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In this paper we prove that if a complete noncompact mani-
fold with nonnegative Ricci curvature and linear volume
growth has a nonconstant harmonic function of at most poly-
nomial growth, then the manifold splits isometrically.

Lower bounds on Ricci curvature limit the volumes of sets and the ex-
istence of harmonic functions on Riemannian manifolds. In 1975, Shing
Tung Yau proved that a complete noncompact manifold with nonnegative
Ricci curvature has no nonconstant harmonic functions of sublinear growth
[Yau2]. That is, if

lim sup
R→∞

maxBp(R) |f |
R

= 0(1)

and if f is harmonic, then f is a constant. In the same paper, Yau used
this result to prove that a complete noncompact manifold with nonnegative
Ricci curvature has at least linear volume growth,

lim inf
R→∞

Vol (Bp(R))
R

= C ∈ (0,∞].(2)

There are many manifolds with nonnegative Ricci curvature that actually
have linear volume growth

lim sup
R→∞

Vol (Bp(R))
R

= V0 < ∞.(3)

Some interesting examples of such manifolds can be found in [So1].
In this paper, we prove the following theorem concerning harmonic func-

tions on these manifolds.

Theorem 1. Let Mn be a complete noncompact manifold with nonnegative
Ricci curvature and at most linear volume growth,

lim sup
R→∞

Vol (Bp(R))
R

= V0 < ∞.(4)
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If there exists a nonconstant harmonic function, f , of polynomial growth of
any given degree q,

∆f = 0 and |f(x)| ≤ C(d(x, p)q + 1),(5)

then the manifold splits isometrically, Mn = Nn−1 × R.

Harmonic functions of polynomial growth have been an object of study for
some time. Until recently it was not known whether the space of harmonic
functions of polynomial growth of a given degree on a manifold with non-
negative Ricci curvature was finite dimensional. Atsushi Kasue proved this
result with various additional assumptions in [Kas1, Kas2]. Tobias Cold-
ing and Bill Minnicozzi have recently proven that this space is indeed finite
dimensional with no additional assumptions [CoMin]. With our stronger
condition of linear volume growth, we are able to prove that this space is
only one dimensional directly using a gradient estimate of Cheng and Yau
[ChgYau] and results from [So1, So2].

For background material consult the textbooks [SchYau] and [Li].
The author would like to thank Professor Shing-Tung Yau for conjec-

turing this theorem and for his encouragement during her year at Harvard
University. She would also thank to thank Professors Tobias Colding, Jeff
Cheeger, William Minicozzi and Gang Tian for their continued interest in
her work.

1. Background.

A ray, γ : [0,∞) 7→ Mn, is a geodesic which is minimal on any subsegment,
d(γ(t), γ(s)) = |t − s|. Every complete noncompact Riemannian manifold
contains a ray. Given a ray, one can define its associated Busemann function,
b : Mn → R, as follows:

b(x) = lim
R→∞

(
R− d(x, γ(R))

)
.(6)

The Busemann function is a Lipschitz function whose gradient has unit
length almost everywhere, [Bu].

In Euclidean space, the level sets of the Busemann function associated
with a given ray are the planes perpendicular to the given ray. In contrast,
the Busemann function defined on a manifold with nonnegative Ricci curva-
ture and linear volume growth has compact level sets with bounded diameter
growth [So1, Thm. 15]. In that paper, the author also proved that if such a
manifold is not an isometrically split manifold, then the Busemann function
is bounded below and b−1((−∞, r]) is a compact set for all r [So1, Cor. 19].

Lemma 2. Let Mn be a complete manifold with nonnegative Ricci curva-
ture. Suppose that there is a Busemann function, b, which is bounded below
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by bmin and that diameter of the level sets grows at most linearly,

diam(b−1(bmin + r)) ≤ CD(r + 1).(7)

Then there exists a universal constant, Cn, depending only on the dimen-
sion, n, such that any harmonic function, f , satisfies the following gradient
estimate:

sup
b−1([bmin,bmin+r))

| 5 f | ≤ Cn

2(r + D)
sup

b−1(bmin+2(r+D))

|f |(8)

for all D ≥ CD(r + 1).

Proof. First note that the boundary of the compact set, b−1([bmin, r)), is
just b−1(r). So, by the maximum principal, we know that for any harmonic
function, f ,

max
b−1([bmin,r))

f ≤ max
b−1(r)

f and min
b−1([bmin,r))

f ≥ min
b−1(r)

f.(9)

Furthermore, Cheng and Yau have proven the following gradient estimate
for harmonic functions on balls in manifolds with nonnegative Ricci curva-
ture,

sup
Bp(a/2)

| 5 f | ≤ Cn

a
sup

Bp(a)
|f |(10)

where Cn is a universal constant depending only on the dimension, n.
[ChgYau, Thm. 6], see also [ChgYau, p. 21, Cor. 2.2]. This will be
the constant in (8). Thus, we need only relate balls to regions defined by
the Busemann function to prove the theorem.

Let x0 be a point in b−1(bmin). Note that

Bx0(a) ⊂ b−1([bmin, bmin + a))(11)

because the triangle inequality implies that

b(x) = lim
R→∞

R− d(x, γ(R))

≤ lim
R→∞

R− d(x0, γ(R)) + d(x0, x)

= b(x0) + d(x0, x).

On the other hand, using our diameter bound in (7), we claim that

b−1([bmin, bmin + r)) ⊂ Bx0(r + D) ∀D ≥ CD(r + 1).(12)

To see this we will construct a ray, σ, emanating from x0 such that for all
t ≥ 0, σ(t) ∈ b−1(rmin + t). Then, for any y ∈ b−1([bmin, bmin + r)), we let
t = b(y) and we have

d(x0, y) ≤ d(x0, σ(t)) + d(σ(t), y) ≤ t + diam(b−1(rmin + t)) ≤ r + D
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which implies (12). The ray, σ, is constructed by taking a limit of minimal
geodesics, σi, from x0 to γ(Ri). A subsequence of such a sequence of minimal
geodesics always converges. The limit ray satisfies the required property,

b(σ(t)) = lim
i→∞

b(σi(t)) = lim
i→∞

lim
R→∞

R− d(σi(t), γ(R))

= lim
R→∞

R− (d(σi(0), γ(R))− t) = b(x0) + t.

We can now combine the relationships between Busemann regions and
balls, (12) and (11), with the gradient estimate, (10), and the maximum
principal, (9), to prove the lemma. That is, for all D ≥ CD(r + 1), we have

sup
b−1([bmin,bmin+r))

| 5 f | ≤ sup
Bx0 (r+D)

| 5 f | by (12),

≤ Cn

2(r + D)
sup

Bx0 (2(r+D))
|f |

≤ Cn

2(r + D)
sup

b−1([bmin,bmin+2(r+D)))

|f |

≤ Cn

2(r + D)
sup

b−1(bmin+2(r+D))

|f |.

�

We employ this lemma and elements of the proof to prove our theorem.

2. Proof of the Theorem.

The given manifold, Mn, has nonnegative Ricci curvature and linear volume
growth. We will assume that Mn doesn’t split isometrically and demonstrate
that the harmonic functions of polynomial growth must be constant. Since
the manifold doesn’t split isometrically and has linear volume growth, any
Busemann function, b, has a minimum value by [So1, Cor. 23]. Further-
more, by [So2, Thm. 1], the diameters of the level sets of the Busemann
function grow sublinearly. Thus we satisfy the hypothesis of Lemma 2 with
CD = 1 in (7).

Let M(r) = maxb−1(bmin+r) |f |, where f is a harmonic function of polyno-
mial growth. Note that M is an nondecreasing function by the maximum
principal, (9). By the lemma, we know that for all r ≥ bmin and for all
D ≥ (r + 1), we can bound the gradient of f in terms of M ,

sup
b−1([bmin,bmin+r))

| 5 f | ≤ CnM(2(r + D))
2(r + D)

.(13)

Since b−1(r) is compact, there exists xr, yr ∈ b−1(bmin + r) such that

f(xr) = min
b−1(bmin+r)

f and f(yr) = max
b−1(bmin+r)

f.(14)
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We claim that, for r sufficiently large, M(r) ≤ f(yr)− f(xr).
First recall that if f is a positive or negative harmonic function on a

manifold with nonnegative Ricci curvature, then f must be constant [Yau1,
Cor. 1]. So there exists a point z ∈ Mn such that f(z) = 0. Thus, by the
maximum principal, if r ≥ b(z) we know that f(yr) ≥ 0 and f(xr) ≤ 0. So
M(r) = max(f(yr),−f(xr)) ≤ f(yr)− f(xr).

We can now estimate M(r) from above in terms of the gradient of f
and the diameter of the level set, b−1(r). First we join xr to yr by a
smooth minimal geodesic, γr. Note that the length of γr, is less than or
equal to diam (b−1(r)) by the definition of diameter. So γr ⊂ b−1(bmin, r +
diam (b−1(r))). Thus for all r ≥ b(z), for all D ≥ (r + 1), we have

M(r) ≤ f(yr)− f(xr)

≤
∫ L(γr)

0

d

dt
f(γ(t)) dt

≤
∫ L(γr)

0
| 5 f | |γ′(t)| dt

≤ sup
b−1([bmin,r+diam (b−1(r))))

| 5 f |
∫ L(γr)

0
|γ′(t)| dt

≤ CnM(2(r + diam (b−1(r)) + D))
2(r + diam (b−1(r)) + D)

diam (b−1(r))

≤ CnM(2(r + diam (b−1(r)) + D))
diam (b−1(r))

2r

≤ CnM(2(r + (r + 1) + D))
diam (b−1(r))

2r
.

Setting D = r + 1 and taking r ≥ 1, we have

M(r) ≤ Cn M(6r)
diam (b−1(r))

2r
.(15)

Recall that our manifold has sublinear diameter growth by [So2, Thm.
1]. So, given any δ > 0, we can find Rδ ≥ 1 such that

diam (b−1(r))
2r

< δ ∀r ≥ Rδ.(16)

Then, for all k ∈ N and for all R ≥ Rδ, we have

M(R) ≤ Cn M(6R) δ ≤ · · · ≤ Ck
n M(6kR) δk.(17)

Now f has polynomial growth of order q, (5), so

M(r) = max
x∈b−1(bmin+r)

|f(x)| ≤ max
x∈b−1 (bmin+r)

C(d(x, x0)q + 1).(18)



188 CHRISTINA SORMANI

Applying (12) with CD = 1 and D = CD(r + 1), we get

M(r) ≤ C((r + (r + 1))q + 1) ≤ C(6r2)q ∀ r ≥ 1.(19)

Substituting this information into (17), we get

M(R) ≤ Ck
n C

(
6(6kR)2

)q
δk

≤ C 6q R2q (Cn62qδ)k ∀R ≥ Rδ.

Fix δ = 1/(2Cn62q), so Rδ is fixed by (16). Then, for all R ≥ Rδ, we
have

M(R) ≤ lim
k→∞

C 6q R2q (1/2)k = 0.(20)

Since M(r) is nondecreasing and nonnegative, M(r) = 0 everywhere. Thus,
f is a constant. �
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