmonic in (x,y) in R for fixed (£, r¡) and has the
same boundary values as the logarithmic term in equation (24), and ( £, 17 ) are
the coordinates of an interior point of R. G ( £, tj; x , y ) is therefore harmonic
in (x, y) in any subregion of R excluding (£, tj) , and approaches 0 as (x, y)

* P. F., pp. 40-50, especially p. 43, third line, and p. 46, fourth Ene of § 3.
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approaches any point of the boundary.   It is known to be symmetric in its two
pairs of arguments:

G(x,y;$,i\) = G(t,ri;x,y),

so that for fixed (x, y), 6?(£, n ; x, y) is harmonic in (£, r¡) in any subregion
of R excluding (x, y).

Moreover, by Theorem I, for fixed ( £, r¡ ) the derivatives with respect to x and y
of order r of G (£,n;x,y) are continuous in any closed subregion of R excluding
the point (£, 77).    In the present section it will be assumed only that r = 1.

If ( a, b ) is a fixed interior point of R, there will be points, in case R is multiply
connected, where dG (a, b; x, y)/dx and dG (a, fe; x, y)/dy vanish simul-
taneously. It is important to know, however, that under the condition (A{1))
these points do not occur on the boundary. Continuity of x' (a) and y'(s)
alone is not sufficient to insure this, as may be seen by examining the conformai
transformation z = — f log f, which, although it has an infinite derivative for
f = 0, maps the upper half of the z-plane on a region whose boundary has
a continuously turning tangent. The circle £24(l— 1)2=1 corresponds to
a region of the z-plane with continuously turning tangent, and Green's function
for this region has a vanishing normal derivative at the origin.

To prove that d G (a, b; s)/dn > 0* under the hypothesis (A(l)), we choose
our coordinate system so that s=x=y=0 at the point at which we are to study
the derivative, and take the .r-axis in the direction of n. Then if f = £4^ = pa'* >
there is a transformation a = (f — r2m^m-]))/ß) where m is a positive integer,
and ß a positive constant, which maps a circle p = a cos # of the f-plane, of
sufficiently small diameter, a, on a simply connected region S of the z-plane,
S lying entirely within R except that its boundary is tangent to that of R at
the origin. The existence of such a transformation is a consequence of the
hypothesis ( A0) ). If then, G(a,b;x,y) expressed in terms of ( £, n ) is T ( £, r¡ ),
dG¡dn — dr/d£ -dÇ/dn. If ds and da are linear elements in the z-plane and
f-plane respectively, ds2 = oV| 1 - (2m /2m - 1 ) • f1'<*,,-1>|2/|8ï, so that at the
origin d £ /dn = ß, and d G /dn is positive if d V /d£ is. But r ( £, n ) is harmonic in
the circle p = a cos û, and is continuous on the circumference. Its boundary
values y (a) are positive at every point except a = 0, where 7 (a) = 0.

We are thus led to enquire whether the normal derivative of a non-constant
harmonic function on the surface of a circle can vanish at the point where this
function attains its minimum. It will not restrict the generality to assume a
unit radius for the circle. Let e be a positive constant less than ir. Then
y (a)/(a — e) > 0 for t<a = ir. This function, continuous in the interval
given, does not approach its lower limit as o- = t, so that it attains this lower
limit, say X+, which is positive.   Let X_ be the corresponding lower limit for

* — G(a, b; s) = — G[a, b; x(s) - y' (s)n, y (s) + x'(s)n] ^
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— y (<r)/(o--\- t), — t=o < — t, and let X be positive and less than the smaller
of X+ and X_.   Then, if

jSr» = 0 for       -t^o-^e,

ß(a) = \(a— í) for e=ff = x,

ß(o-) = -\(<t+í)        for        -Tr^ff^-e,

it will follow that y (a) =ß (a), for - x = a = t , and if y(a ) - ß(<r) = 5(a),
5(a) > 0 for a + 0, and 5(0) = 0. If P(£, r,) and A(£, *?) are the
harmonic functions determined by the boundary values ß (a) and 5(<r),
r(£)Tj) = P(£,Tj)4-A(£,Tj). A negative normal derivative for A (£, r¡)
at a = 0 is impossible, as it would imply a minimum of a harmonic function
in the interior of its region. B ( |, t¡ ), having continuous boundary values,
will be given by Poisson's integral, from which, upon integrating by parts
and differentiating, we obtain

_ 1  r+"   ß'(<(>)sm<pd<p   _ 2X Í"        sin<?aV
ff=0    t J_„  1 + p2 — 2p cos <p      it Jt   1 -4- p2 — 2p cos ip '

b\B_ _aP
a« ~     dp

This derivative is continuous for p = 1 and has the value

x, 2-log:->0.
T 1 — COS Í

Thus dG(a, b; s)¡dn > 0 at every boundary point; and because of the uni-
form continuity of the derivatives of G (a, b; x, y), we have

Theorem IV.    There is a positive constant p., and a region containing a finite
neighborhood of every point of C, such that

Cih(
throughout this region.   C is here subject to condition (A-l)).
~ For the further study of Green's function and Green's integral, a theorem
due to Osgood * on the convergence of an infinite sequence of harmonic func-
tions, and one on the boundedness of the derivatives of a harmonic function,
will be of use.   The first may be stated as follows:

Osgood's Theorem. If ux,u2,u3, • • • u¡, ■ • ■ is an infinite sequence of func-
tions, harmonic in a region T, converging at every point (or at a set of points every-
where dense) in T to a function U, and if there is a constant L such that | u( | < L
for every i, then U is harmonic in T. Moreover the convergence is uniform in
every closed subregion containing only interior points of T.

The second theorem is as follows:
Theorem V.    Let S denote a finite number of segments of the boundary C of R,

♦Annals of Mathematics, ser. 2, vol. 3 (1901-02), p. 26.
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and T a closed subregion of R, having no points in common with the boundary of R
except interior points of S. Then if u ii a harmonic function on R which vanishes
on S, and which is bounded on the rest of C, the first derivatives of u are bounded
in T. C is here subject to condition (^4(1)).* The theorem admits the de-
pendence of u on a parameter, of which, however, the bound referred to must be
independent.

To prove this, let us first suppose R simply connected. Ii H (a,b; x, y) is
the negative of the conjugate of Green's function G(a,b; x, y) for R, the
transformation to = re" = e~G+iB maps R conformly on the surface of the unit
circle, and u ( x, y ) becomes a function of ( r, t ),

1   Ç   U(l,â)(l-r2)dû
VKr>l>     2xJ2l-2rcos(i-^)4r2'

where the intervals Y. correspond to the points of C not in S. The points of the
closed map of T will all have finite distances from the points of 53, so that the
derivatives of U ( r, t ) will be bounded in the map of T. Hence, as the deriva-
tives of first order of the mapping function are continuous in the closed region
R, the derivatives of u ( x, y ) will be bounded in T. If R is not simply connected,
two simply connected regions can be found which will completely cover it, and by
means of them the theorem can be generalized to hold for the case of multiple
connectivity without difficulty.

From the formula for U (r,t) may be inferred the additional result:
Theorem VI. //, under the conditions of the last theorem, U (x,y) contains

a parameter, and approaches 0 uniformly on the rest of C as the parameter ap-
proaches a limit, the first derivatives of U (x,y) approach 0 uniformly in T.

As an application, let us establish the fact that dG (£, r¡;s)/dn is harmonic.
Let ( £, i) ) be confined to the surface of a circle K' lying entirely within R. Let
K" be a larger concentric circle also entirely within R, the difference of their
radii being denoted by 8. Then if A denote the greatest diameter of R,
G = log ( A/p) — (g 4 log A) = 0. But o + log A has boundary values that
are never negative, «and hence 0 = g + log A = log (A/p). Therefore
0^ G = log (A/p) 4- (g + log A) ̂ 2 log (A/p), and with (x, y) confined to
R - K", p = 5, so that 0 = G = 2 log ( A / o ). Now let T represent a closed sub-
region of R—K", containing, except for a segment S of C, only interior points of
R-K". Then G fulfills the conditions, of Theorem V for the regions R - K"
and T, so that its first derivatives, and hence also its first difference quotients
with respect to x and y, are bounded in R — K". But as the derivatives of G
exist on the boundary, a sequence of difference quotients can be selected which
satisfy the requirements of Osgood's theorem, and we may conclude

* An evident generalization, allowing the values of u on S to differ from 0 is obtained by
adding to u any harmonic function on R with bounded derivatives of first order.
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The function d G ( £, tj ; s ) ¡dn is harmonic m ( £, tj ) in the open region consisting
of the interior points of R.

§ 8. Green's integral.

A second application of Osgood's theorem establishes
Theorem VII.   If f(s) is bounded and summable in Lebesgue's sense, or

if I / ( * ) I ** summable, Green's integral

u(l, l) = ^ j[/(«)¿G (f. V, *)ds
is harmonic in R.

In order to study the behavior of this integral as ( £, tj ) approaches a boundary
point, we shall need the following

Fundamental lemma.* Given three points, it-, w, ir+on one of the curves C¡,
and a positive constant e, it is possible to find a circle with center at ir and with
finite radius, such that when ( £, tj ) lies within this circle, d G ( £, tj ; s ) /dn < 6 for
all values of s other than those belonging to the arc T-rv+.

To prove this, describe about it two concentric circles cutting the arc ir_ it t+
each in only two points. Call the subregion of R included in the inner one K,
and that outside the outer one T. Then with (x,y) lying in T and (£, tj) in
K, the derivatives of G of first order with respect to x and y are bounded, say
by the constant B, by Theorem V. Given an arbitrary constant, y, we take
upon the circular part of the boundary of T a finite number of points, such that
every point of this arc is less than a distance y / 2B along the arc from one of
these selected points. If then the value of G at these selected points can be
made less than \y, because of the boundedness of the derivatives the value
on the whole circular arc will be less than y. That G can be made less than
£7 at a finite number of points on the arc by restricting ( £, tj ) to a circle about
ir follows from the fact that for any fixed ( x, y ) G approaches 0 as ( £, tj ) ap-
proaches a boundary point. The conditions of Theorem VI are thus fulfilled,
and it follows that the derivatives of G with respect to x and y approach 0 uni-
formly in T, and in particular, so does aG(£, tj; s)/dn. The lemma is thus
demonstrated.

By means of the lemma and the fact that

J,¿G(£,Tj;*)dí = 27r,

a number of important properties of Green's integral may be proved,f among
them

* Cf. Bôcher, loe. cit., p. 94, theorem IV.
t Cf. Bôcher, loe. cit., p. 98.
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Theorem VIII.    Green's integral

i   rl        a
«(*,*/) = 27rJ f(s) — G(S,r,s)ds

approaches the boundary values f (s) at every point where this function is continuous.
With this the interpretation given to Green's integral in the first paragraph

is justified, the existence of all the symbols and the validity of the processes
involved having been established.

A method of reducing the study of Green's integral in the neighborhood of a
boundary point, even in the case of a multiply connected region, to that of
Poisson's integral will be found useful. Let S represent a segment of the
boundary of R containing in its interior the point at which the behavior of the
integral is to be studied. Join the end-points of S by a curve running through R
and bounding a simply connected region R0, the bounding curve forming with
S a closed curve satisfying condition ( A<1}). To this curve assign the boundary
values fo(s), equal to / ( s ) on S and 0 elsewhere. If the further quantities
connected with the simply connected region be marked by the subscript 0,
the equation holds :

w .(«..)-*<«.,)-¿X/<'>[s-'»']*+¿L/<')-?*-
or, as ( £, r; ) approaches the boundary point,

(26)        lim[W(£,r,)-Wo(£,,)] = lim¿J/(S)[^-^0]^.

A sufficient condition for the interchange of the integration and limit signs is
that the integrand be summable and bounded.* But this is true of the harmonic
function G — G0 and its first derivatives in P0, and it is therefore only necessary
to postulate these properties iorf(s). Then as G — Go approaches 0 uniformly
on the boundary of R0, its derivatives also approach zero uniformly in 7?g, by
Theorem V. Hence lim [ u ( £, tj ) — «0 ( £, tj ) ] = 0, and the behavior of u
as ( £, tj ) approaches a point of the boundary is the same as that of u0 .f But if
the region R0 be mapped on the surface of the unit circle by means of
Go (a, b; x, y) and its conjugate, Green's integral u0 (£, tj) for R0 becomes

* Lebesgue, Leçons sur Viniegraiion, p. 114. Various other conditions may be employed,
such as the convergence of the integral

/|/(«)|di.
t As here sketched, this method gives information only about the behavior of u({, v), but

not of its derivatives. If it is feasible to give to f0(s) the values of u({, v) on that part of
the boundary of R0 which is interior to R, w„(!, v) will be identical with u (Í, ij) and conclu-
sions can then be drawn concerning the derivatives of w({,i?). In what follows, however
the method is used only in connection with w(£, v) itself.
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Poisson's integral.   Among the results obtained by application of this method
is the following:

Theorem IX. If, at a point of the boundary, say s = 0, the function f (s)
has a finite break, the limit of Green's integral, w(£,ij), as (£, r¡) approaches
x (0), y (0) along a line making with the negative and positive directions of the
tangent to the boundary at x (0), y (0) the supplementary angles a and ß respec-
tively, Ù [ßf (0 - ) 4 «/(0 4 ) ]/2x.

§ 9.  The unique determination of harmonic functions.

If/(a) is continuous, it is proven by the theorem stating the non-existence
of a maximum of a harmonic function in the interior of R, that there is at most
one harmonic function on R approaching the boundary values / ( a ) in the
strict sense of continuity of a two-dimensional approach. If the demand for
a strictly continuous approach be relinquished (and the approach to the value
of/(a) along a normal, for instance, be substituted), the uniqueness breaks
down. Thus the harmonic function 2xy/(x2 4 y2)2, for the upper half of the
(et, y)-plane, approaches 0 at every point of the boundary except at the origin,
and here also, if the approach be along the normal. If the boundary values
themselves are discontinuous, we can no longer properly speak of a harmonic
function being determined by them. The problem of finding conditions to
replace strict continuity, which, in conjunction with the boundary values
determine a harmonic function, has been studied by Prym,* Schwarz,!
Jules Riemann.J Fatou, § Plancherel, 11 and others.

The first part of the treatment which is to follow was suggested by the work
of Fatou; the ideas underlying the latter part were published in outline during
the preparation of this paper by Plancherel ( loc. cit. ). They are of sufficient
interest to warrant some further development in this paragraph. The method
of procedure will be this. Having determined some properties of Green's
integral having to do with its behavior on the boundary, we are assured that

* Zur Integration der Differentialgleichung

cTji     Shi _
àe?      By* -U'

Journal für reine und angewandte Mathematik, vol. 73 (1871), p. 340.
t Zur Integration der partiellen Differentialgleichung

5'tt .  ôMt _ -
dx' + &yl

Gesammelte Mathematische Abhandlungen, vol. 2, p. 175, Journal für reine und ange-
wandte Mathematik, vol. 74 (1872), p. 218.

XSur le problème de Dirichlet, Annales Scientifique de l'école normale
supérieure (1888), p. 331.

i Séries trigonométriques et séries de Taylor, Acta Mathematica, vol. 30 (1906), p. 339.
|| Bulletin des Sciences Mathématiques, ser. 2, vol. 34 (1910), p. 111.
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at least one harmonic function exists which has these properties. We then
proceed to ask whether a different harmonic function can exist with these same
properties. Should the answer be negative, we shall have found conditions
sufficient to determine uniquely a harmonic function.

In the first place, Fatou shows in the article cited, for the case that R is
the unit circle, that if/(a) is periodic, bounded and summable,

u («.*)-¿jf/w¿o(«^;0*
approaches /(a) as (£, r¡) approaches [x (s), y (s)] along a radius, except at
points of a set of measure zero, and it is evident that u ( £, n ) is bounded.
Moreover, no other bounded harmonic function has the same boundary values
in the same sense. This result admits an extension, both in the matter of the
curves of approach, and of the region R. To establish the generalization, we
prove first the following:

Theorem X. Let the boundary of R be subject to condition ( A2) ). If, then,
a bounded harmonic function u(£,r¡) onR approaches a limit as ( £, v) approaches
a boundary point it along any single curve meeting the boundary orthogonally with
finite curvature, it will approach the same limit along the normal and along every
curve meeting the boundary at ■k orthogonally and with finite curvature.

As the boundary has finite curvature, a circle may be inscribed in R touching
the boundary at ir and having no other point in common with the boundary.
In this circular region, u, being bounded, and approaching continuous boundary
values g ( a ) everywhere save possibly at ir, will be given by Poisson's integral,
by Fatou's theorem; that is,

M , v 1     C* g(*)(l-P2)^
(27) *(>>*) = ärj0    l-2„cos(*-a)4p2-

If the axes be taken so that <p = 0 corresponds to the ar-axis and x to the point
(1,0), the curve meeting the boundary orthogonally with finite curvature may
be written y = F (x) (I — x)2, where F (x) is a bounded function, or also in
the form
(28) púnv=F(p)(l-p)2.
We have, then, to prove

(29)
,.   r+w      i     l-p2 l-p2 i
ïfîJ-,  ff(Ä)il-2pcosa-r-p2-l-2pcos(^-a)4pMdÄ = 0'

ip being defined as a function of p by equation (28). To carry out the proof,
write the integral as the sum of two, Ji 4 J2, with the same integrand, the
interval for Ji being from — S to 4 5, and J2 having the rest of the interval
— x to + ir for its domain.   Then, given « > 0, 5 and 1 — p may be taken so
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small as to make | Ji | < £«, as will be shown; while for fixed 5, J2 approaches
0 with 1 — p, so that 1 — p can be taken so small that \J2\ < Je.    Equation
(29) will thus be established, and with it Theorem X.

To make evident the property attributed to Ji, we write it in the form

.       f+i   , (l-p2)4psin|ysin(^-*)
Jl~ J_4 íU;[l-2pcosS + P2][l-2pcos(¥»-*)4-p2]íW-

By equation (28), 2p sin \<p ~ F (p) ( 1 — p)2/cos \¡p, and <p is small in the
neighborhood of 7r, so that there is a finite constant B such that

\2g(s)F(P)/eosy\<B,
and

P(l-p)2|sin(^-«>5)l     f" (1-P2)
Kl,~      1 - 2p cos (dt) + P2        J-,  l-2p cos (s-v) +p2Ctó-

The integral is a harmonic function with boundary values 2x and 0, and is hence
less than or equal to 27r; moreover, 1 — 2p cos #5 4- p2 > ( 1 — p)2, so that
| Ji | < 27tB I sin (\<p — ôô) |. But as <p approaches 0 with 1 — p, Ji evi-
dently vanishes with <p and 5.

This gives the extension of Fatou's theorem with respect to the approach
curves. In order to obtain for R the result which he gives for the circle, we
employ the method of § 8, mapping upon the circle a sub-region Ro of R, the
boundary of R also being subject to condition (Am). This condition will
insure the continuity of the second derivatives of the mapping functions, and
curves meeting the boundary orthogonally with finite curvature will be trans-
formed into curves having the same property.   We thus have

Theorem XI.   If f (s) is bounded and summable, Green's integral,

-tt.i>-sjr/<*>¿0<«.«*>*.
is bounded and in general* approaches f(s) along curves meeting the boundary
orthogonally with finite curvature.

Let U ( £, tj ) be a harmonic function with the properties stated for Green's
integral in the theorem just given. We shall show that it is identical with the
function defined by Green's integral, and that it is therefore uniquely deter-
mined by the stated properties. To this end, let G (a, b; x, y) be Green's
function for R, and H (a, b; x, y) the negative of its conjugate. Then for
small enough c, G (a, b; x, y) = c gives a set of curves neighboring on the
boundary of R which go over into this boundary as c approaches 0.   More-

* "In general" here, and in what follows is to mean "except possibly at points forming a
set of measure zero."
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over, since Î7 ( £, n ) is continuous on G = c, we may write

i   r2w 1   r dC
U(a,b) = -\     U(c,H)dH^7r        U(c,s')^,ds'.¿it J0 Zt Jg=(. dn

As, by hypothesis, U (£, n) approaches in general the boundary values / (a)
along curves meeting the boundary orthogonally with finite curvature, and
hence, in particular, by Theorem X, along the curves H = const., we may pass
to the limit c = 0, obtaining

U(a,b) = ~^'f(s)dH=^jj(s)fnG(a,b;s)ds,

as was to be proved.   The result may be stated as follows :
Theorem XII. If f (s) is bounded and summable, there is one and only one

bounded harmonic function on R which approaches in general the boundary values
f (s) along curves meeting the boundary orthogonally with finite curvature. This
function is given by Green's integral. The boundary of R is here subject to
condition ( Ac2) ).

Should the restriction on / ( a ) that it be bounded prove inconvenient, the
conditions given by Plancherel furnish another set of determining conditions
for a harmonic function. The boundary will be subject to condition (A(l)),
and we shall consider the curve set G ( a, b ; x, y ) = c, as before. Let a' denote
the length of arc of the curve G = c measured from a fixed point, and u(s')
the value of Green's integral on this curve.    We may then state

Theorem XIII.* If f (a) is continuous except at a finite number of points,
and if | / ( a ) | has a convergent integral, then

lim f    |w(a')|oa'=  j     |/(a)|oa.
c=0 Jg=c Jg=o

To establish this, we divide the interval 0 = a = / into two sets of segments,
a, containing all the points of discontinuity of / ( a ) as interior points, and the
complementary set, ¿Z. With a proper first restriction on c we may find a
positive constant, u < 1, such that

(30) p<~G(a,b;s),

the direction n' having the same relation to the curve G = c as n to the boundary
G = 0 of R, and the inequality holding also in the limit c = 0.    Then, for any

* The theorem apparently admits an extension to a countable number of discontinuities.
The approach of c to 0 may either be continuous, or through discrete values. See Plancherel,
loc. cit., for interesting examples bearing on the problem.
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given positive e, a may be taken so small that

(3D Çy(s)\ds<\p.t<\<.
To obtain a similar inequality for u ( s' ), that is for the values of Green's in-
tegral on G = c, we establish a correspondence between the values of s and
s' by pairing the values of these variables which belong to the same values
of H, so that

dH=d-ßds=dSds'.
an an

Let(r' and 52' be the intervals for s' corresponding to a and £ for s. The desired
inequality is, then,

(32) f \u(s')\ds'<ie.
Ja'

It may be established by a consideration of the dominant function

V^'n) = 2hf, l/(»)l|iG^'";*)*'
which, by Osgood's theorem, may be shown to be harmonic, and which, by the
fundamental lemma approaches | / ( s ) | wherever this function is continuous.
As v ( £, tj ) is continuous at all points of G = c, it may be represented by Green's
integral along this curve, so that

^,b) = lfv(s')dH=l£\f(s)\d¿ds,
or

<33> JL'f>5r-"-JLl/w|s*-
As, however, v(s') approaches \f (s) | uniformly at the points of £, c may
be tak'.n so small that

Hence by (33),

or, by (31)

IX,(')^-I,/(,),äH<*1

i v(s')d^ds'<fa,

so that because of the inequality (30),

f v(s')ds' < Jpe.J„'
Then, as | u ( s' ) \ = v ( s' ), the inequality (32) follows.
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Finally, as m (a') and dG/dn' approach their limits uniformly along ]£, we
have

sXi1"'01^*»)-1""1!*-8'
or

lim f\u(s')\ds'=   f\f(s)\ds,
e=0 i/2' Js.

so that by taking c small enough, we secure the inequality

(34) I f\u(s')\ds'-  f\f(s)\ds
I J%' Jx <h-

<*,
Adding the inequalities (31), (32), and (34), we obtain

I f   | m (a') | ás'-  f'\f(s)\ds
| Ja=c Jo

which proves Theorem XIII. •
Considering now any harmonic function U ( £, y ) approaching the function

/ (a) of the last theorem at all points where / (a) is continuous, and satisfying
the limiting equation there established for u (£,»;), we may write

so that

dnrj(o,fe)-¿jT/(a)¿G

4,(L"<«'>0*'-IV<«>^
By a division of the interval of integration, and a process of reasoning nearly
identical with that used to establish Theorem XII, we arrive at the conclusion
that the limit as c approaches 0 of the right hand member of this equation is
zero. Hence the left hand member, which does not depend on c, must vanish,
and U ( £, r; ) is given by Green's integral.   From this follows

Theorem XIV. If f ( a ) is continuous except at a finite number of points,
and if | / ( a ) | has a convergent integral, then there is one and only one harmonic
function m (£, y) on R which approaches f (a) where this function is continuous
and which has the property

Urn f   |u(a')|aa'=  f |/(a)|da.
c-=0 Jo=c Jo

This harmonic function is given by Green's integral.    The boundary of R is here
subject to condition (A0>).

Columbia, Missouri,
May, 1911.
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