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In recent years the importance of open (noncompact) Riemann surfaces
for function theory has been shown by the work of Nevanlinna, Ahlfors, and
Myrberg. In particular there arose the concept of the type of a Riemann
surface: Nevanlinna considered Riemann surfaces whose boundary has zero
harmonic measure [20], and Myrberg the existence of a Green's function
[15]. Elegant results concerning the type of a covering surface were given by
Ahlfors [l]. An extension of this idea of type leads to the concept of the
classification of Riemann surfaces as suggested by Ahlfors and Sario [21].
The modern theory of open Riemann surfaces has been vigorously developed
along these lines not only by these but also by the younger members of the
Finnish school: Sario, Virtanen, Laasonen, and Lehto.

It is the purpose of the present paper to consider in some detail the family
of harmonic functions on such a Riemann surface and to apply this study to
questions concerning the type and classification problems.

In the first two chapters are collected a number of results which are neces-
sary for the later chapters. We have put these results in just that form in
which they are needed here, but have omitted proofs in general, since they
require only minor modifications from proofs given in the literature.

In the third chapter we consider the structure of the space BD of functions
on a Riemann surface which are both bounded and have a finite Dirichlet
integral. We introduce a convergence topology into this space and consider
some of the linear functionals continuous in this topology. The class of func-
tions which vanish outside a compact set is denoted by K, and its closure
in BD denoted by K. We then show that for every/GPP we have

f = ÍK+  U,
where ficŒK, and u^HBD, i.e., is a harmonic BD function. The decomposi-
tion is unique except for those Riemann surfaces for which

K = BD.

We call these surfaces parabolic and show that they have a null boundary in
the sense of Nevanlinna and have no Green's function. Conversely, if a sur-
face has a boundary which has zero harmonic measure in the sense of Nevan-

Received by the editors September 24, 1951.
Q) The results of this paper are contained in the author's thesis at Harvard University,

April, 1951.

40
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARMONIC FUNCTIONS ON OPEN RIEMANN SURFACES 41

linna, or if it does not have a Green's function, then it is parabolic.
We also give a criterion in terms of the continuous linear functionals on

the space BD that a Riemann surface be hyperbolic (Theorem 4).
In the fourth chapter we extend these results to the case of surfaces with

a relative boundary and show that iif(E.BD, then

f = fo + uK + uN,

where foÇzKO, that is, belongs to K and vanishes on the relative boundary
R of the Riemann surface, ukG.HK, that is, belongs to K and is harmonic,
while UnÇlHN, that is, it is an HBD function whose normal derivative
vanishes on R. These composition theorems correspond roughly to the clas-
sical Dirichlet and Neumann problems. As a consequence it is readily proved
that there is in this case a norm preserving isomorphism between the classes
HO and HN, where the norm of a function is defined as the supremum of its
absolute value.

If an open Riemann surface W is separated by a finite number of compact
curves into a finite number of surfaces bounded (relatively) by some of these
curves, then we show that the space of HBD functions on W is isomorphic
to the linear direct sum of the spaces 110 (or equivalently HN) on the
bounded surfaces.

In the last chapter we again return to the type problem and obtain some
conditions in terms of a triangulation on a Riemann surface that the surface
be hyperbolic. The results in this chapter are somewhat similar in form to
those of Wittich, but are complementary to his in that we give here sufficient
conditions that a Riemann surface be hyperbolic, while he considers neces-
sary conditions.

Much of the background for this paper is to be found in the works of
Ahlfors and Nevanlinna in general and in particular in the seminar on open
Riemann surfaces given by the former at Harvard in the fall of 1949. I owe
much to Professor Lars Ahlfors for his valuable help and kindly encourage-
ment in this investigation.

Chapter I. Riemann surfaces: preliminary concepts
1. Definitions. A Riemann surface W is given by a connected, separable

Hausdorff space and a covering { U\ by open sets together with a collection
{z} of corresponding homeomorphisms onto open sets in the complex z-plane
with the property that whenever two open sets U\ and U2 meet, then z2 o z-r1
is a complex analytic function in the region Zi(Uii^U2). The variable Zi,
which can be used to label points in the neighborhood Ui, is said to be a local
uniformizer valid for the region U\ or more briefly a uniformizer for U\. We
shall use the letter W to denote both the Riemann surface and the underlying
topological space.

We say that a mapping
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F:    Wt-*Wi
of one Riemann surface into another is analytic at a point pÇzWiii for a uni-
formizer Zi valid near p and a uniformizer z2 valid near F(p) the function
z2 o F o Zi~l is a complex analytic function near zi~l(p). If F is a one-to-one
analytic mapping of Wi into W2, we shall call it a conformai mapping into.
A conformai mapping is clearly a homeomorphism into. By an analytic arc
we mean the conformai image of a closed interval in the complex plane.

By a compact region we shall mean an open connected set whose boundary
consists of a finite number of piecewise analytic curves. It is readily shown
that any compact set on a Riemann surface can be included in the interior
of a compact region.

A sequence {Í2,} of compact regions with £2¿Cfi¿+i and Ui2f = W will be
termed an exhaustion of W. The existence of an exhaustion of an open (i.e.,
noncompact) Riemann surface IF is a simple consequence of the separability
of W.

A sequence {i2t} of disjoint compact regions with Ui2»=IF is called a
subdivision of W provided that a point on the boundary of a region 0¿ which
is not a "corner" belongs to the boundary of exactly one other region, and
provided also that a given compact set on the Riemann surface meets only a
finite number of the Í2,-. We shall usually assume that the compact regions fl,
are so small that we can find uniformizers Z; such that each z,- is valid in some
open set containing Í2¿. The existence of such a subdivision is immediate.

Let F be a connected, separable Hausdorff space and W a dense open
subset of V. Then we shall say that F is a bounded Riemann surface with
interior W and boundary R= F— W provided there is a covering { U\ of V
by open sets and a collection of corresponding homeomorphisms {z} into
the complex z-plane such that z(Ur\W) is an open set of the complex z-plane,
z is real on Ui^R, and whenever Ui and Z72 meet, we have z2 o zi-1 a complex
analytic function on zi(Ui(~^Ui). We shall use the letter F to denote both
the bounded Riemann surface and the underlying topological space. It should
be noted that the interior of a bounded Riemann surface is a Riemann sur-
face and that a Riemann surface may be considered to be a bounded Rie-
mann surface with an empty boundary.

The notions of analytic and conformai mappings extend easily to bounded
Riemann surfaces.

An important example of a bounded Riemann surface is that obtained
by taking V= Í2, where fi is a compact region on a Riemann surface W*, and
setting W=Q with a uniformizer for UÇZW defined to be the corresponding
uniformizer on W*. Uniformizers can then be constructed for points belong-
ing to the boundary of Í2. It should be noted that the class of functions
analytic on F may differ from the class of functions analytic on Í2 in that dif-
ferent requirements are imposed at the corners of ß.

Remembering that a continuum of the boundary of a bounded Riemann
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surface is an analytic arc, we define a compact region on F to be a con-
nected open set whose closure in V is compact and whose boundary is com-
posed of a finite number of piecewise analytic curves. By an exhaustion of
V we shall mean a sequence {Í2¿} of compact regions such that í)¡CSí¿+i^^i
while W=UQi and F=Uß;. A sequence {ß,} of disjoint compact regions is
to be called a subdivision of V provided that F=Uí2¿, and that a point
other than a corner which belongs to the boundary of some Í2¿ belongs either
to R or to the boundary of exactly one other compact region. It is to be noted
that an exhaustion or subdivision of a bounded Riemann surface is not an
exhaustion or subdivision of its interior unless the bounded Riemann surface
has an empty boundary.

If V is a bounded Riemann surface, it is well known that V can be ex-
tended by a process of symmetrization to a Riemann surface V^~ called the
double of V. There exists an involutary, indirectly conformai mapping of V~~
onto itself such that every point of the boundary R of V remains fixed. The
image of £G W is denoted by p, the image of W by W.

A function / on V"~ is called symmetric if f(p) =f(p), while it is called
skew-symmetric iff(p) = —f(p)~ If/ is an arbitrary function on V^~~', we shall
call the function /, = \f(p) +/(?) ]/2 the symmetrization of /. If / is defined
and continuous on V, then there is a unique symmetric function on V~"
which is equal to / on V. This function is continuous and is called the sym-
metric extension of / to V~~. Similarly, if / is defined and continuous on V
and has the value zero on the boundary of V, then there is a unique skew-
symmetric function defined and continuous on V"~ and equal to/on V. This
function is called the skew-symmetric extension of/.

2. Harmonic functions and Harnack's theorem. A function u defined on a
Riemann surface is said to be harmonic in a region if at each point of the
region it is a harmonic function of a uniformizer at that point. The definition
is easily seen to be independent of the uniformizers chosen. We shall have
considerable use for the following lemma concerning harmonic functions:

Lemma 1 (Harnack's theorem). Let {w,} be a sequence of positive func-
tions on a Riemann surface W with the property that, given any compact region
12 on W, all Ui are harmonic in Q, from some i on. Then either {u{} contains a
subsequence which converges to a function u harmonic on W, the convergence
being uniform on each compact region of W, or else the sequence {«,} diverges
to + oo uniformly on every compact set.

The proof is almost identical with the proof of the usual form of Harnack's
theorem in the plane and is left to the reader. As an immediate consequence
we have the fact that a uniformly bounded sequence of functions which are
ultimately harmonic in every compact region must possess a subsequence
which converges uniformly on every compact set to a harmonic function.

Let ß be a compact region on a Riemann surface W. We shall say that the
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derivatives of a sequence {/¿} converge to the derivatives of/, uniformly in
the compact region ß, if there is a finite set { £/*} of neighborhoods covering
ß with the property that for each Uk there is a uniformizer z* valid in it such
that the derivatives of the functions /,• with respect to x* and y* (z* = x*-r-¿y*)
converge to the derivatives of / with respect to x* and yk uniformly in the
neighborhood Uk- The following lemma is an easy consequence of this defini-
tion.

Lemma 2. Let {m,} be a sequence of functions on a Riemann surface Wwith
the property that given any compact region ß on W all u¡ are harmonic in ß
from some i on, and suppose that ur^>u uniformly on every compact region. Then
u is harmonic and the derivatives of {w,-} converge to those of u uniformly on
every compact region.

3. Differentials. A first order differential on a Riemann surface W is an
expression of the form

a = adx + bay

where a and b are complex-valued functions which depend on the uniformizer
z = x+iy in such a way that a is independent of the uniformizer chosen.

A second order differential is an expression

p = cdxdy,

where again c depends on the uniformizer in such a way that the differential is
independent of the choice of the uniformizer.

The sum of two differentials of the same order and the product of a func-
tion and a differential are defined in the obvious way. The product of two first
order differentials a.i=aidx+bidy and ai — a2dx+bidy is by definition

cticti = (aibi — ajjifdxdy,

which is easily seen to be independent of the choice of the uniformizer and
anti-commutative.

If / is a function whose partial derivatives exist in some sense, we define
the differential of / to be

ô/ 3/df = — dx -\-dy,
dx dy

and define the differential of a first order differential as

/db      da\
da = I-J dxdy.

\dx     by/

It is easily verified that these definitions are invariant with respect to changes
of uniformizer. We have the important relations
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d(df) = 0
and

d(fa) = dfa + fda.

In view of the analytic structure of our Riemann surface we may define
for each first order differential a = adx-\-bdy a dual differential

* a = — bdx + ady.

The invariance of this operator is a simple consequence of the Cauchy-Rie-
mann differential equations which hold between different uniformizers.

We have the following identities involving this operation:

* * a = — a,        cti* a2 = a2* ax,        a*a = (\ a\2 -\- \ b \2)dxdy,

where we have written ä = ädx-\-ldy for the conjugate of the differential a.
We say that a function / is of class Ck on a region if / together with its

first k derivatives are defined and continuous there. We say that a function
is of class C°° if it has continuous derivatives of all orders. A differential is
said to be of class C* if it has coefficients which are of class Ck.

We say that a differential a vanishes or is zero at a point p0 if a(po)
— b(po) =0. Let / be an analytic arc, and let z be a uniformizer at a point
po G J chosen so that z is real on J. Then a = adx-\-bdy is said to vanish along J
at po if a(po) = 0. Two first order differentials are said to be equal along an
analytic arc / if their difference vanishes along J.

The carrier (French: support) of a function or differential is the closure
of the set of points where the function or differential is not zero.

Let F be an analytic function which maps a Riemann surface W\ into
W2. Then the adjoint mapping P* carries functions on W2 into functions on
Wi, and we may extend its definition so that it will carry differentials on W2
into differentials on W\ by noting that P* is linear and requiring that

dF*f = F*df.
For further details the reader may consult the excellent treatment given in
[11].

Consider a second order differential

p. = cdxdy,

and define the new differential

| p | = I c I dxdy
called the absolute value of p. Its definition is independent of the choice of
uniformizer since all changes of uniformizer have a positive Jacobian. We
say that p, is locally integrable if every point has a neighborhood U in which
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|   I   cdxdy

exists in the sense of Lebesgue.
If p. is locally integrable on W, we can define

J J w

in the usual manner. We say that p. is integrable over W if

7 '

In this case it is possible to define

J Jw

and we have

as well as the usual Lebesgue convergence theorems.
A first order differential a is said to be locally square integrable if a * ä is

locally integrable. We shall call a square integrable (on W) if a * a is inte-
grable there. The Schwarz inequality

{//l«i««l}    *//«!.*// a¡* ai

is easily established as well as the fact that aia2 is integrable whenever the
right-hand side is finite.

We say that a property holds almost everywhere on a Riemann surface
if it holds on a set E which has the property that in any region for which
there is a uniformizer z valid z maps E into a set of measure zero in the z-plane.
Henceforth, we shall always assume that first order differentials are defined
almost everywhere and are locally square integrable. It is also assumed that
second order differentials are defined almost everywhere and are locally
integrable.

If / is a piecewise analytic arc, and if a=adx+bdy is a first order dif-
ferential which is defined and continuous in some region containing /, we de-
fine

Jj J«!   \
dx dy\
ds dsj
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where 5 is some suitable parameter on J.
4. Continuity and Green's theorem. We shall say that a function / is

piecewise continuously differentiable or more briefly piecewise smooth on a
Riemann surface W if / is continuous on W and there is a subdivision { ß,}
of W such that/GC1 in each ß,- and

//.
df* df <  oo .

It is also useful to consider a type of generalized continuity for differentials
which we call g.-continuity for brevity: A first order differential a = adx-\-bdy
is said to be g.-continuous on a Riemann surface if there is a subdivision
{ßj} such that

(i) At a corner p of the subdivision there is a uniformizer z such that

\a(z)\2 + \b(z)\2 = 0(\z-z(p)\->).

(ii)  If z is a uniformizer which is real on an edge of the subdivision, then
a(z) is continuous on the edge, except possibly at the corners,

(iii) In each ß,- we have aÇ_Cl, and

//.
I (¿a I  <  oo.

Q;

For a bounded Riemann surface F we require that { ß,j be a subdivision of F.
It should be noted that the sum as well as the product of two piecewise

smooth functions is again piecewise smooth, while the sum of two g.-continu-
ous differentials is again g.-continuous as well as the product of a g.-con-
tinuous differential by a piecewise smooth function. Some of the importance
of this type of functions and differentials is illustrated by the following easily
proved lemma:

Lemma 3 (Green's theorem). Let ß be a compact region with the boundary
J, and let a be a first order g.-continuous differential on ß. Then

Jj        J J a
da

where the direction along J is chosen so that ß is always to the left.

Chapter II. Orthogonal projection and the space Y
5. Some basic properties. On an open Riemann surface W we define the

space r=r(JF) to consist of those first order differentials a for which

a* ä <  oo .
//■
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In r we define the norm liai! =||a||w of a by

J Jw

The norm is a non-negative real number which is zero only if a vanishes
almost everywhere. It has the following properties:

llall = " = II* HI = 11/HI
provided / is a function with |/| = 1 almost everywhere. If we set

(a,ß) = ff a*ß,
we have

\\a\\2= (a,a), (a, ß) = (ß, a)-,

(*a,ß) = -(a,*ß), (\iai + \2a2, ß) = Xi(ai, ß) + X2(a2, ß)

where Xi and X2 are complex constants. Thus with (a, ß) as a scalar product
r becomes an incomplete Hubert space if we identify differentials which
are equal almost everywhere. We have at once the Schwarz inequality

f<*»ís|l4-1MI
and the Minkowski inequality

||« + 0|| a||a|| + ||0||.
It follows from the Riesz-Fischer theorem that T is complete in this

norm and hence is actually a Hubert space. We say that a sequence «¿GT
converges, or converges strongly, if

\\am — a„\\ —> 0,

as m, m—>co. The completeness of T is then just the assertion that for such a
sequence there is an «GT such that

\\am — a\\ —> 0,

as m—> ». In this case we say that on converges to a, and write

ai —» a.

If for every ß£T

(eu, ß) -» (a, ß),

then we say that a, converges to ß weakly, and write

a¿ —> ß weakly.
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Clearly strong convergence implies weak convergence, but not vice versa. A
set of elements of T is said to be strongly closed if it contains all of its strong
limit points, and weakly closed if it contains all of its weak limit points. Thus
weak closure implies strong closure.

The following lemmas are well known theorems in the theory of Hubert
space [33].

Lemma 4. A linear subspace ACZY is weakly closed if and only if it is strongly
closed.

Lemma 5. //«;—>« weakly, then \\a\\ ^lim inf ||a,-||.

Lemma 6. If \\an\\ á 1, then there is a subsequence a„¡ which converges weakly;
i.e., the unit sphere is compact in the weak topology of V.

Lemma 7. If a,- converges, and if oii-^a weakly, then ocí—kx strongly.

We shall also need the following lemma.

Lemma 8. Let a¡ be a sequence of differentials in Y with ||a,|| uniformly
bounded, and suppose that there is a locally square integrable differential a such
that for any compact region Q.CZW and any ßCT we have

I   ai* ß —>  I    I   a* ß.

Then aÇ_Y, and a,—*« weakly.

Proof. Let aik be an arbitrary subsequence of a¡. By Lemma 6 there is a
differential a0G.Y and a subsequence a¡t which converges to a0 weakly. Let
an be equal to c¿o — a on ß and vanish outside ß. Thus «cGI1, and

Therefore

and so

I   I   a* an   = lim    I   I   aikj*aa =   I   I

||oí — aa\\a —   I   I   (a — a0) * an = 0,

aa* an.

a = a0

almost everywhere on ß, and hence on W. Thus aÇ.Y and ctikj—xx weakly.
Consequently, a,—>a weakly since every subsequence contains a subsequence
converging weakly to a.

We introduce the following notation: If A is a linear subspace of Y, then A
is the smallest closed linear subspace containing A (strong and weak closures
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being the same for linear subspaces by Lemma 4). By A* is meant the linear
subspace consisting of all a such that *ot(EA. If A andP are two linear sub-
spaces, by A +B we mean the linear subspace consisting of all differentials of
the form a+ß, with «G4, and ßGP-

We say that two differentials a and ß of Y are orthogonal (in symbols
aLß) if (a, ß) =0. We say that a differential ß is orthogonal to a linear sub-
space A (written ß-LA) if ßLa for every ûG4. Two linear subspaces A and B
are orthogonal (ALB) if aLB for every aE.A. Clearly if ALB, then ALB.
We write A ©P to mean A+B and ALB. The orthogonal complement AL
of a linear subspace A is the set of all a such thata_L4. Certainly A3- is al-
ways closed. An important lemma concerning orthogonal complements is
the following:

Lemma 9. If A is a closed linear subspace of Y, then Y=A@AL. Conse-
quently, AX1 =A.

6. Weak differentials. We use K to denote the class of all piecewise
smooth functions with a compact carrier. Then to each locally square inte-
grable a we associate a linear functional

da[(j>] = —   I   I   d<j>a

on functions (f> of class K. On a bounded Riemann surface we define da only
on those functions of class K which also vanish on the boundary of the Rie-
mann surface. This linear functional is called the weak differential of a. If
there is a real number M such that

| da [<j>] | g M

for all <pE.K with \cp\ ^1, then a is called regular. Again an application of
Green's theorem gives us the following:

Lemma 10. If a is g.-continuous,

da[tp] =   I   I  (¡>da,

and a is regular if and only if

I da\ < oo.

Lemma 11. Let <j>{ be a uniformly bounded sequence of functions of class K
which converges to zero uniformly on each compact region ßCW7. Then if a is
regular,

da[<t>i}->0.

//
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Proof. Without loss of generality we may assume |cpi|^l. Let M
= sup da[fa] for all fa^K with \<p\ <1, and given e>0, let fa) be a function of
class K with \fa\ <1, and da[fa,]>M—e. Let n be chosen so large that
\fa\ <e on the carrier of fa) for all iï:n. Then

and hence

or

Similarly

whence

| fa + (1 - t)fa | ^ 1,

M è ¿«[0,-+ (1 - e)fa]
= da[fa] + (1 - e)da[fa]

^ da[fa] + M - (M + l)e

¿a[<k] Ú(M + l)e.

¿a[-0¿] g (Jlf + 1)6,

\da[fa]\ ¿(M+ l)e,

and the lemma is proved.
7. Harmonic differentials and the lemma of Weyl. A first order differential

co is called harmonic if every point has a neighborhood in which co is the dif-
ferential of a harmonic function. Thus harmonic differentials possess deriva-
tives of all orders. The class of square integrable harmonic differentials will
be denoted by YH-

It is readily verified that a necessary and sufficient condition that a first
order differential co be harmonic is that coGC1 and

du = d* co = 0.

As a consequence *co is harmonic whenever co is. Thus in particular Yh = Yh.
If c6G-K, and co is harmonic, then Green's theorem easily gives

I dfa* co = 0  and        |   * d(j>* ¿ô = 0.

As a converse we have the following lemma:

Lemma 12 (Weyl). Let co be a locally square integrable differential such that

I  d<t> * oí = 0     and * d<j> * ¿j = 0
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for every 4>Ç.K. Then 01 is a harmonie differential.

Since the property of being harmonic is purely a local one, it suffices
to prove the lemma for a plane region, and the reader is referred to Weyl [38].
It is worth noting that the lemma says that if the weak differentials of o>
and *w vanish, then w is harmonic.

8. Closed differentials and periods. A first order differential a is called
closed if its weak differential vanishes.

Lemma 13. Let a be a closed g.-continuous differential. Then each point has
a neighborhood U in which there is a function f defined so that a—df in U.

Proof. Let U be a circle | z — z0\ <r. If Jx and J2 are two piecewise analytic
arcs in U with the same beginning and end points, then Ji and —J2 bound a
region Í1QU and

Ja-   fa=   \   \   da = 0

by Green's theorem. Thus if we define

KP) = f «
where J is a piecewise analytic arc beginning at pu and ending at p, we have
a definition independent of the arc / chosen, and it is easily verified that/ is
piecewise smooth and that

a = df.

We say that a piecewise analytic closed curve / is homologous to zero, or
that it bounds, if there is a compact region whose boundary is J. We call
two closed piecewise analytic curves /i and J2 homologous if they form the
boundary of a compact region ß such that ß lies to the right as we traverse Ji
and to the left as we traverse J2 or vice versa. From Green's theorem we have
the following lemma:

Lemma 14. If Ji and J2 are homologous piecewise analytic closed curves and
a a closed g.-continuous differential, then

Let h be a homology class (class of homologous, piecewise analytic closed
curves) and a a closed g.-continuous differential. Then we define the period
of a with respect to h as
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«>-//
P»(

where PGÄ. By Lemma 14 the definition is independent of the choice of J.
If we wish to extend this concept to closed differentials which are not

g.-continuous, we must try to make a definition of Pa(«) which does not
depend on line integration but rather on area integration. To do this we
resort to the following artifice: Suppose J is a piecewise analytic closed curve
belonging to the homology class h. Then we define a differential t¡k which has
a compact carrier and derivatives of all orders as follows: Let U be a com-
pact region containing / which J separates into two parts Ui and U2. The
existence of such a region follows easily from the definition of a piecewise
analytic closed curve. In Z7i we define a function <pGC°° which is identically
one in a neighborhood of J and which vanishes identically in a neighborhood
of the remainder of the boundary of Ui. Then rjh = — * d4> is a differential,
whose dual is closed, of class Cx whose carrier is contained in Z7i, and hence
is compact. If a is a closed g.-continuous differential, we have

//"•"»"/X,"'
-//>•

Vh

d<t>
Ui

-//

= Pk(a)

by Green's theorem, since <p = 1 on J and <p = 0 on the rest of the boundary of
U\. Thus we may define

Dh(a) =(f<** Vh

for all closed differentials a which are locally square integrable, and this cor-
responds to our earlier definition if a is g.-continuous. It is not apparent
whether or not this definition depends on the choice of the functions r¡¡, if a
is an arbitrary locally square integrable closed differential. However, it will
be shown in the next section that if a is a closed differential belonging to the
space r, then Ph(ot) is actually independent of the choice of r¡t, and depends
only on the homology class h.

The following lemma is readily proved:

Lemma 15. A closed g.-continuous differential a is the differential of a fune-
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tion if and only if

Ph(a) =   I   I   a*r¡h = 0

for each homology class h.

9. Orthogonal projection. As in §7 we denote by K the class of piecewise
smooth functions whose carriers are compact, and we use Yk to denote the
subspace of Y consisting of the differentials of functions of class K. If f(EK,
and coGT/f, then by Green's theorem we have, since d *co = 0,

<*■*"//.
df* w = 0

where ß is a compact region containing the carrier of/. Since * wCzY¡¡, we also
have

( * df, cc) = — (df, * w) = 0.

Thus YH is orthogonal to both YK and Y%- Now if /i and /2 belong to K,
then

(dfi, * df2) =   I  I   dfi * * dfi

"//. d/id/2 = 0

by Green's theorem, where ß is a compact region containing the carriers of
/i and /¡¡. Thus Tx and Tj are orthogonal, and consequently YH, YK, and Y%
are mutually orthogonal linear subspaces. However, Lemma 12 asserts that
if uLYk and wLYk, then wÇîYh- Thus

(IV + rlox çrffç (r* + r*x)^,
whence rir = (rjs:-r-rx)"L. Thus in view of Lemma 9 we have established the
following proposition:

Proposition 1. The linear subspace YH is closed, and Y has the orthogonal
decomposition

r = TB ® Tk © T*K.

When we note that the weak differential of a differential in YK vanishes,
this proposition has the following form in terms of differentials.

Proposition 2. If a(EY, then

a = 03 + ai + * a2
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where ooÇzYh, «i, ol2 ÇlYk- Moreover, the weak differential of a is that of *a2
and the weak differential of *ct that of * ot%.

Proposition 3. The space Yci of closed square integrable differentials has the
orthogonal decomposition

Tcl = TH® Yk.

Hence Y a is a closed linear subs pace and

Tcl = (Tk)1 = (IV.

Proof. If aGr/fffiTis:, a is certainly closed. On the other hand if a is
closed, we decompose a by Proposition 2 into

a = u + ai + * a2

whence *a2=a— u — «i is closed. But c¿2(E.Yg;, and hence must also be closed.
Thus by Lemma 12, a2^Yn. Since Yh and Yk are orthogonal, a2 = 0, proving
the proposition.

Proposition 4. If aG.Y is closed, then

a = co + a\

where ooElYu and «îGr^. The weak differential of *a is that of * au while the
periods of oo are those of a. Consequently, the periods Pa (a) depend only on the
homology class h and not on the function rjh-

Proof. It is necessary only to show that «i has no periods. But if a.\ is in
Yk, then a\=df with / piecewise smooth, and

Ph(ai) = (au rjh)

= ff^*V,
=Xai
= fdf=0,

where / is that piecewise analytic closed curve of class h used in defining
rih- If «i belongs to Yk but not to Yk, then there is a sequence a'—>«i, oi'ÇzYk.
But

(a», r,h) = 0,

and hence

(«i. Vh) = 0
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by the continuity of the scalar product.
We define the space D to be the space of all piecewise smooth functions for

which rf/Gr, and write
D(f, g) = (df, dg)

and
D(f) - (df, df).

We have the following decomposition theorem for the space D:

Proposition 5. Iff^D, then

f = u + fo
where u is a harmonic function and df0(E.YK- Moreover, du and df0 are orthogonal.

Proof. Since ¿/GL;, we have by Proposition 3 that ¿/ = co+ai where
coGr¿í, and aiGIV. Furthermore, co has no period since df has none. Thus by
Lemma 15 and the fact that coGC°°, w = du, where « is a harmonic function.
If we set/o=/— u, then ¿/o=a1GPjc and the theorem is proved.

10. The Dirichlet principle. One of the more powerful tools at the disposal
of the analyst is the Dirichlet principle. Formulated first by Lord Kelvin in
1847, it was used extensively by both Dirichlet and Riemann. We shall use
it in the following form :

Theorem 1. Let il be a compact region with boundary R on a Riemann
surface, and let g be a piecewise smooth function on ß. Then there is a unique
piecewise smooth function u on ß which is harmonic in ß and such that g — u
vanishes identically on R. Moreover, Da(u) fíDa(g).

Proof. Considering ß as a Riemann surface in its own right, we apply
Proposition 5 to the function g to get

g = v + go

where v is harmonic and ¿goGrx(ß), i.e., there is a sequence fa- of piecewise
smooth functions whose carriers are contained in ß such that D(g0—<6,)—>0.
Since dv and dgo are orthogonal in T(ß), D(g) =D(v)-JrD(gà). Hence to prove
the theorem it suffices to show that g — v approaches a constant as we ap-
proach R. The proof of this fact is somewhat laborious, and we refer the
reader to [l0].

This theorem shows the utility of piecewise smooth functions by the fact
that if we have a piecewise smooth function / defined on the Riemann sur-
face W and a compact region ÍICZW, then we can define a new function/i
which is again piecewise smooth and which is harmonic in ß and identically
equal to/outside ß. Moreover D(fi) ^D(f).

By doubling ß with respect to Pi, we establish the following generaliza-
tion of Theorem 1 :
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Theorem 1. Let ß be a compact region whose boundary consists of the two
parts R\ and R2, and let g be a piecewise smooth function on ß. Then there is a
piecewise smooth function u harmonic in ß which has a vanishing normal
derivative on Pi, while g — u vanishes on R2. Moreover D(u) ^D(g).

If ß is a compact region with boundary R, we call g(p, q) its Green's
function if it is harmonic (as a function of p) in ß — q, approaches zero as
p—*R, and has a logarithmic pole at q, i.e., for a uniformizer z at q we have
ê(P> 2)+l°g \Z(P)~2(<z)| a harmonic function near q. We have the following
well known proposition:

Proposition 6. Given a compact region ß and a point gGß, there exists a
Green's function g(p, q). Moreover, we have

g(P, q) = g(q, P)-
11. The capacity of a ring domain. If ß is a compact region whose bound-

ary consists of two disjoint nonempty compact sets Pi and P2, we call the
triad consisting of ß, Pi, and P2 a ring domain. For example, a region in the
plane bounded by a finite number of analytic curves becomes a ring domain
when the boundary curves are divided into two nonempty classes. The reader
should have little difficulty in constructing a piecewise smooth function g on
ß which has the value one on Px and vanishes on P2. As a consequence of the
Dirichlet principle (Theorem 1) there is a harmonic function u with a finite
Dirichlet integral which is one on Pi and zero on R2. This function is called
the harmonic measure of Pi with respect to ß and written u = u(p, R%, ß).

We call

C — D(u) =   I   I   du* du

the capacity of the ring domain. Among the homology classes of piecewise
analytip closed curves in ß, let ho denote that one to which Pi belongs when
traversed in such a direction that ß lies to the left. Then it is easily verified
that Ph„(u) = C.

Proposition 7. If a ET(Q), and if(2)

for every piecewise analytic curve J beginning on R2 and ending on Pi, then

I   j   a* a =ï   I   I   du* du = C

(2) We thus implicitly impose upon a the condition that for all piecewise analytic arcs
beginning on Rt and ending on R¡ the integral must either exist or diverge to + ».
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with equality only if ct= du almost everywhere.

Proposition V. If ßEY(ü), and if

/,'*'

for all PG^o, then

C r r r du     du
iP-^JJc'i:

du      du       1" C

with equality only if ß= * du/C almost everywhere.

These propositions give upper and lower bounds for the capacity of a
ring domain and are known in electricity (in a somewhat less general form)
as Dirichlet's and Thomson's principles respectively, although both are due
to W. Thomson, Lord Kelvin. Since the proofs of the two propositions are
nearly identical, we prove the former and leave the latter to the reader. The
proof given below is modeled after a proof given by Ahlfors and Beurling in
the theory of extremal distances. The central idea of the proof, however,
stems from the length-area principle of Grötzsch.

First I maintain that u can have only a finite number of critical points,
i.e., points where du=0. For if there were an infinite number, they must have
a limit point, ß being compact. If this limit point were an interior point of ß,
we would have a neighborhood of it in which u is a harmonic function of the
uniformizer variable which has a limit point of critical points as a point of
harmonicity, when u would be identically constant, which is impossible. On
the boundary of ß, we note that m is a harmonic function of the boundary
uniformizer by the Schwarz reflection principle, and the same argument
applies.

Let v be the conjugate function of u, i.e., the function such that dv= * du.
Then v is possibly a many-valued function, but the curves where v = constant
are well determined. Let ß' be a subregion of ß bounded by curves Po on
which v is constant and such that ß' contains no critical points of u. Clearly

//.
du* du —> C,

and

J J a> J J ü

as ß'—>ß. But in ß' we may, in each sufficiently small neighborhood, use
u-\-iv as a uniformizer (u and v are seen to be real from their definition). Thus
if a = adu-\-bdv, we have
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>s/'
-J o

since the curves / where v = constant are analytic curves beginning on P2
and ending on Rv By the Schwarz inequality

1 =  f    | a\2du,
J o

and if J' denotes that portion of a curve u = constant which lies in ß',

I   dudv =   I    dv

2dudv
J   J B'

g   ff   (I a|2 + | b\2)dudv

which, if we let ß' tend to ß, proves the theorem.

Chapter III. The space BD on an open Riemann surface
12. The space B. In §9 we obtained some results concerning the class D

of all piecewise smooth functions whose differentials belong to Y. However
the space D with the topology defined by

/<->/ inP

whenever

dfi ->df in T

has two disadvantages: A sequence in which/,=/converges to/+c as well as
to /, and this topology gives no information concerning the upper bound of
the absolute value of a function, a quantity most naturally associated with
functions on an arbitrary topological space. This leads us to consider the
space B =B(W) consisting of all piecewise smooth functions on the Riemann
surface W which are bounded there. When it comes to defining a topology in
B, the first idea to come to mind is probably to make P a metric space by
defining a norm

11/11 = sup ¡/j,
but this has the disadvantage that we cannot approach all functions in B
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by means of sequences of functions which vanish or are constant outside a
compact region, these being the functions on W about which we have the
most complete information. In order to overcome these disadvantages we
shall make B into a convergence space by defining

/,■-*/ inP

whenever |/,| is uniformly bounded and /j—>/ uniformly on every compact
region.

The reader should be warned that if we define the closure of a set of ele-
ments in B as the the adjunction of the limit elements, then the closure of a
closed set need not be closed, as simple examples will show. Actually it is
customary to define the closure of a set as the smallest closed set containing
the given set, a set being closed if it contains all of its limit elements. In this
case, however, it must be remembered that not all frontier elements of a set
are accessible by sequences of elements belonging to the set. That is, equiva-
lently, neither countability axiom is satisfied.

In §6 we introduced the weak differential of a locally square integrable
differential as a linear functional on the space K defined by

da[4>] = —   I   I   d4>a

and saw (Lemma 11) that if fa(E.K and

fa —> 0 in B,
then

da[fa¡->0
for each regular a.

Lemma 16. The weak differential of a locally square integrable differential a
admits of a unique extension to the space B which is continuous in the sense
that

dalfA^daifi
whenever

f*-*f inB.
Proof. Let/GP. Then there is easily constructed a sequence fa\ÇE.K such

that

fa-*f in P.
Now

fa — fa■—* 0 in B
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as *", j—* ». By Lemma 11

da[tpi — (t>j] —> 0,

and hence <ia [<£,■] converges to a number which we take as the definition of
da |/]. This definition is independent of the sequence chosen since the dif-
ference of any two such sequences must tend to zero in B and hence lead to
the same definition of da[/].

Now it is clear from the definition that

max   | da[f] |  = max  | da[<t>] \ <p E K.
l/i éi l«l ái

Thus the same proof as was used for Lemma 11 shows that if

ft -> 0 in B,
then

da\fi]-*Q,
from which the required continuity of da follows, proving the lemma.

We shall say that

/< —» / weakly in B

if for every regular a

da[fA->da[f\.
Clearly convergence in B implies weak convergence in B. It should be noted,
however, that our definition of weak convergence differs from the standard
definition of weak convergence in a linear vector space which requires

¿Iftl ->£[/]
for all continuous linear functionals L. However, the definition which we
have given is the one that proves to be most useful for our purposes.

We note in passing that both weak topologies are actually the same.
Indeed, it can be shown, although with considerable effort, that the con-
vergence of fi to/ in either weak topology is equivalent to having |/,| uni-
formly bounded and /,• converging to / everywhere. However, the use of the
definition of weak convergence which we have given absolves us of the need of
proving this fact here.

13. The space BD. We shall obtain more fruitful results, however, when
we consider the space BD consisting of all bounded, piecewise continuously
differentiable functions/ for which df belongs to Y, i.e., consisting of these
functions which belong to both B and D. We introduce a topology in the
space BD by defining

fi~* in BD

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



62 H. L. ROYDEN [July

whenever

/,-►/ inP

and

dfi -* df in T.
We shall also introduce a weak topology by saying that

/,• —> / weakly in BD

whenever

/,• —* / weakly in B

and

dfi —> df weakly in r.
As in §6, we denote by K the subclass of BD consisting of those functions

with a compact carrier. We say that a function / of class BD is of class K
if there is a sequence of functions fa- in K such that

fa-^f in BD.
As was mentioned before, there is a priori no reason to suppose that K is
closed. In the next section, however, it will be shown that K is actually
closed in the weak topology of BD and hence also in the strong topology.
Clearly YrCYk- The following proposition shows that functions of the class
K behave in some respects as though they "had zero boundary values":

Proposition 8. If a^Y is a regular differential, and if /G-P, then

da[f]= - ffdfa.
Proof. There is a sequence faÇEK such that <p,—>/ in BD. Now for fai(E.K,

we have by definition

c/a:[c6¿] =  —   I   I   dfaa.

da[fa] -» da[f]

I   I   dfaa —»  I   j   dfa

But

since fa—>/ in B, and

since dfa—^df in T.
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As a direct consequence of Lemmas 5,7, and 8, we have the following con-
dition for convergence:

Lemma 17. Let {/,} be a uniformly bounded sequence of functions of the
space BD which converge uniformly together with their derivatives on every com-
pact region to a function f. If D(fi) is uniformly bounded, thenfEBD, and

fi —>/ weakly in BD.

Moreover,

D(f) ^ lim inf D(fi).
If, furthermore,

D(fi - fi) -» 0
as i, j—* oo, then

/'»—»/ strongly in BD.

If we use HBD to denote the space of harmonic functions which belong
to the space BD, we have the following decomposition theorem:

Theorem 2. ///GPP, then

f = ÍK + «,
where fnElK and uElHBD. Moreover

INI ̂ ll/ll-
Proof. Choose an exhaustion {ß*-} of W, and set /=<pi+w¿, where m< is

that piecewise smooth function which is identically equal to / outside fl¿
and harmonic inside ß;. The existence of Ui is guaranteed by Theorem 1. Since
on every compact region m is eventually a uniformly bounded (by ||/||)
sequence of harmonic functions, there is by Lemmas 1 and 2 a subsequence
(which we shall again call u¡) which converges in B to a harmonic function
u, and for which dut converges to du uniformly on every compact set.

By the Dirichlet principle D(u¡) ~¿¡D(ut) for i<j, whence D(uî) converges.
Since Ui — Uj vanishes outside ßy while u¡ is harmonic inside ßy, we have by
Green's theorem that

0 = D(uj, Ui — u,) = D(ui, u,) — D(uj).

Hence

D(uí — Uj) — D(uí) — 2D(uí, u j) + D(uj)

= D(ui) - D(uj).

Thus dui converges in Y, and by Lemma 17
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<t>%—*fK=f—u in BD.
Consequently, fxGK, since <p¡EK.

Corollary 1. If fEBD and dfETx, then there is a constant c such that
f-cEK.

Proof. In the decomposition /=/k +u we must have du = 0, since Yh and
Yk are both orthogonal while df and dfK both belong to YK-

Corollary 2. We have

Tu = Yk.

14. Harmonic measures and the type of a Riemann surface. We shall say
that an open Riemann surface W is of parabolic type if 1G P. Otherwise we
say that W is of hyperbolic type. In the next section it will be shown that
this definition is equivalent to the usual one in terms of the existence of
Green's functions. It should be noted that if 1GP, then by Prosposition 8

da[l] =  -   f f día = 0

for every regular differential aEY. In order to establish the converse of this
we first establish some theorems concerning harmonic measure.

Let C be a set consisting of a finite number of piecewise analytic closed
curves, and let W\ be an open subset of W which is closed in W—C, i.e.,
which is bounded by a part of C. Yet {ß,-} be a sequence of compact regions
such that ß.Cßi+i, CrMFiCßi, and Uß,= PFi. The existence of such a se-
quence is a consequence of the compactness of C. In each ßi we construct
that function m,- which is piecewise smooth on W\, harmonic in ßf, has the
boundary value one on C, and vanishes identically in W\ — ß,-. The existence
of Ui is again a simple consequence of the compactness of C. By the maximum
principle

0 ^ Ui g Ui ^ 1

in ß,- provided that i<j. By Harnack's theorem (Lemmas 1 and 2) the func-
tions Ui converge in B to a harmonic function u, while du, converges to du
uniformly on every compact set of W\. By the Dirichlet principle (Theorem 1)
we have

D(ui) â D(uj)

for i<j. Hence D(uî) converges. But if i<j, we have by Green's theorem

D(ui — Uj) = D(u¡) — D(u,) + 2D(uj, u, — «,-)

= D(uí) - D(u,)
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whence du, converges in Y(Wi).
The function u which we have constructed is called the harmonic measure

of C with respect to W\ and is denoted by the expression u(p, C, WÎ). That
this harmonic measure does not depend on the particular exhaustion of W\
which is chosen is a consequence of the fact that the harmonic measure is
characterized by being the smallest non-negative piecewise smooth function
on W\ which is harmonic in W\ and identically equal to one on C.

An important special case is that in which C is the boundary of a compact
region ß, and W\ = W— ß. In this case u is simply called the harmonic measure
of ß, and written u(p, ß). In the remainder of this chapter we restrict our-
selves to harmonic measures of compact regions. If we define u and its ap-
proximating functions w< to be identically one on the compact region ß,
then u and «,- are piecewise smooth on W and

Ui—* u in BD.

But the Ui are functions of the class K. Hence we have proved the following
proposition:

Proposition 9. The harmonic measure u=u(p, ß) of a compact region be-
longs to the class K.

Theorem 3. If some compact region Sl<Z.Whas a constant harmonic measure,
then W is parabolic. If W is of parabolic type, then the harmonic measure of
each compact region ÜCZW is identically equal to one.

Proof. If u(p, ß) is constant, it must be identically one since w = l on C.
Thus 1 =u(p, ß) belongs to K by Proposition 9.

Suppose on the other hand that 1GP. Then there is a sequence faEK
such that

fa -» 1 in BD.
Let ß< be a compact region containing a given compact region ß and the
carriers of all <pj with j^i. Since fa—>1 uniformly on ß, we may insure that
fa-> 1 — e on ß simply by omitting a finite number of terms from the sequence
{fa-} ■ Now ßj— ß becomes a ring domain if we take Pi to be the boundary of
ß and R2 to be the boundary of ß,-. On Pi we have <p,=ï 1 — e, while <p< vanishes
on P2. Hence by Proposition 7

D(fa) ê (1 - e)-D(ui),
where we have set w< equal to the harmonic measure of Pi with respect to
ßi-ß. Hence D(ui)-+0, since D(fa)^0. But

Ui —* u(p, T) in BD,

whence D(u)=0. Therefore u is identically constant, and thus w = l iden-
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tically, proving the theorem.

Theorem 4. A necessary and sufficient condition that a Riemann surface W
be hyperbolic is the existence of a regular differential a ET such that

da[l] ^ 0.

Proof. As we noted before da[l]=0 for every regular differential aGr
on a parabolic Riemann surface. Thus it remains only to prove that on a
hyperbolic Riemann surface there is a regular differential aGr such that
da[l] ?¿0.

Let U be a neighborhood
let ß be the compact region

z <r in which the uniformizer z is valid, and
z <r'<r. If we set u = u(p, ß), we know by

Theorem 3 that u is not constant. Moreover, m is a harmonic function in the
annulus r'<|z] <r and is identically one on |z| =r'. Thus by the Schwarz
reflection principle u has a continuous normal derivative on |z| =r', i.e.,
* du is g.-continuous in W— ß. Therefore, we have by Green's theorem

d * du [<t> ] = —   I d<t> * du = —   I   I d<t>* du
J J w J J w—a

-/
<j>* du

\z\=r-

for a function <pEK, and so*du is regular. But

d*dw[l] = —  I * du = — D(u) < 0.
J 1*1=1

Corollary. If W is parabolic, then there are no nonconstant harmonic
functions in the class BD.

Proof. If u were such a function, then u * du is a regular differential belong-
ing to r, and

'M-/Jd(u*du)[l] =   I   I  du* du yí 0.

We are now in a position to prove the following proposition.

Proposition 10. The space K is a weakly closed linear subspace of BD; i.e.,
iffEBD and there is a sequence fiEK such that

/»—>/ weakly in BD,

thenfEK.
Proof. Since Tk is a strongly closed linear subspace of T, it is also weakly

closed by Lemma 4. Thus dfETx- By the first corollary of Theorem 2 we may
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write/=/x+c, whence/xGP^. If IF is parabolic, then c(E.K, and so/GP.
If IF is hyperbolic, let a be a regular differential in Y with ¿a[l]?¿0. Now

da[f] = limda[fi]

= —lim   I   I  dfia

by weak convergence in BD and Proposition 8. Also by Proposition 8

da[fK] =  - jjdfKa.

Hence, since c=f— /*-,

da[c] = —   f   I  dca = 0.

Consequently, e = 0 since <fa[c] =c¿a[l]. Thus/=/xGP-
15. Green's functions on an open Riemann surface. Let {ß,} be an ex-

haustion of a Riemann surface W such that ßi contains the point q. Let
Gi(p, q) be the Green's function of ß,- with a pole at q. By the maximum
principle Gi(p, q) is a monotone increasing sequence of harmonic functions,
and so by Harnack's theorem either d(p, q) converges together with its
derivatives to a harmonic function G(p, q), the convergence being uniform
on each compact set not containing q, or else Gi(p, q) diverges to + oo uni-
formly on every compact set. In the first case we call G(p, q) the Green's
function for IF with a pole at q. The Green's function clearly has the prop-
erty of being the smallest non-negative function on W, which is harmonic
except at q and which has a logarithmic singularity there. Thus the function
G(p, q) is independent of the exhaustion used in its definition.

Proposition 11. If G(p, q) exists for some q, then W is of hyperbolic type,
while if W is of hyperbolic type, then G(p, q) exists for every q.

Proof. If G(p, q) does not exist for some q, let

7, = min [í,Gi(p, q)].

Since Gi(p, q) diverges to + oo uniformly on every compact region, ft must
be identically one on each compact region provided that i is large enough.
By Green's theorem

D(yî) =j       * àGi = 2t.
J <7,= 1
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Thus by Lemma 8, dy—»0 weakly in Y, and by Proposition 10 it follows that
1EK, since 1 is the limit of y,- in B. Thus W is parabolic.

On the other hand, if G(p, q) exists for some q, then Gi(p, q) converges
together with its derivatives to G(p, q) uniformly on each compact set not
containing q. From Lemma 8 it follows that G(p, q) has a finite Dirichlet
integral over any region not containing q. Thus if we let g be a twice con-
tinuously differentiable function which is identically equal to G(p, q) out-
side a compact region ß, then *dg is a regular differential belonging to T.
By Green's theorem

d* dg[l] =   I   * dg = 2tt,
JR

where P is the boundary of T. Thus by Theorem 4 we have W hyperbolic.
This proposition shows that our definition of the type of a Riemann surface

is equivalent to the usual one, but has the advantage of being independent
from the start of such questions as the dependence of the Green's function on
the parameter.

Proposition 12. If c is so large that G(p, q)>c only in a compact region
containing q, and if y = min [c, G], then yEK-

Proof. If y, = min [c, C7,], it is easily verified that

y i —> y weakly in BD.

Since y,EK, we have from Proposition 10 that yEK.

Proposition 13. Let aET have the orthogonal decomposition

a = co + a\ + * ai

of Proposition 1, and suppose that «i = df where fE K. Then

a* dG(p, q)

exists and is equal to 2irf(q).

Proof. Clearly

* a2* dG = 0

since any approximation to G has a closed differential and * a2 is orthogonal
to all closed differentials. If we take a small circular neighborhood of q and
take c to be larger than the maximum of G on the boundary of this neighbor-
hood, it is readily verified that the region ß where G>c is simply con-
nected. By the Riemann mapping theorem we may choose a uniformizer z

//

//
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so that ß is the set | z| <1, and z(q) =0. Thus

ffa*dG=   ff(co + df)*dG

= // (C° + dí)*dj + II (C° + ¿/)*¿(G ~ 7)-
Now

I  oo * dy = 0,

since 7 EK, and therefore dy is orthogonal to oo. By Proposition 8 and Green's
theorem

(1) ff df* dy=-d* dy[f] = f f*dG
where P is the boundary of ß. Now G — y vanishes on P and is harmonic in
ß except for a logarithmic pole at z = 0. Hence G — y = — log | z|, and we have

—   I   I   (u + df) * d log | z | = —   I   I  d(u + f) * d log \ z\

= 2x[«(0)+/(0)] -   f {u+J)d4
J R

« f= 2t/(ç) -      /d*

= 27r/(?) -   f/*dG,

where m is a harmonic function such that oo=du in ß, and the proposition
follows by adding (1) and (2).

Proposition 14. We have

G(p, q) = G(q, p).

Proof. Consider the symmetric function

I(P, q) =   f f ' d£(r, p)*d£(r, q) = f f dfi(r, q)*dGr(r, p).
Both integrals exist for p9^q since the differential of a Green's function is
dominated by | dz\ /\z\ at a pole. Hence if we set y(c) =min [c, G(r, p) ] and
7'(c')=min [c',G(r,q)],
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I(P> Q) =    hm     I   j  dy * dy'.

Letting c'—>oo, we have from Proposition 13 that

/(¿>, q) = lim 7(c) = G(p, q),
C—► «

and the symmetry of G follows from that of I.
16. The classes HBD and HD.

Proposition 15. A necessary and sufficient condition for the existence of a
nonconstant function of class HBD is the existence of a regular differential aGT
and a function fEBD such that

da[l] = 0

and

d*[f}* - ffdf<*
Proof. By Theorem 2 we have/=/x+M, with uC^HBD.

da[u] = da[f - fK]
= da[f] - da[fK]

= da[f] + j j dfKa

by Proposition 8. Hence

da[u] +   f f dua = ¿«[/j +   f f ¿/a y= 0.

Therefore « cannot be constant for

<fa[c] = 0 = -   \   \  dca.

On the other hand, if u is a nonconstant HBD function, then a= *du
and/ = w satisfy the requirements of the theorem.

We denote by HD those functions / for which d/Gr». The following
proposition shows that the space HD is essentially the same as the space
HBD:

Proposition 16. If uEHD, then there exists a sequence u¡EHBD such that
dui-^du in Y.

Proof. Let A be the space of all differentials of functions of class HBD
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and A' the space of all differentials of functions of class HD. If A' were dif-
ferent from A, then there would be a harmonic function u such that duEA'
and du LA. But if we set, for c>c%,

f\ = max [u, Ci] where c\ < sup u

and

/ = min [/i, c] where c > inf fu

then fEBD, and / is not constant. Hence /=/x + Mi, where U\EHBD and
f*€2r. Now

du\*dü = 0

by orthogonality, and

dfK*dü = d*dw[/#] = 0

by Proposition 8. Therefore

df* df =  if df* dü = 0,

a contradiction, since/was not constant. Hence the proposition.
17. Summary. Since Proposition 11 shows that a Riemann surface is

hyperbolic if and only if it possesses a Green's function, we shall use No to
denote the class of parabolic Riemann surfaces. Similarly, we use Nhd and
Nhbd to denote the classes of Riemann surfaces whose only HD and HBD
functions are constants. By Proposition 16 and the corollary to Theorem 4
we have

No C Nhd = Nhbd.

We shall return to the classification of Riemann surfaces again in §23.
Theorem 2 tells us that

BD =K ®HBD,

while on parabolic surfaces BD = K, by the corollary to Theorem 4. Hence we
may say that the surfaces of class Na are characterized by having HBD
empty, while the surfaces of class Nhbd may be characterized by having
HBD consist of at most constants.

There is a rather striking analogy between the behavior of BD functions
on an arbitrary Riemann surface and the classical case of BD functions on a
plane region bounded by n continua. In this case Theorem 2 asserts nothing
more than the solvability of the Dirichlet problem, while in passing to an

//

//

//
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arbitrary Riemann surface we define a function to have "zero boundary
values" if it belongs to the space K, and see (Proposition 8) that such a
function has the same properties with respect to Green's theorem as have
the functions which vanish on the boundary in the classical case. The state-
ment that a Riemann surface is parabolic means that its boundary is so
weak that all functions of class BD have zero boundary values, which in the
classical case must mean that the boundary continua have all degenerated
to points. Proposition 13 shows that even on an arbitrary (hyperbolic) Rie-
mann surface we can still find the component of a function which has "zero
boundary values" simply by forming the integral

fK(q) =¿/J* df*dG.

Chapter IV. The space BD on a bounded Riemann surface
18. Some decomposition theorems. On a bounded Riemann surface F we

consider the class BD of functions which are piecewise smooth on F, bounded,
and have differentials belonging to Y=Y(W), where W is the interior of F.
In addition to the class K of functions having compact carriers it is useful to
consider the class 0 of BD functions which vanish on the boundary R of F.

Lemma 18. The linear space KO of functions which belong to both K and 0
is closed in the BD topology.

Proof. Since K is closed, it is necessary only to show that 0 is closed.
But this is trivial since convergence in B implies uniform convergence on
every compact set, whence the limit in B of a function with zero boundary
values must again have zero boundary values.

Proposition 17. If aEY is a regular differential, andfE.RO, then

dcc[f]=  - ffdfa.

Proof. Since there exists a sequence fa: of functions in KO whose limit is/,
we have

da[f] = lim da[<£,•]

= — lim   I   I  dfaa

= -Hdla
Theorem 5. On a bounded Riemann surface V the space BD has the de-

compositions :
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BD = KO © HBD = KO®HK ®HN,

where HK denotes the class of functions belonging to both HBD and K, and HN
the class of those HBD functions whose normal derivative vanishes on R. That
is to say every fEBD has the decomposition

(1) f = fo + uK + uN,

where foEKO, ukEHK, unEHN, and the decomposition is unique to within a
constant. If for gEBD we set

\\g\\ = sup | g\,
V

we have ||«x|| ==||/|| and ||wat|| á||/||. Moreover, the decomposition is orthogonal in
the sense that

df = dfo + duK + duN

is an orthogonal decomposition.

Proof. Let {ß,-} be an exhaustion of F, and let w,- be that piecewise
smooth function, guaranteed by Theorem 1, which is harmonic in ß, and
identically equal to / outside ß,. Then as in the proof of Theorem 2 there
is a subsequence (which we again call w,-) converging in BD to a harmonic
function u. Since f—u,EKO, f—u must belong to KO by Lemma 18. The
orthogonality of du and dfo = d(f—u) follows from Proposition 17.

Hence there remains only to show that u may be split into Uk + un-
To do this we consider the double W^ of V and define u on W~~ by its sym-
metric extension. Then by Theorem 2

U =  Ul+ u2

where UiEK(W^) and u2EHBD(W^). Since symmetrization preserves the
classes K(W~~) and HBD(W^), we may take «i and u2 to be symmetric.
Hence u2 must have a vanishing normal derivative on P and thus (when re-
stricted to V) belongs to HN. But ux is the BD limit on W~~ of functions of
the class K(W~~), whence U\ (restricted to V) is the BD limit of functions
of class K(V). Thus U\EK, and since U\ = u — u2EH(V), UiEHK. Since wi
and u2 are symmetric on IF", and du\ and du2 are orthogonal there, du\ and
du2 must also be orthogonal over V. This completes the proof.

19. Relative harmonic measures and the type of bounded Riemann sur-
face. We shall say that a bounded Riemann surface Fis of (relative) parabolic
type if IEK(V). Otherwise we say that F is of (relative) hyperbolic type. It
should be noted that the interior W of V considered as a Riemann surface in
its own right is always hyperbolic as soon as the boundary of F is not empty.

Let ß be a compact region on F and let {ß»} be an exhaustion of F such
that ßCßi- In ß,—ß we construct that piecewise smooth harmonic function
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Ui which is identically one on the boundary of ß, identically zero on the
boundary of Ö,-, and has a vanishing normal derivative on PP\(ßj—ß)~. If
we extend the definition of u( so that Ui=l on ß and Ui = 0 outside ß„ then
Ui is of class K. By the Dirichlet principle D(u¡) ^D(ui) ¿D(ui), and by the
maximum principle Oá«<áwy^l, for i<j. Hence by Lemmas 1 and 2 there
is a subsequence which converges together with its derivatives uniformly on
every compact set to a harmonic function u, which we call the relative har-
monic measure of ß. Clearly, u is independent of the exhaustion chosen,
since u may be characterized as the smallest non-negative harmonic function
in F— ß which is one on ß and has zero normal derivative on P.

By Green's theorem

D(uí — Uj, Uj) = 0, i < j,

whence

D(uí — Uj) = D(ui) — D(uj) — 2D(uí — u¡, u¡)

= D(uí) - £>(«,).

Since D(ui) is a decreasing sequence of positive numbers, it must converge,
and so D(uí — u¡) must tend to zero. Hence by Lemma 17

Ui —> u in BD.

Thus we have proved the following proposition :

Proposition 18. The relative harmonic measure of a compact region ß on
a bounded Riemann surface V belongs to the class P".

Theorem 6. If V is of hyperbolic type, then every compact region has a
nonconstant relative harmonic measure. If V is parabolic, then the relative
harmonic measure of each compact region is identically one.

Proof. The first part is a direct consequence of Proposition 18, for if any
relative harmonic measure were constant, the constants would belong to K,
making F parabolic. The proof of the second half is identical with the proof
of the second part of Theorem 3.

Theorem 7. A necessary and sufficient condition that a bounded Riemann
surface be of hyperbolic type is the existence of a regular differential aEY such
that

da[<t>\ = —   II   d<j>a

for all faEK, and
da[l] 5= 0.
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Proof. For such a differential

<*«[/] = - ffdfa
for every/GP, by the continuity of da in B and of ffdfax in D. Hence if
1GP, no such differential can exist.

If on the other hand F is hyperbolic, a compact region must by Theorem
6 have a nonconstant relative harmonic measure u. If we set a= *du, then

da[fa] = -   i  I d<j>a =   I  <f>du
y

by Green's theorem, where y is the boundary of the compact region. Thus a
is a regular differential in Y, and

[l] =   |   *du =   | u*du = D(u) 7e 0,da t
7 " T

proving the theorem.

Proposition 19. The space K is weakly closed in BD.

Proof. By Theorem 5,/=/x+mjv. But/jc is the weak limit of functions of
K, and hence un must be a constant c, since du is orthogonal to Tk and hence
to Yk- If the surface F is parabolic, cEK, and therefore/GP. If the surface
is hyperbolic, we choose a by Theorem 7. Now

da[fK] = - jfdfKa

and by weak convergence

<M/] = - JJdfa.
Hence

0 = —  j  I  dca = ¿a[c] = cda[l],

and c = 0, whence /G K.

Proposition 20. The space KO is weakly closed in BD.

Proof. If
fi—*f weakly in BD

while fiEKO, then/=/0+c as before. Let a be a differential which is g.-con-
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tinuous and has a compact carrier and the property that

fa = 1.
J R

Then by Proposition 17

da[fi]

Whence

da[f]

by weak convergence. Also

da\j9]

Therefore

da[c] = 0.

But

da[c] = c I   a — c
J R

whence c = 0, and the proposition is proved.

Proposition 21. // V is parabolic, then HN contains only constants.
Hence BD = K, and we adopt the convention that HN is empty (i.e., does not
even contain constants). Under this convention the decomposition of Theorem 5
is unique.

Proof. Suppose there were a nonconstant uEHN. Then the hypothesis of
Theorem 7 is valid with a = u *du, and the surface is hyperbolic.

20. Surfaces with a compact boundary. In this section we assume that F
is a bounded Riemann surface whose boundary is compact. If we use the
symbol + to denote a direct sum, in contrast to ffi which denotes an orthog-
onal direct sum, we can then prove the following theorem:

Theorem 8. Let V be a bounded Riemann surface with a compact boundary.
Then

BD = KO + HK + HO = K~ + HO.

--ffdfr.

= ~ffdfa

IIdfoa.

That is to say iffEBD, then
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(2) / = fK + ua

where fxEK, uoEHO and the decomposition is unique. Moreover,

M á Ml.
Proof. In view of Theorem 5 we have

K = KO 4- PP,
and so it suffices to prove that

BD = K + PO.

Let {fi¿} be an exhaustion of F such that PCßi, and P separated from
the remainder of the boundary of ßi. Let /i be a piecewise smooth function
which is identically equal to / outside ßi, and vanishes on P. Set Ui equal to
that piecewise smooth function given by Theorem 1 which vanishes on P,
is harmonic in ß,-, and is identically equal to / ( =/i) outside ß,-. Then

0 ^ D(uj) ^ D(uí) ^ D(fi)

for i <j. Also

Ui ^ sup   | f(p) |   =  sup   | f(p) |.
2>eny vE.v

Hence by Harnack's principle there is a subsequence (which we again call «,-)
of functions which converge together with their derivatives to a harmonic
function Mo which vanishes on R, the convergence being uniform on every
compact set. Thus by Lemma 17

Ui —♦ «o in BD.

Since f—UiEK, f—UoEK, and it remains only to prove that the decomposi-
tion (2) is unique. But this is certainly true, for if uEHO and uEK, then
uEHBD and uEKO, whence, by Theorem 5, u must be a constant, and the
constant must be zero since u vanishes on R.

Theorem 9. On a bounded Riemann surface with a compact boundary there
is a natural algebraic isomorphism ir0 between the spaces HN and HO (provided
we adopt the convention of Proposition 21  concerning constants).  Moreover
NI =»lko«lI.

Proof. The algebraic isomorphism follows from Theorems 5 and 8 since
HN and HO are both isomorphic to the quotient space BD/K. In order to
show that the norms are preserved, however, we shall actually construct ir0.

If uEHN, then the decomposition of Theorem 8 gives

u = u0 + UK,

where uQEHO and urEK, with ||w0|| â||«||. But by the uniqueness of the
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decompositions in Theorems 5 and 9, we must have for w0 the decomposition

«o = u — uk

with ||w|| =||Mo|| by Theorem 5.
Thus the mapping 7r0: u—>m0 is one-to-one isometric onto, and is easily

seen to be linear, thus proving the theorem.
At this point I consider it a reasonable conjecture that tt0 is actually

bicontinuous in the BD topology. However, this seems to be a difficult thing
to prove because of our meager knowledge of the BD topology.

It should be noted that 7r0l = 1 — u where u is the harmonic measure of P
with respect to V, for it is easily proved that uEK. In view of Theorem 9
we have the following characterization of the type of a bounded Riemann
surface V with a compact boundary:

Proposition 22. A bounded Riemann surface V with a compact boundary R
is of (relative) hyperbolic type if and only if the harmonic measure of R with
respect to V is not constant.

In [25] there are given counterexamples which show that the results of
this section are no longer valid if we do not require V to have a compact
boundary.

21. Separations by a compact set of curves.

Theorem 10. Let Wbe an open Riemann surface, and let R consist of a finite
number of closed analytic curves which separate Winto the regions Wi, i=l, ■ ■ •,
N. Take F¿ to be the bounded Riemann surface whose interior is Wi and whose
boundary is Ri = RC\Wi. Then under the convention of Proposition 21 there
are algebraic isomorphisms iri and 7r2 which map HBD(W) onto

PO(Fi) + ■ • • + HO(VN)
and onto

HN(V1) + ■ ■ ■ + HN(VN)

respectively. Moreover

\\u\\  — ||iri«||  = |¡7T2tt||.

Proof. In view of Theorem 9 it suffices to prove the statements for t\.
We first note that a function <p which is piecewise smooth on W has a com-
pact carrier if and only if the restrictions of <p to each of the F< each have
compact carriers. Consequently, a function / of class BD on W belongs to
~K(W) if and only if the restrictions of/ to F( each belong to K(Vt).

If we use HO(W) to denote those BD functions on IF which are harmonic
in W—R and vanish on P, then clearly HO(W) is isomorphic to HO(V{)
+ • • • +HO( Vn) in a natural way which preserves norms. But in Theorem 8
we see that/GPP has the unique decomposition
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(3) / = fK + uo

where fKEK(W) and uaEHO(W), with ||«0|| g||/||. Also a function/GPP
has the unique decomposition

(4) f = f'K+u
with fKEK(W) and uEHBD(W) with ||m|| g||/||. Thus for uEHBD(W) we
have by (3) the unique decomposition

(5) u = uK + u0

with ||w0|| á||w||. But by (4) we have

(6) Uo =  — Ms + u

with ||m|| á[|«o||, where uk and w must be the same as in (5) by the uniqueness
of the decompositions (3) and (4). Thus ||w0|| =|[MII> anci **• u~^uo is an iso-
metric isomorphism onto.

22. The unrestricted maximum principle and the character of a bounded
Riemann surface. We say that the unrestricted maximum principle does not
hold on a bounded Riemann surface F, or that F is of hyperbolic character,
if there is a real bounded harmonic function u which is nonpositive on the
boundary R of F and which is positive somewhere in F. We shall say that
the unrestricted maximum principle does not hold on an open Riemann
surface W if there is at least one subregion of W on which the unrestricted
maximum principle does not hold.

Proposition 23. A necessary and sufficient condition that a Riemann surface
W be hyperbolic is that the unrestricted maximum principle does not hold on W.

Proof. By Theorem 3 there exists a compact region ß which has a non-
constant harmonic measure u. The harmonic function 1 — u violates the un-
restricted maximum principle in W— ß.

Suppose on the other hand that there is a subregion W\EW in which the
unrestricted maximum principle does not hold. We may assume a compact
region ßCJF— W\ since the validity of the unrestricted maximum principle
is not affected by the addition or subtraction of a compact region. Let v
be a real bounded harmonic function in W\ which is nonpositive on the
boundary P of IFi and positive somewhere in W\. We normalize v so that it is
bounded by unity. Hence by the maximum principle for compact regions we
have Ui^l —v, where «,- is the sequence of harmonic measures used to define
the harmonic measure u of the region ß. Hence u^l—v, and u is not con-
stant since 1 — v<l at some points of W\. Thus IF is hyperbolic by Theorem 3.

Proposition 24. A necessary and sufficient condition that a Riemann surface
W have a nonconstant bounded harmonic function on it is the existence on it of
two disjoint subregions of hyperbolic character.
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The proof is as in [24].

Proposition 25. A bounded Riemann surface V whose boundary R is com-
pact is of hyperbolic character if and only if it is of hyperbolic type.

Proof. If it is of hyperbolic character, let v with v<l be nonpositive on
R and positive somewhere in F. Then if we define the harmonic measure u of
R with respect to V as the limit of the harmonic measures w¿ in an exhaustion
of V, we have w,i£ 1 —v, whence u i£ 1 — v. Thus u is not identically one, since
1— v is somewhere less than one. Consequently, F is of hyperbolic type by
Proposition 22.

If on the other hand F is of hyperbolic type, then by Proposition 22 the
boundary P must have a nonconstant harmonic measure u with respect to
F, and 1 — u violates the unrestricted maximum principle.

Proposition 26. If a bounded Riemann surface V has a compact boundary
R, then the existence of a nonconstant bounded harmonic function with a vanish-
ing normal derivative on R implies that V is of hyperbolic character.

Proof. A harmonic function with a vanishing normal derivative on R
can take neither its maximum nor its minimum on R if it is not constant.
Hence such a function violates the unrestricted maximum principle if it is
bounded.

Counterexamples are given in [25] which show that the restrictions to
compact boundaries are essential.

23. The classification of Riemann surfaces. If we denote the class of para-
bolic surfaces by No and the class of Riemann surfaces on which there are
no nonconstant positive harmonic functions by Nhp, then I maintain

No Q NHp.

For let v be a nonconstant positive harmonic function on a Riemann surface
W, and assume that the greatest lower bound of v is zero. Then a component
IFi of the set where v < 1 is a subregion in which 1—v violates the unrestricted
maximum principle, and hence W is hyperbolic by Proposition 23»

Clearly

Nhp Q Nhb,

since the real part of a bounded harmonic function becomes a positive har-
monic function by the addition of a suitable constant.

By virtue of Proposition 16 we have

Nhd — Nhbd-

Hence we may summarize these relations in the following proposition:

Proposition 27. We have
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Nc Q NHp £ NHB C Nhbd = Nhd-

In [25] an example is given which shows that the inclusion of Nhb in
Nhd is strict. In [24] it was shown that for analytic functions

Nab C Nad.

It is known [9] that N¿b is not contained in Nhd, but it is not known
whether or not the inclusion holds in the opposite direction. In the "schlicht-
artig" case

No = Nhd

and these surfaces are characterized by being mapped onto plane regions
whose complements have logarithmic capacity zero.

The characterization of No by means of the maximum principle is due
to Myrberg [15]. The inclusion of Nhb in NHd was shown by Virtanen [35].
For the "schlichtartig" case see [9] and [15].

Chapter V. Some applications to the type problem
24. Triangulation of a Riemann surface. By a polygon s2 on a Riemann

surface W we mean a pair (S2, G) consisting of a polygon S2 in the plane and
a mapping G which is a conformai mapping of the interior of S2 into W which
satisfies the following conditions:

(i) On (the interior of) each edge of S2 the mapping G is analytic and one-
to-one.

(ii) At a vertex S° of S2 either G is analytic or else for any compact region
ßoCIF there is a neighborhood U of S° such that G(U) does not meet ßo.

Thus, roughly speaking, a polygon on a Riemann surface is the conformai
image of a Euclidean polygon. However, some of the vertices of the Euclidean
polygon may not be mapped into interior points of IF, but rather so to say
onto the boundary of W. The images under G of the interior, edges, and
vertices of 52 will be called the interior, edges, and vertices, respectively, of
s2. Thus the edges of s2 are analytic arcs, which may, however, overlap one
another. The points in the interior, edges, and vertices of s2 are the points of s2.

A triangulation of IF is a collection of polygons s2 = (S2, G¡) such that:
(i) Every point p E W is a point of some polygon s2.
(ii) If a point pE W is an interior point of some s2, then it belongs to no

other polygon.
- (iii) If a point pEW belongs to an edge of some s2, then it belongs to
exactly one other edge (which may belong to s2 or to some other polygon).

That we may take the indices to run over the integers is a consequence of
the fact that a Riemann surface is separable.

The fact that we have not required the vertices of a triangulation to be
points of the Riemann surface has the advantage that if we have a triangula-
tion of a Riemann surface W, it is also a triangulation of the Riemann surface
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IF' formed by removing one or more of the points of W which are vertices of
the triangulation. Also we have allowed two edges of a single polygon to
meet, which has the advantage that any compact Riemann surface W (as
well as the surface IF' formed by removing a finite number of points from W)
can be triangulated with a single polygon, e.g., by making a finite number of
analytic cuts which reduce the surface to a simply-connected one and map-
ping this onto a suitable plane polygon.

For our purposes a two-dimensional cochain 42ona triangulation may be
defined as a mapping of the polygons of the triangulation into the real num-
bers. We shall write

(1) A   = X «#ii¿=i
where a2 is the value of the mapping on s2. If a polygon sj does not appear
in the formal sum (1), then we mean that aj — 0.

A one-dimensional cochain i1 on a triangulation is a mapping of the
edges of the Euclidean polygons S2 into the real numbers having the prop-
erty that two edges which have a common image on the Riemann surface
are mapped into numbers which are the negatives of one another. We de-
fine an oriented edge s] of the triangulation to be a pair (Sj, Si) of edges of
Euclidean polygons Sj, and Si, which have the same image on the Riemann
surface, and write

(s),sl) = - (sl,s)).
Then we may write

oo

(2) A   = X a*su
t=i

where only one of the pairs s\, —s\ appears in the sum, and a\ is the value of
the cochain on the first element of s\.

The ^-dimensional cochains (p = 1 or 2) form an Abelian group under the
definition

A9+BT-ïttf+ti)tl¿-i
We may define a homomorphism 5 of the group of one-dimensional cochains
as follows: If ^(S,1, S\),

12 2
(3) ôsi = s¡> — Sk',

whese $ is the polygon such that Sj is an edge of S2, and s? the polygon
such that Si is an edge of S%. On A1 we define S by
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00
I       ^->    1   1

5A   = ¿_i ainsi-

25. The ß-measure of a polygon. Let 5 be an w-sided polygon in the plane,
and let 7 be a differential which is defined and continuous on 5, except pos-
sibly at the vertices of 5. Suppose that {mk} is a set of n real numbers whose
sum is zero.

If 7 is (absolutely) integrable along each edge C* of S (note that 7 need
be neither defined nor continuous at the end points of Ck), and if

X7^0, k = 1, ■ ■ ■ , n,

we can construct a function v=v(mi, ■ ■ ■ , mn; 7) which is harmonic in 5
and which satisfies

(5) * dv = mky/Ik along Ck,

and consequently

(6) fJ c
* dv = ntk.

Indeed, to prescribe * dv along C* is merely to prescribe dv/dn on C*. In order
to infer the existence of v by the classical solution of the Neumann problem
one has only to observe that

/,

dv        ,_
- =  ¿v mk = 0.

2ck dn

It is now possible to define a measure X7(5) of the polygon with respect
to the differential 7. We set \y(S) equal to the maximum for all sets {m*}
satisfying

(7) E«it = o,     El«*!2 = 1
of the Dirichlet integral of v(nti, ■ ■ ■ , mk; 7), provided v(mit • • • , mn; 7)
can be defined for all m* satisfying (7). If not, e.g., if the integral of 7 over
some Ck vanishes or if 7 is not absolutely integrable over some Ck, we set
X,(5)-oo.

As a consequence one has the inequality

n

(8) Dsv(mi, ■ ■ ■ , mn; 7) rS \y(S) 2 | w* |2,
*-i

with the function v(m\, • • • , mn; 7) existing whenever the right-hand side of
(8) is finite. For
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Ds(v) = c2Ds(r>
and we need only take c2 = ^_m\. In the right-hand side of (8) we may adopt
the convention that 0- =o =0, since

v(0, ■ ■ ■ , 0; 7) = 0.

This definition of measure can be extended to a polygon

2 2
s, = (Si, G)

and a differential ß on IF by setting

(9) A„(s!) = \o-ß(s]).

Thus the ^-measure of a polygon on a Riemann surface is unchanged by a
conformai mapping provided the differential ß undergoes the adjoint map-
ping.

The function v =v(m\, • • ■ , mn; G*ß) on S2 can be extended to a harmonic
function u = u(m\, • ■ ■ , mn; ß) defined on the ¡mage of S2 by setting

(10) u = G7**v.
It is then clear that we have

(11) f      *du = nik

and
2,

4=1
(12) D(u) ^\B(s')J2\mk\\

the function u being defined whenever the right-hand side is finite (with the
convention still that 0- oo =0).

We define the 0-measure of an edge of a triangulation to be the sum of
the /3-measures of the two polygons of which it is an edge.

With this in mind we define the ß-norm of a one-dimensional cochain

A   = ^AiSiA1
t-i

as

(13) Nß(A') = Z\ a^Ms])
i-l

with the convention that 0 • =o = 0.
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26. A condition for a Riemann surface to be hyperbolic.

Theorem 11. .4 sufficient condition that a Riemann surface be hyperbolic is
the existence of a triangulation for which there is a cochain A1 and a differential
ß such that

Nß(Al) < »

and

BA   = so,

where si is a polygon of the triangulation.

Proof. Let A1= ^2a]s]. We shall define a differential as follows: Let s¡t
be the edges of an «-sided polygon s], j?±0. Then we set wz*= ±a]k according
to whether the first or second element of s}k is an edge of S2. Since s2 does not
appear in the expression for A1, we must have

n

2_^mk = 0.
*=i

Since also

M*i) £ I »»* I   ál Ms h) I ah I   á N(A ),
fc-1 k-l

we have u = u(mi, • • ■ , mn; ß) defined and we set

a = * du

in the interior of 5^.
On S2 we define a by setting it equal to an arbitrary continuously dif

ferentiable differential which is a constant multiple of ß along each of the
5^ which is an edge of si and requiring

/
a = >w* = + a,k

as before. Clearly

/,
0

since So is the coboundary of Al.
Now

a* a = E mk = 1,
*-i

IIHI2 - ff % «* « + Z D/u(mu ■•■ , mnj; ß).
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By inequality (12)

IMI   á   I  I    a*ä + X) III a¿* I M*í).
J J ? j_i t=i

0

where s\k are the edges of sj. Since Xjs(jJ) ̂ \ß(sjk), we have

IMI    =   I   I     a* « + X) Z I «¿i | %(**)•
•J   J s2 J=l   *-lo

Since each s}4 occurs in this sum at most twice,

||a||2 g   ff   a*ä+ 2¿| fl-lVsi)  g   ff   a*5+ 2Ar(¿1).
o o

Thus «Gr.
Now a is a piecewise continuous and piecewise continuously differentiate

differential which has the edges s) as its only lines of discontinuity. But along
s] we have

a)ß

I,ß
no matter which side we approach s] from. Thus a is g.-continuous and by
Lemma 10 we have

da[f}= ffjda
o

and so a is regular. But

da[l] =   f f   da = 1 5= 0.
0

Hence IF is hyperbolic by Theorem 4. This completes the proof of our
theorem.

If a triangulation {s2} has the property that there exists a differential ß
such that

(14) X,0Î) < M
for all i, then we call the triangulation uniform. We shall define the norm of
a one-dimensional cochain to be

(15) . N(a) = t,\ a)]*.
1-1
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For a uniform triangulation we have
Nß(A*) ^ 2MN(Al).

Hence we have the following important corollary to Theorem 11:

Corollary. If {s2} is a uniform triangulation on a Riemann surface W, W
is hyperbolic if there is a one-dimensional cochain Al on the triangulation {s2}
such that

N(Al) < oo

and
ZA1 2SA   — so-

27. The type of a covering surface. Let W' be a Riemann surface formed
by removing a finite number of points from a compact surface. Then as noted
before W' may be triangulated by a single polygon s2= (S2, G).

A covering surface (IF, F) for an open Riemann surface IF' is a pair con-
sisting of a Riemann surface W and an analytic mapping F of IF onto IF'
with the property that every point of IF' has a neighborhood U in which F_1
is a homeomorphism onto each component of F~r(U). It can be shown that
this property holds true provided U is any simply-connected region on IF'.
Hence it is readily seen that a triangulation of IF' gives rise to a triangulation
of W for which F is a homeomorphism on each polygon onto a polygon of the
triangulation for F.

Let ß be a continuous differential on IF' which has the property that the
integral of ß along each of the edges of s2 exists and does not vanish. Such a
differential is easily constructed since the edges of s2 are analytic arcs. For
such a differential it is clear that the functions

p, = »(1,0, • • • ,0, -l;ß),
Vi = v(0, 1, • • • ,0, -l;ß),

*„_! = »(0,0, . . .,1, —1; j8>
all exist and have a finite Dirichlet integral which we denote by P,. Since

n-l

v(mh ■ ■ ■ , mn; ß) = Xm,t¡
>'=i

for 23?w¿ = 0, we have on applying Minkowski's inequality

[D(v)Y'2 :g "¿ | m | [P,]1'2 g P"2¿ I m I,
»-1 t=l

where we have set D equal to the largest of the P,-. By the Schwarz inequality
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D(v) á nDÜ\mi\2.
i=i

Thus

If weset j8 = F*j3, then

by the invariance of the /3-measure under conformai mapping. Thus the tri-
angulation {s2} is uniform and the corollary to Theorem 11 becomes Theo-
rem 12:

Theorem 12. Let (W, F) be a covering surface of a Riemann surface W
obtained by removing a finite number of points from a compact Riemann surface.
Let \s2\ be a triangulation of W arising from a triangulation of W by a single
polygon. Then a sufficient condition that W be of hyperbolic type is the existence
of a one-dimensional cochain A1 on \s2\ such that

N(A*) < oo

and
1 2

8A   = s0.

The reader should have no difficulty in generalizing this theorem to tri-
angulations {s2} of IF which arises from any finite triangulation of IF'.

28. The Speiser linear graph. Let {s2} be a triangulation of a covering
surface (W, F) arising from the triangulation of the base surface IF' by a
a single polygon. We may then construct a linear graph dual to the triangula-
tion in the following way: Let 4 be a point in the interior of s2 for each i. If
two polygons s2 and sj have an edge s\ in common, we join 4 and t'Q by an
analytic arc t\ lying entirely in the interiors of s2, sj, and si. If, say,

12 2
OSk  =   Si  —   Sj,

we orient the arc ¿Í so that its boundary satisfies the relation

k i j
dt\ = to — to.

This linear graph is known as the Speiser linear graph (Streckenkomplex)
of IF, and has been considered in some detail by R. Nevanlinna [19]. By
duality Theorem 12 becomes Theorem 12':

Theorem 12'. A sufficient condition that a covering surface (W, F) of a
Riemann surface W obtained by removing a finite number of points from a com-
pact Riemann surface be hyperbolic is that there be a one-dimensional chain

Ms2) únD < oo.

2 2
\'e(si) = Ms )
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CO ,     .

Ai = 23 ffi*i
t=i

on the linear graph of W with the properties that

dA i = io

and

N(A{) = ¿|aí|2< ».
¿=i

29. Covering surfaces of type S. By a circular domain is meant a plane
region bounded by a finite number of disjoint circles C*, k = l, ■ ■ • , n. If a
circular domain is considered as a sort of generalized polygon with the sides
C* and without vertices, it is possible in some cases to define a generalized
triangulation of a Riemann surface IF by the conformai images of circular
domains. In particular if IF is a compact Riemann surface, it is possible to
construct a generalized triangulation of IF by means of a single generalized
polygon, e.g., by making IF into a surface of genus zero ("schlichtartig") by a
finite number of disjoint cuts and mapping this surface onto the exterior of a
finite number of circles. Since the generalized polygon is no longer simply-con-
nected, we can no longer infer that such a triangulation induces a triangula-
tion of an arbitrary covering surface of IF.

This leads us to consider covering surfaces of W with the property that
there is a generalized triangulation on them which arises from a triangulation
of the base surface (which must necessarily be compact) by means of a single
generalized polygon. Such covering surfaces we shall call covering surfaces of
type S. Clearly we may extend the notion of cochains to generalized triangula-
tions of such surfaces.

Proposition 28. In order that a covering surface of type S be hyperbolic it
is necessary and sufficient that the generalized triangulation arising from the
triangulation of the base surface by a single circular domain has on it a one-
dimensional cochain A1 so that

1 2
5^4   = so

and

N(A*) < oo.

Proof. The sufficiency of the condition is proved in exactly the same man-
ner as Theorem 12. On the other hand suppose that there is a Green's func-
tion on the covering surface W with a pole in the interior of the polygon s2,.
To each edge s* of the triangulation we attach the value
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Ok = — |     * dG

where the direction of integration on si is such that the interior of s2 is to the
right where sl = sj — s2. Now

oo

A   = X aiS<
•-i

is clearly a cochain on the triangulation. Since the integral of *dG over the
boundary of any polygon not containing the pole of the Green's function
vanishes, we have

1 2
SA   = so.

Hence to complete the proof of the theorem it need only be shown that

Zi   :i2I a.-1   < °°.
¿-i

Let P be the circular domain in the plane whose images by the functions
Gi are the polygons s2. Then the function G?G is a harmonic function in the
interior of P, and the numbers ajk representing the integrals of * dGt G
over the boundary circles Ck of P are nothing more than the periods of
* dGx G over the different homology classes of P. Let m be the maximum of

the numbers \ajt\. Then the norm in R of a harmonic differential which has
at least one period larger than m cannot become arbitrarily small by Proposi-
tion 7', and we denote the smallest possible norm by M(m). From the quad-
ratic nature of the norm we have

M(m) = m2M(l)

with M(l) >0. Let R have n boundaries. Then we have

\\dG\h = \\*dG*G\\n
è M(m) = m2M(l)

^-M(l)Í\a)k\\
n k~i

Thus

A„._„   .   M(l) A,   i,2
,=i n     ,=i

But the left-hand side is just the Dirichlet integral of G over the exterior of
the polygon s2, and is thus finite. Hence
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i=l

and we have proved the proposition.
The method of proof also yields the following interesting corollary:

Corollary. // we define

a1      Y"   l 1= Au = 2-, a,Si
í=i

where

a] = Í ■ du,

then w is an isomorphism of the class HD onto the group of cocycles of finite
norm. Moreover, there exist two nonzero constants N\ and N2 such that

NiD(u) ¿ N(Al) ^ N2D(u)

for all u belonging to the class HD.

30. The Schottky covering surface. A covering surface of type S which is
of genus zero is called a Schottky covering surface. For a covering surface
of type 5 to have genus zero it is necessary and sufficient that there be no
finite cycles in the Speiser linear graph of IF, for such a cycle in the graph
corresponds to a compact cycle on IF which intersects just once some of the
edges of a generalized triangulation of IF.

Starting from a point 2° of the graph, we call the segments emanating
from it first generation segments and their remote (i.e., other than tl) end
points first generation points. In general we call segments which are not of
the (n— l)st generation, but which emanate from points of the wth genera-
tion, rath generation segments and their remote end points (n + l)st generation
points. Since there are no finite cycles in the graph, it follows that each point
and each segment of the graph belong to a unique generation. If the base
surface IF of IF has genus p^l, then p cuts are required to reduce IF to a
surface of genus zero, and hence a circular domain which effects a generalized
triangulation of IF has 2p disjoint circles for boundaries. Thus 2p segments

. emanate from each point of the graph, and there are 2p(2p— l)n~1 segments
in the nth generation.

If we assume the wth generation segments to be oriented so that the posi-
tive direction is from the (n — l)st generation end point to the nth generation
end point, we define a chain A\ on the linear graph which has the value

-l/2p(2p- 1) —
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on each oriented segment of the wth generation. Now

o
dAi = lo,

for at tg we have 2p outgoing segments where the value of Ai is —l/(2p),
while at the other points of the graph we have one incoming and 2^—1 out-
going segments with the value of the chain on the incoming segment being
— (2p — l) times its value on each of the outgoing segments. Since there are
2p(2p — l)n_1 segments in the wth generation, we have

N(A0 = ¿ 2p(2p - l)»-l[2p(2p - l)"-i]-2
n=l

= £ [2p(2p - I)-»}-»
n-l

2p- 1" *P(P - 1)

if p>l. Thus in view of Proposition 28 we have the following proposition
which has as a corollary an important result due to P. J. Myrberg [16].

Proposition 29. If W is a Schottky covering surface of a compact surface
whose genus is greater than one, then it is hyperbolic.

Corollary. The singular set of a Schottky group in the plane has positive
capacity provided that the group has more than one generator.

31. A condition for capacity in the plane. We conclude this chapter by
proving the following condition for capacity:

Proposition 30. Let übe a region in the plane containing the point z = oo,
and let {sf} be a triangulation of ß with the property that there are only a finite
number of the s2 which are dissimilar in the sense of Euclidean geometry. In
order that the complement of ß have positive capacity it is sufficient that there be
a cochain A1 on s2 with

N(A!) < oo

and
1 2

dA   = sQ.

Proof. By virtue of the corollary to Theorem 11 it suffices to show that'
the triangulation is uniform. But the cfz-measure of two similar polygons is
the same, as one can readily verify. Thus X<¿2(s2) has only a finite number of
values and hence a finite upper bound. Consequently, the triangulation is
uniform and the proposition is proved.
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