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Introduction

In the paper [5], T. M. Flett introduced a space of temperatures (solutions of
the heat equation) on a half space which is isomorphic to the Lipschitz space
A(x; p, q) of M. H. Taibleson ([16]). As a consequence, many results con-
cerning A(«; p, q) were proved; in particular, he showed that the topological dual
of A(e; p, 1), 1 £ p< o0, is isomorphic to A(—a; p’, o0).

Some time later, R. Johnson ([10]), adopting Flett’s idea, defined a space of
temperatures which is isomorphic to the Lipschitz space 4% , of C. S. Herz ([8]).
His method leaned on a theory of Riesz potentials for temperatures. As an ap-
plication of the theory developed, among other things, a characterization of
temperatures whose boundary values are in 42 , (x<0) was given.

In this paper, heavily influenced by [S] and [10], using an integral repre-
sentation of the Riesz potential R*f(fe L?) in [14], we extend the definition of
Riesz potential to a class of harmonic functions in a half space. Our first aim is
to construct a space of harmonic functions in a half space which is isomorphic to
Az .. For this purpose, we show that “‘boundary values™ of harmonic functions
uesty, , (see §5) satisfying

(HE

exist and are tempered distributions if ¢ <n/p, whereas the limits are considered
as elements of &’/ (the space of tempered distributions modulo polynomials) if
azn/p. Then, we proceed to characterize these distributions by showing that the
map u—u( -, 0)=lim,,qu(-, t) establishes an isomorphism between the space of
those harmonic functions satisfying the above properties and A2 ,; in particular,
in case O<a<n/p, a characterization of Poisson integrals of functions in 4% ,
is given. Qur other main result concerns the duals of some Lipschitz spaces.
As suggested in [10], by studying more specific class of functions, our spaces are
better described.

In the study of the space A%, we use the so-called method of Hardy-
Littlewood-Taibleson-Flett. This method was intensively employed by M. H.
Taibleson ([16]), and later generalized by T. M. Flett ([5], [6]). In contrast to

O Nuix, | dx "1d) " < 0 (o real and k > a)
o
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the Gauss-Weierstrass kernel used in [5] and [10], the behaviour at infinity of the
Poisson kernel used in our case is not nice; its convolution with an arbitrary
tempered distribution may not be defined, and this features the main difference
between the present case and [5] and [10]. Our approach is based on Theorem
5.2 whose proof is rather elementary, Theorem 6.1 about the existence of boundary
values in the sense of distributions of functions in ##(«; p, ¢), and Theorem 5.1
about the basic properties of the space s#(a; p, q), of which the most important
is the fact that the topological property of the space s#(«; p, q) does not depend
on the (Lipschitz) index «, which is shown by using a result of Calderén and
Zygmund [2]. These theorems are of some interest of their own. To make the
presentation self-contained, most results are proved in details.

The plan of the paper is as follows. §1 is used to fix notation and to state
well-known results. In § 2, a semigroup formula for harmonic functions is studied.
In §3, the Riesz potential is defined and related properties are investigated.
§ 4 is devoted to the study of the equivalence of various norms. In §5, the space
#(x; p, q) is defined, and properties of this space are studied. Existence of
boundary values (in the sense of distributions) of functions in s#(«; p, q) is proved
in §6. In §7, relations of A%, and #(a; p, g) with other spaces in the litera-
ture are established. Finally, the duals of A%, A%, and A%, are investi-
gated in § 8 and § 9 through several lemmas.

ACKNOWLEDGMENT. The author wishes to express his deepest gratitude to
Professor M. Ohtsuka for many useful comments and questions in writing this

paper.

§1. Notation and preliminaries

We use R" to denote the n-dimensional Euclidean space, and for each point
x=(X1,..., X,) we write |x|=(x?+--- +x2)1/2,

Unless otherwise stated, all functions are supposed to be complex-valued.
As usual we use & =9(R") to denote the space of all rapidly decreasing functions
on R"; 2 stands for its subspace consisting of functions with compact supports.

For any positive integer k let Z{ be the set of all ordered k-tuples of non-
negative integers, and for each u=(u,,..., ) let

el = gy + + e

An element of Z7 is called a multi-index.

If u is a function defined on a subset of R¥, we use DJu to denote the partial
derivative of u of order m with respect to the i-th coordinate. Further, for each
multi-index u=(u,,..., &) we write

Dty = D#1... Dy,
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If fis a measurable function defined on R", we set
1/p
11, = rwrax)”,  o<p<w,
Il = esssup|f(x)I,
xeR"

and we define LP=L?(R"), where 1<p=< o0, as the space of those measurable
functions f for which || [l ,< o, equipped with the norm | - ||,.
The Fourier transform of a function fe L! is given by

fe) = Sme_z’”"'yf (»)dy, xeR",

where x- y=x,y;+ -+ X,V

We consider the space R"*1 as the Cartesian product R” X R, so that we can
write each z € R**! in the form z=(x, ), where xe R* and te R. We denote by
Q2 the upper half space R” x 10, oo].

We use B to denote a constant, depending on the particular parameters
D, 4,... concerned in the particular problem in which it appears; if we wish to
express the dependency, we write B in the form B(p, gq,...). These constants are
not necessarily the same on any two occurrences.

For measurable functions u defined on Q, let

Mu; ) = (Sknlu(x, t)|vdx)”", 0<p< o,
M (u; ) = eiseigp lu(x, o).

We also let
lull,, = (S:Mp(u; t)"t‘ldt>”q, 0<q< o,
lull 0 = es§§gpMp(u; 0.

For each measurable function f on R", let A, be its distribution function, i.e.,
Aft) = [{xeR": | f(x)] > t}| for t>0,

where |E| stands for the Lebesgue measure of the set E. The decreasing rear-
rangement of f is the function f* with domain 0, o[ and given by

f*(s) = inf{t > 0: 1(1) < 5},
or equivalently by
f*(s) = sup {essinf|f]: |E| > s}.
E
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The average decreasing rearrangement of f is then defined to be the function
f** given by

o=+ rrwa 6>0.

Clearly f*< f**.

The Lorentz space L(p, g) where either 1 <p<oo, 1£g<o00, or I<p=c0,
g =0 can be defined as the set of all measurable functions f for which || f|},,< 0,
where

1£lse = (@1 1as) " <p<owisa<w)
£y = SUp st/ F#4(6)} (<ps ).

We also define L, to be the set of all measurable functions f such that f**(s)
is finite for all s>0. It is trivial that fe L, if and only if

1fle = F**(1) = S: FHBdt < .

The following properties of L(p, q), Ly and the decreasing rearrangement can
be found in [4; pp. 760-761] and [9; p. 262]. Let f and g be measurable func-
tions on R".

(i) l-ll,q and |- |4 are norms on L(p, q) and L, respectively, and L(p, q),
L, are Banach spaces with these norms.

iy |, regeax| s 7 reoaros.

i) f*4) = sup {7 { 1£Coldx: 1B1 2 5}
(iv)y Ifl<p<oo,1=Zg<o0, then
1£1e = #({ T2 10057 2d5) " < 21l
and if 1 <p=< oo, then

1f Ly S P'SUPSH2F*(5) S B'1f Ly

where 1/p+1/p'=1.
(v) If1£p=oo, then

11, = ([ r20ras)” 1 sp<a),
171 = sup £(9).
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Hence if 1 <p=<o0, then L?=L(p, p) and |- ||, is a norm on L(p, p) equivalent
t0 |-l Alsoif feLl, then fe Ly and | fl5=|f1;-
(Vi) f154;Sq,S00, then | fl,q, <] /1, s0 that

L(p, 91) = L(p, 42)-
(vii) If fe L(p, g), then fe L, and
1f e £ @DV fllpg (@ < 0), Ifla S Ufllpe (g = c0).
(viii) If 1<p<oo. 1<g<oo, then
Lp, 9) = L(v', ),

where L(p, q)’ stands for the topological dual of L(p, q).
It is trivial that, by (v) —(vii)

L(P9 ql) = L(p’ P) =Lrc L(P’ ‘12) < L(pr OO) < L*

whenever 1<g,<p<g,<o0 and 1<pZ oo,
We use P to denote the Poisson kernel on @, i.e.,

P(x, t) = c,tf(|x|? + B)»+1i2 for xeR" and >0,

where ¢,=n"("*D/2['((n+1)/2). The following properties of the Poisson kernel
are either trivial or proved in [13; pp. 61-62]. Let x, y be in R"*, and s, t be
positive numbers.

(Py) P(x, t) > 0.
(P2) S P(x, e 2mixydx = ¢~ 2nlvit,
RYI

In particular
S P(x, f)dx = 1.
Rn

(P3) P(-, t)eLP, 1 =p=< o0, and P(-, t)e L(p, q) for every p and q satisfying
the same conditions as in the definition of Lorentz spaces.

(P,) P(-, H*P(-, s)=P(-, s+1), where * denotes the convolution operation.
(Ps) Let6>0. Then

limg P(x, H)dx = 0
jxjzé

t=>0

(Pg) Let pu=(uy,..., ty+1)€ Z7,y, and k be a positive integer. Then
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[D#P(x, t)] £ B(n, Wt 1*1P(x, t) £ Br~l=l,

i/p
(S ID#P(x, t)|"dx> < B(n, y, p)t-"-lul*nie, 1< p < oo,
RYI

S DX, , P(x, f)dx = 0.
er

DerINITION. Let f be a measurable function on R" such that f(x)/(1
+ |x|7*1) is integrable. The Poisson integral of f, denoted by u, is the function
defined on Q by

ux, 0= | PCc— 3, 0f0)y = | PO 0f(x = »dy.
Remark. If feL,, then the Poisson integral of f is well defined (cf. [4;
Theorem 7]).
The following fact will be used in §9.

LemMA 1.1. Let 1<p=Zo0,feL? and u be its Poisson integral. Then
t—M (u; 1) is continuous on 0, co[.

ProOF. Let 1<p< oo first. Fix t,€]0, o[, and let /2 <t<2t,. Then

P(x, 1)

P(x, 15]2) 4

lIA
lIA

2 (Ll gy 20
¢, [x]? + £ = 1

and
lu(x, )] < 4P(-, to/2)*|fl(x) e L”.

Lebesgue’s dominated convergence theorem yields
lim S|u(x, Hiedx = g}irg lu(x, Djpdx = S|u(x, to)\Pdx.
Thus M (u; )—M(u; t,) as t—>t,. In case p= o0
Mo (3 8) — Moo(u; 1)l = sup lu(x, 1) — u(x, 1o)]
< 111 {1PO, 0 = PO, to)ldy,

which tends to 0 again by Lebesgue’s dominated convergence theorem.

The following theorem is well-known (cf. [4; Theorem 6], [13; pp. 62-65]).

THEOREM 1.1. Let f be a measurable function on R" with S [fOI(L
Rn

+|x|**)~dx < o0, and. let u be its Poisson integral.
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(i) wu is harmonic in Q, and its partial derivatives of all orders can be
calculated by differentiation under the integral sign.

(i) limu(x, )= f(x) as t tends to O for almost every x e R*. Furthermore,
if f is bounded and uniformly continuous, then the convergence is uniform on R".

(iii) Iffelr, 1<p<co, then |lu(-, ty— fl,-0 as t—>0.

DEerFINITION. For O<a<n, the Riesz potential of order « of a measurable
function f, denoted by R%f, is defined by

Ref@) = i | 1% = e fody, xRy

provided that R%(| f) # oo, where y(o) = n"/22*T"(/2)/ T (nf2 — a/2).

By combining [13; Chapter V, Theorem 1] with Marcinkiewicz interpolation
theorem [15; Chapter V, Theorem 3.15] (cf. also [9; Lemma 4.8]), one obtains

THEOREM 1.2. Let f be either in L'(p=1) or L(p, 9)(1<p< o0, 1=Zg= ),
and O<a<n/p.

(1) The integral defining R*f converges absolutely for almost every x.

(ii) Ifl<p<ooand l/r=1/p—a/n>0, then

IR f ;g = B(n, p, DIl fli pg-
(iii) If p=1 and 1/r=1—ua/n, then
H{x: [R*f(x)| > 2}| < [B(n, )|l f1|/27".

LEMMA 1.2. Let h be a non-negative, non-increasing function defined on
10, o[, & real, and O0<p<q=oo. Then

i/p

(Sw[t“h(t)]"t‘ldt>1/ " < B(p, a)<§°°[z~h(t)]vt-ldt> ,
0 )
where the left hand side is interpreted as sup,, o t*h(t) when q= co.

For a proof we refer to Stein [13; Appendices, B. 3] and Johnson [10;
Lemma 2].

§2. A semigroﬁp formula for harmonic functions

Hereafter we shall be concerned mostly with harmonic functions satisfying
a property which we call *“‘semigroup formula’.

THEOREM 2.1. If u is a harmonic function in Q, then the following two
statements are equivalent:
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(i) For each positive number b, there is a positive number B, possibly
depending on b and u, such that

fu(-, Dlls B  for every t=b.

(i) There exists a sequence {t;} tending to O such that ||u(-, t)|« is finite
for each i, and

(x%) u(x,s+1) = S P(x — y, u(y, s)dy for s, t positive, x € R".
R)I

The equation (xx) is called the semigroup formula hereafter.

Proof. The implication (ii)=-(i) is obvious by property (iii) in § 1.
Assume that (i) holds. By the subharmonicity of {u| on Q, we have

w, 31/2 1
I (oS W eox i MO IS Eo

S o | (@, (/D" ds
= 0,41(2) Jip2 s T On ’

where u, stands for the partial function z—u(z, s). Let O<w,"<1. Since
u¥*(7) is a non-increasing function of 7, for =24 we have

(0,012 S ul*(@,6) = 5hs (" ur @ e
n ]

1
g )t @dr = Sl

Therefore
1
K — n >
lulx, 0| £ CWLE ssuég ]l « for every xe R" and ¢ = 2.

Hence, from [15; Chapter II, Lemma 2.7], we derive that the semigroup formula
holds for u.

COROLLARY 1. Let u be a harmonic function in Q and 1<p=< 0. Assume
that for each positive number b, there is a positive constant B such that M (u;t) <
B for every t=b. Then the semigroup formula holds for u.

Proor. This is proved by Theorem 2.1 and property (v) in § 1.

COROLLARY 2. Let u be a harmonic function in Q. Assume that 0<p,
g and az—n/p. If C=|tu|,,<co, then the semigroup formula holds
Sfor u.
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Proor. We shall prove the corollary only in case 0<g<p<oo, because
the other cases can be similarly treated. By [3; Lemma 2] we have

q B(q)
lu(x, )1 = WS

3z/2
S |u(z, s)l4dzds.
12 Jlz-x|<t/2

Holder’s inequality implies that

1 3t/2
e | |u|sdzds
4 |z—x|<t/2

3t/2 q/p 1-4/p
LT | I
t/2 |z~x]<t/2 |z—x}<t/2

31/2 q/p
< Bt“l‘”‘m’g B | s%u I"dz:| s™lslmeads < By (etnipa| say||l .
t/2 R" ’

Hence |u(x, H)|<BCt™*""/?, and the conclusion follows from Corollary 1.

ReMARK. In contrast to temperatures, i.e., solutions of the heat equation
(cf. [5; Theorem 4], [10; Lemma 1]), we must take into account the behaviour of
M (u; 1) at infinity in our case. This is due to the lack of a suitable criterion for
the uniqueness of the solutions of the Laplace equation.

§3. The Riesz potential

The aim of this section is to define Riesz potential for some classes of harmonic
functions and to prove related properties needed later. We adopt the method
used by Flett [5] and Johnson [10] in treating temperatures. However, as
remarked after Theorem 2.1, when studying harmonic functions, we must require
more conditions in order to obtain good results. Most results are proved in
details, although many are just the variance of their proofs for temperatures. We
begin with the following result due essentially to Stein and Weiss {14; Lemma 6.2].

THEOREM 3.1. Let f be either in L' (p=1) or L(p, q)(1<p< o0, 1Zg=00),
O<a<n/p, u be the Poisson integral of f, and R*f be the Riesz potential of
order o of f; this exists for almost all x on account of Theorem 1.2 (i).

(i) For almost all x

R f(x) = TZI&TSO u(x, Ht*=-1ds.
(ii) The Poisson integral of R*f is the function R*u on Q defined by

R2u(x, s) = T_(IJS:“(X’ s + Hre-de.
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(iii) For each t positive, the function x—R*u(x, t) is the Riesz potential of
order o of the function x—u(x, t).

Proor. By splitting f, we may assume that f is non-negative. With this
restriction on f, various applications of Fubini’s theorem below are justified.
We have

o et = §, 00 et st =y

= o {{T e+ @y esonad e -
R"LJO

=T'(®)R*f(x).

This gives (i).
To prove (ii), we first observe that the semigroup formula holds for u, i.e.,

ux, s+ t) = S P(x — y, Hu(y, s)dy for s, t positive.
R"
The Poisson integral of R*f at (x, ?) is then given by

F(loc) SR,,P(X - t)g:u(y, s)s*~tdsdy

= ﬁg:u(x, s + t)s* ds.
Using the semigroup formula we have
_.1_ ® . . a—1 — ng . a—1 — a .
@) So P(-, s)*ul-, 1)s* 1ds (@ 0u( , S+8s5* ds = R*u(-, t).

Thus (iii) is proved, and the proof of the theorem is complete.

DEerFINITION A. For any real number b, let 5, denote the linear space of
all harmonic functions u in Q with the property that if ueZ},,, ¢>0, and K is
any compact subset of R”, then there is a positive constant B such that

[DRu(x, t)| £ Bt~ (b+ikD forevery xin K and ¢t = c.

LeEMMA 3.1. Let b be a non-negative number, and u be a harmonic func-
tion in Q with the property that for any positive number c, there is a positive
constant B such that

lu(x, 1)} < Bt~ for every x in R* and t = c.

Then u € 3¢,
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Proor.. By Corollary 1 to Theorem 2.1, the semigroup formula holds for
u. Hence it follows from (Pg) that

|DEu(x, 1) < B(t/2)"’SRn|D“P(z, 12)\dz

< B(t/2)~b" x| fort =z 2cand ueZ},,.

ExampPLE. Let u be the Poisson integral of a function in LP, 1<p=< 0.
Then u € 3#,, where b=n/p.

DeriNiTION B.  For any u in 4, and a<b, R*u is the function defined on
Q by

(i) R%u=u;

(ii)) if a>0,

R*u(x, t) = T(IT)S:“(’C’ 5 + )s*~1ds;

(iii) if « is a negative integer, say o= —m, then
Reu(x, t) = R™™u(x, t) = ( — 1)y"D7  u(x, t);
(iv) if a=—p<0 and B is not an integer, then
R*u = R™Py = R™B(R~™yu),

where m=[f]+1 (here [y] stands for the greatest integer not exceeding y), and
Rm=#, R~™ are defined by (ii) and (iii).

ReMARk. By Theorem 3.1, if u is the Poisson integral of a function f in
Lr, 1< p< o0, and O<a<n/p, then for each s>0, R*u(-, s) is the Riesz potential
of order a of u(-,s). This inspires us to call R*u in Definition B the Riesz
potential of order o of u.

THEOREM 3.2. Let b be a real number and u € 57,
(i) If a<b, R%u is well-defined and R*u e ¢, _,.
(i) If B<b and a+B<b, then

R*(Rfu) = R**Py.

Proor. The theorem can be proved in the same way as [5; Theorem 8]
and [10; Theorem 2].

If ue s, and if D¥, ,u=0 for some positive integer k, then R*u=0 for any
a<b. Harmonic functions satisfying D%, ,u=0 for some k are easily classified by
the following proposition whose proof is easy (cf. [10; Proposition]).
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PrOPOSITION A. Let u be a function defined on Q, and m be a positive
integer. Then

(i) wu is harmonic in Q and D?7,u=0 if and only if there are C®-functions
Vo, ¥, on R* satisfying A™Yo=4™y,=0 and

u(x, ) = :g(— l)k%ﬂk + :gol(_ 1)k ék.'bl(x) 2641 on Q.

(ii) u is harmonic in Q and D2771=0 if and only if there are C*-functions

¢o, @, on R satisfying Ampo=4""1¢,=0 and

u(x, 1) = Z (— D*=7 37" 2 ¢°(x) 12k 4+ Z (= D*Gr+ DT (AZk¢+(J;)v12k+x on Q.

COROLLARY. Ifueds#,, b>0, and D7, ,u=0 for some m, then u=0.
DEFINITION B*. Define

.#:f\fb.

b>0

The following is an immediate consequence of Theorem 3.2 and Definition B*.

THEOREM 3.2%. Let ues# and a, § be real numbers.
(i) R°u is well-defined and R®*ue s#.
(i) R*(RPu)=R**Pu=RP(R%u).

LEMMA 3.2. Let u be a harmonic function in Q with the property that
given b>0 and c¢>0, there is a positive constant B such that

lu(x, f)] < Bt for every x in R* and t = c.
Then uec .

Proor. This is an easy consequence of Lemma 3.1 and the definition of s#.

Let 0, denote the space of infinitely differentiable functions with compact
support in R" not containing the origin. It is trivial that the Fourier transform

can be defined on 0, and 0,={]: fe O} = &.
Lemma 3.3. If fe (30 and u is its Poisson integral, then u e #.
Proor. It is given that
utx, = {_PGx =y, 050y,
Keeping ¢ fixed and taking Fourier transform of both sides, we obtain

(¢, 1) = 211 f ().
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For any positive number a, the fact that f =0 in a neighbourhood of 0 allows us
to write

(&, 1) = [I€|* exp( = 2zlEIN] [IEI7*F()] = h(Dh(E).
An easy computation shows that
Ihylty = B(n, a)r=te*m,

while | h,|l, < oo is a quantity that depends on f and «. Therefore, it follows
that

1a(-, Hll, € B(n, a, fe-=+m
which implies, by Fourier inverse transform, that

lu(-, Dl S B(n, a, fHr=(=*»
and this is valid for an arbitrary «>0. Thus by Lemma 3.2 u € 5#.

THEOREM 3.3. Let f be in L?, 1S p<L o0, >0, and let u be the Poisson
integral of f. Then for t>0

(i) MR *u;t)SB(n, o)l f,t™*;

(ii) furthermore if LS p< oo, then

M, (R*u;f)=o0o(t" as t— 0+.
ProoF. We first prove (i) in case « is an integer, say «=m. Then

Roou(x, ) = RouCe, ) = (= 7 DRPO, 0 (x = »id,

and (i) will follow from (P¢) and Minkowski’s inequality (cf. [13; Appendices,
A.1]). Suppose next that « is not an integer, and let k=[«]+1. Then for
(x,5)eQ

Ru(x, 5) = T(klfa)gwR"‘u(x, s + Hk-eidy,
0
Hence
MRu3 5) S B M (R-¥us s + pk=e~tds
0
< B, )1, (s + oykes-etas
= B(n, oc)lifll,,S‘“S:(l + By ka1 gy

which implies (i), because, for k—a >0, the last integral is finite.
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‘We shall prove (ii) only when «=m, because the general case can be treated
in the same manner. Let (x, ¢) be in Q. Then by (Py)

Romutx, 1) = (= 1 DRaPOL OIS = ») - F(91dy,
which, together with Minkowski’s inequality, implies that

"M (R™™u; 1) = t’”Slquan'”ﬂP(y, DG =y) = fldy

#o IDRLPOLOISC =9~ fldy (6> 0).
Iy|zs

Now for an arbitrary positive number &, there exists a >0 such that | f(- —)
—fl,<eif |[y|<d. LetI(¢) and I,(¢) denote the first term and the second term of
the right hand side of the above inequality. Then

| L(t) < B(n, me
and

LOS2001,]  mIDEPO, Dldy

iyl

SBIfL PO, 0dy

Iy

by (Pg). The last integral tends to O as ¢ tends to O on account of (Ps). Hence
(ii) follows.

COROLLARY. Let >0, 1Z<p=< o0, and u be in \U,, _,#,. If u satisfies the
semigroup formula, then

My R™u;s +t) £ B(n, )t *M,(u;s)  forall s,t>0.

PrROOF. Let s be fixed. We may assume that M (u; s) is finite (otherwise
the conclusion would be trivial). Then for all :>0, by the semigroup formula,
we have

ux, s+ 0= _ PG =y, uy, s)dy

which implies the corollary by Theorem 3.3.

In the proof of the next theorem, in addition to Lemma 1.2, we shall need
the following lemma.

LemMA 3.4. Let h be a non-negative, non-increasing function defined on
10, [. If there is a 6>0 such that
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Swt"‘lh(t)dt < w,
1]

then h(t)=o(t"%) as t—-0+ and t—o0.

Proor. The lemma follows if we note that

-] o0 k
o0 >§ t-lp(ndt = Y Sz 5~ 1h(t)dt
0 k=—00 )2k 1

2671~ 2% 3 n@92e.

THEOREM 3.4. Let 1<p<o,1Zgq<o, B be a positive number, and u
be a harmonic function in Q such that

C = |#uf,, < .

Then for t>0, M (u; t)<B(q, f)Ct™#, and M (u; t)=0(t"f) as t—0+ and t—c0.
Moreover if g <r< oo, then
|#ull,,. < BC.

ProofF. By Corollary 2 to Theorem 2.1, the semigroup formula holds for
u. It follows that M (u; s+ )< |P(-, s)I| ;M (u; )=M(u; t) so that M (u; 1)
is non-increasing in t. Therefore by Lemma 1.2

#Myu; 1) < B, B |, LM, u; 91s71ds) " = Ba, BIC.

Now if g <r< oo, then, by applying again Lemma 1.2, we obtain
I##ull,, < Bllt?ul,, = BC.

Finally the o-result will follow if we make use of Lemma 3.4 and the fact that
[M ,(u; )]¢ is still a non-increasing function in ¢.

Hereafter we shall extensively use a pair of inequalities due to Hardy which
we shall refer to as Hardy’s inequality.

Hardy’s inequality ([15; Chapter V, Lemma 3.14]). Ifg=1,r>0and g is
a non-negative measurable function defined on ]0, o[, then

@ ([T (owas [ar)" < @n(( - rawar) ™,

(i) (S:t"‘I:S:og(s)ds]th>1/q < (q/r)(S:t"1[tg(t)]“dt>1/ !

THEOREM 3.5. Let 1£p<o0, 1£qg=Z 0, o be a real number, B>0, f>a,
and u be a harmonic function in Q such that C=|tfu|, < .



260 Bur Huy Qui

(i) ueHgin,and |tF-*Ru|,,<BC.
(ii)) If1=q<co, then M (R*u; t)=o(t"#-*) as t—-0+ and t—co.

(i) If g=o0 and M, (u; t)=0(t"#) as t—-0+ (resp. t—0), then M (R%u; 1)
=0(t~6~) as t—-0+ (resp. t— ).

Proor. First we shall prove (i). Theorem 3.4, Corollary 2 to Theorem
2.1, Holder’s inequality and (Pg) imply that

lu(x, DI £ B(gq, BYCt=B+nip),

which, by Lemma 3.1, shows that u € s#4,,, Therefore R*u is well-defined.
Suppose first that y= —a>0. Then by the corollary of Theorem 3.3 we see that

M (R*u; 2t) £ Bt*M (u; 1),
which implies that
|##~-*Reul|,, < BC.

Next we shall prove the result for the special case when a=1 and f>1. Since
Rlu(x, s) = Swu(x, s + t)dt,
0
it follows from Minkowski’s inequality and Hardy’s inequality that
© 1/q
IR, , < B(S LM (u; t)]“t‘ldt> — BC.
0
To prove the result for a=3>0, let y be the least positive number such that y+4
is a positive integer. Then by applying (i) in case ¢ <0, we have
[#+*R~"ull,,, < BC,
and hence after repeated applications of (i) in case «=1, we obtain
[t#~°Ru], , < BC.
The assertion (ii) then follows from (i) and Theorem 3.4.

We shall prove the assertion (iii) only when t—0+ ; the other case can be
similarly treated. First, assume a<0. Then the assertion follows easily from
the estimate M ,(R%u; 2t)<Bt*M (u; t) given above. Next, we shall prove the
result for the case when a=1and f>1. It follows from Minkowski’s inequality
that

sP7IM(R1u; 5) < sﬂ‘IS:Mp(u; s + Hdt
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- S"“(S: + Sj): L+I, (5>0).

Let & be an arbitrarily positive number. By the hypothesis on M (u; 1), I, <s/2
if 6 is small enough and 0<s<é. Fix such d. Since M (u; s+0)=|tful,, -
(s+1)78, it follows that

©
I, £ ItPull, os*~ 1\ t8dt < B||thu|, ,sP- 1615,
2 P, s P,

Hence I, <¢/2 if 0<s<d,<d and 9, is properly chosen. Consequently,
SPTIM(Rlu;s) <e  if 0<s<é,.

In case a=45 >0 choose y>0 so that y+J is an integer. Applying the above result
for x<0 we see that M (R™7u; t)=o(t"#*7). Repeated use of the result for
a=1 yields M (R**4(R™7u); t)y=o(t~ BN+ )= o(t-(F=9),  Thus (iii) is proved.

§4. Auxiliary lemmas
DEerFINITION. Let o, b be real numbers satisfying —a—1<b. For any
harmonic function u in 3#,, 1 <p< o0, and 1<g=L o0, let

&5 q(u) = [tR™*71ul|,

with infinite values being allowed.

LeEmMMA 4.1. Leta, b, u, p, q be as in the above definition. Lety be a real
number such that y<b. Then '

&% (u) = &5 (RM).
Proor. By Theorem 3.2,
R™*"1y = R~*~7"1(R"),
which implies that

&2 J(u) = |tR-*7"Y(R™)||,, = €52 (R7).

5.4

LemMmA 4.2. Let 1<p, q< 0, let o, B, b be real numbers such that b= —a
and p>o, and let u be in #, Then &% [(u) is equivalent to &%:5(u)=
I##=*R=%u|,, in the sense that there exists a positive constant B(a, B, p, q)
such that

B¢z, (u) < €%8(u) < BES, (u).

Proor. This follows immediately from Theorem 3.5 (i).
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The following lemma is an easy consequence of Lemma 4.2 and Definition B
in § 3.

LemMmA 4.3. Let a, b be real numbers, b= —a, ue #,, 1<p<o0,1£qL 0,
and k be a non-negative integer greater than «. Then &% (u) is equivalent
to ||t Dx s ull

In view of Corollary 2 to Theorem 2.1 we have

CoRrOLLARY. Let b, u, p, q be as above. If b= ~a>0 and &3 ,(u)<oo,
then the semigroup formula holds for u.

LeMMA 44. Let 1<p,q< o0, a, b, B be real numbers, b=0, b= —a, f>ua,
and u be in #,. Then &3 (u) is equivalent to sup,<;<, €5 18(D;u).

PrOOF. Assume that &g:f(u)<co. Since R™? commutes with differen-
tiation and the semigroup formula holds for R~?u on account of Corollary 2 to
Theorem 2.1, if follows that

R™#(Dju)(x, t) = D{RBu)(x, 1)

= SR"DjP(x — ), DR Pu(y, t2dy,  j=1,..,n.
Then we have
M (R™%(Du); t) £ Bt-M, (R %u; t/2),
which implies by the aid of Lemma 4.2 that
¢ M Du) £ BELE(u) < B ,(u), j=1,.,n.

Conversely, assume &3 1A(Du)<oo for j=1,...,n. Since Djue sy,
the argument above shows that

£539(03) S BESHHD),

and hence &5 2A(R72u)<B sup;g;<.£5..'?(Dju). Therefore the remaining

part of the lemma follows from Lemma 4.2 and Lemma 4.1.

CoROLLARY. Let15p,g<0,0=5a<1,b20and ues#,. Then &% }-°(D;u)
<B¢&: (u) for every j=1,..., n.

Proor. By Lemma 4.4 ¢ }-'(Dju)<Bé&: (u) for j=1,...,n. We apply
Lemma 4.2 to obtain &z 1'%Du)<BEL »'(Dju) and hence &3 1%Dju)
<B&; (u).

Let >0, 1<p< o0, f be a measurable function, and k be the least integer
greater than o«. Define
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1/q
s

43,40 = ({ L4 1lA<1 i)

1 =g <o,

43,0(f) = esssup [ [a*(W)f I

where d(h)f =dY(h)f=f(- +h)— f and d*(h)f is inductively defined by d*(h)f
=d(h) (@ '(h)f).
LemMa 4.5. Suppose O<a<1 and 1=5p,q<oo. Let f be a measurable

Junction whose Poisson integral u exists and assume ue 3¢, for a b20. Then
A%, [(f) is equivalent to &% (u).

Proor. The proof of this lemma is standard (cf. [10; Lemma 87, [13;
Chapter V, §§4-5], [16; Theorem 4]). However we include it here for the sake
of easy reference.

Let us show &% (u)<BA; (f) first. By Lemma 4.3, it suffices to prove
et=*D, . ull, ,<BAS (f). The Poisson kernel satisfies

'Dn+ IP(x’ t)l é Bt_n_l by (P6)’
and
{Dpy 1 P(x, )] < Bjx{™""1.

Since 3 D,, P(x, )dx=0,
R'I
Dy, 0 = Dus PO, DFCx + 1)y

= {_ PuiPOL DL + 3) — £y

Hence by Minkowski’s inequality we obtain

My 0 S D0 P ONSC+ 9 =Sy =§ ]

< B S ) = Sy

]
+B] G +) = flydy.

In case g=o0, | f(- +y)~ fl,=|y|*4% »(f) for almost every y in R". We
obtain immediately M (D, u; )<Bt* 1A% (f) so that [t17*D,, ul,
SBAZ o(f). Thus &% (W) <BAZ (f).

Next let g<oo. Setting w,(y)=|f(-+y)— fll,=w,(ro) with r=|y| and
lol=1, we have
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M(Dyiqu; 1) £ Bt""1S:)Ss(xz)t,(r'a)r"‘1 drde + BSwS w,(ro)yr* drdo,
tJS
where S denotes the unit sphere in R”. Hence if we set
am =S w,(ro)do,
N
then

M (D, , u; 1) S Bt‘"““StQ(r)r"‘ldr + Bt““SwQ(r)r‘zdr.
’ 0 t
Now applying Minkowski’s inequality and Hardy’s inequality we obtain

© 1/4
197Dy sl = (| T M (Do s 01 0d)

< B<S°°[r—a9(r)]qr-ldr)”“.
V]
Then observe by Holder’s inequality that
Qry < Bgswp(ro)qda.
Hence it follows that
=Dy sl 3 B((” | w,rayersart drdo)™ = Bz ().

0JS

Thus &%, ,(u) S BAS (/). |
To prove the converse part, write simply S; for £z7°(Du), j=1,..., n.

By the corollary to Lemma 4.4 we have S;<B&% ,(u). Next let h=so with
|h|=s and |6]=1. Assume 0<s=t. Then for almost every x and h

fx+h —fx)=ulx+h t) —ulx, t) + [f(x + h) — u(x + h, 1)]

— [f(x) — u(x, ] = S:;}—l—u(x + Ao, t)dA

— S;D,,Hu(x + h, rdr + S‘D,,Hu(x, rydr.
0
By Minkowski’s inequality

IFC+ ) = £, < Bs S M,Dju; 1) + 2S;M,(D,,Hu;r)dr.
t
Set - @u(t, D)=suPocp<d S +H)=flp Tn case g=oo | M5 rrdr
SBt*8% (u) so that
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t7%w,(t, p) £ B' 2 X M (D;u; t) + BEE o(u)
J

S BY S; + B& »(u) £ B (u).
J
Thus
A5.(f) £ supt™o,(t, p) = BES o(u).
In case 1 £ g < o0, Minkowski’s inequality and Hardy’s inequality give

A3, = (S:[t“awl(t, P)]"t‘ldt>1/q

<B (g [ M (Dyu; 1 dt)

+ B(S t"q[g M Dy 145 r)dr} t“dt)

<BES;+ 13(5?[:1—«M,,(1),,+ s t)]"t‘ldt>1/ !

é Bé’;,q(u) + B|lt1—aDn+ lu”p,q'

The last quantity is equivalent to &% (u) by Lemma 4.3, and thus A% (f)
£B&S, (u).

§5. Some spaces of harmonic functions

In this section, we shall define several spaces of harmonic functions and study
their basic properties.

DEFINITION. Let o be a real number, 1£p< 00, 1£g<00. Define

H;p, Q) ={uedt,_, = N H,: 8% ,(u) < o};

b<n/p—a
A(a; p, ) = {ues#(x; p, 0): M(R™*1u; 1)
=o(t"!) as t— 0+ and t— o0}.

Then for a<n/p, #% , is a norm on (a; p, g) on account of Lemma 4.3 and
the corollary to Proposition A in §3. For azn/p, if we identify harmonic
functions u satisfying D¥*,,u=0 for some non-negative integer k with the zero
element, we still obtain a norm (we shall always assume this identification).

First we give

LemMMA S:1. Let 1Sp, g0, o be a real number and keZ},, with
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lk|=k>a. Then [t*~*D*v||, ,<B&: (v) for ve #(x; p, q).

Proor. This is nothing but Lemma 4.3 in case k=(0,..., 0, k). So assume
Dx=D}, D" with x,,;=0 and |k'|=k—h>0. Since D*ve #},, .+, Theorem
3.2 gives

D*p = R¥#(Rh=*Dxp) = ( — 1)*-"Rk=H(D~'D¥, ,v)

and hence

(_ I)k—h ) ,
DKU(X, t) = F—UCZT)SO sk=hpx D,’:+1U(X, s+ t)S_ldS.
By Corollary 2 to Theorem 2.1 and Lemma 4.3 the semigroup formula holds for
Dk _,v. Using this fact, (Pg) and Minkowski’s inequality, we have

2
M (D*v; 1) < B{S "Sk=h(s + 1/2)*M Dk, \b; t/2)s~1ds
0

+ Sw sk=h(s/2)*"*M (D% v; s/2)s'1ds} .
2t

Therefore, we derive from Minkowski’s inequality and Hardy’s inequality that
It==D*v], o < B t*~ 2D 1] 5, S B, 4(v).

LEMMA 5.2. Let 1<p, q< o0, and o and y be real numbers such that y<
n/p—a. Then RY is an isometric isomorphism of #(o; p, q) (4(a; p, ©)
resp.) onto #(a+7; p, q) (A£(x+7y; p, ©©) resp.). Moreover, if a<n/p, then
its inverse is R™7.

Proor. It follows from Lemma 4.1 that R? is an isometric homomorphism
and that it is an isometric isomorphism with inverse R™7 if a<n/p. Hence, it is
sufficient to prove that R” is onto in case a=n/p. Let m be the smallest non-
negative integer such that «—n/p—m<0. Since R?=R"*"R~™ by Theorem
3.2, and since R?*™ is an isomorphism of s#(a—m; p, q)(£(x—m; p, o0) resp.)
onto #(a+7vy; p, q)(£(e+7y; p, 0) resp.) by what has been just proved, the
desired result follows if we can show that the mapping D7, ;=(—1)"R™™ from
H(a; p, q)(£(a; p, o0) resp.) into s#(x—m; p, q)(£(a—m; p, c0) resp.)) is onto.

For this purpose, let ve #(a—m; p, q). For each ke Z},, with |k|=m, set

v (x, 1) = ( — 1)"R™D*v(x, t)

= (;(;1))"’ S:D"v(x, s + t)smids for (x, HeQ.

Since ve #}/,_z+m Theorem 3.2 implies that v, e #},, .1 and v, . o, m="0-
Before proceeding on "with the proof, we need some more notation.. For any
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polynomial Q(x, )= 3 ,c,xf"---xhnt#=+1, we denote by Q(D) the -differential
operator defined by X ,c,D* with u=(u,..., 4, #,+,). For each ke Z},, with
|k|=m, let Q, be a homogeneous polynomial in (x, t) such that X =,x5*
xgnten+1Q,(x, 1) is divisible by xi+-- +x7+12, ie., X |omXreo xS 1Q (X, 1)
=(x3+--+x2+13)Q'(x, t) and Q' is a polynomial in (x, t). Then, it follows
from the definition of v,(/x|=m) and the assumption on {Q,} = that

Z || =mQx(D)vx(x’ t)

iI;:(II?I%S:)[Z|'<|=mQ;<(D)DKU(x, s+ t)]sm—lds

(— 1) S m—1 —
“Tom) [Q'(D)Av(x, s + 1)]s™1ds =0 for all (x, H)eQ.
Hence, it follows from a result of Calderén and Zygmund [2; Chapter II, Theo-
rem 2] that there is a function u harmonic in Q such that D*u=v, for every k
with |[kl=m. If [uj=m—1, then

Dru(x, t) = S D, D*u(x, s)ds + D*u(x, c)

for t2¢>0. Let K be a compact set in R* and b<n/p—a+m—1. Since
Dy D*ue sy, oem and a—n/p—m+120, we have

|D*u(x, t)| £ Bt~ forall xeK and ¢t = c.

Thus DrueH#y )—wim-1 if |lul=m—1. By continuing such computations, we
derive that u € #°),,—,. Further, if kis a positive integer greater than max(x, m),
then DXy u = DiTT(Dyyyu) = DiiTve...., o.m=Dk3Tv. Therefore, [[t*=*Dk, uf,,
= ||gte=m=(e=m) Dk my|| , ;< 0O by Lemma 4.3. This lemma again implies that u e
#(x; p, q). Moreover, if ve £(a—m; p, ), then M (D%, u; t) =M (D}i7v; t)
=o(t~*~®) as t-0+ and t—oo, and u € £(x; p, ©©) by Theorem 3.5 (iii). The
proof of the lemma is thus complete.

ReMARK. If a—n/p is not a non-negative integer, then we can replace
H ¥ p—a DY Hpyp_, in the definition of s#(«; p, ). In fact, let m be the smallest
non-negative integer such that «—n/p—m<0, ues#(a; p, q) and ke Z},, with
|[k|Zzm. In case |k|=k>a, |t*~*D*u|,,<B&% (u) by Lemma 5.1 so that
D*ue #,;,_4.r by Theorem 3.5 (i). In case a=[x|=m, take an integer I>
max(|x|, «) and set p=x+(0,..., 0, I). Since |u|>a, D*ue H#,,_ 4+, as observed
above. From Theorem 3.2 follows D*u=(—1)'RY(D*u)€ H#,,_4+ - Thus
D*u € #y/p_n+x) in all cases. From this and the fact that a—n/p—m+1>0
if m=1, we easily conclude that ues#,,,. However, the following example
suggests that we ‘may not expect this in the other cases: Let n=1, a=1/p, 1
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<p=goo and u(x, )=log((x2+1*)1/2). Then u&s#, but ues(l/p; p, ).
The basic properties of the spaces +#(x; p, q) lie in the following theorem.

THEOREM 5.1. Let 1<p, g< o0 and o be a real number.

(i) s#(a; p, @ (#(a; p, ) resp.) is a Banach space with norm &%,
(2, resp.).

(ii) If12g9,=5q,<o0, then

#(%; p, q1) < #(a; p, 42) < 4(2; p, ©) < #(a; p, ),

and each inclusion mapping is continuous.

(iii) If B is a real number such that §>a, then £%:% is an equivalent norm
on #(x; p, q); moreover ue#(a; p, ©) if and only if ues#(a;p, ) and
M (R Bu; t)y=0(t"#~) as t->0+ and t—co0.

(iv) If k is a non-negative integer greater than «, then sup,,|=4llt*"*D*ull, ,
is an equivalent norm on #(a; p, q).

(v) The spaces 5#(u; p, q), where p, q are fixed and o varies, are isomorphic
to one another. The same conclusion holds for the spaces £(a; p, ©).

Proor. (ii) follows easily from Theorem 3.4.

-(iti) is an easy consequence of Lemma 4.2 and Theorem 3.5.

(iv) is derived from Lemmas 4.3 and 5.1.

To prove (v), let § be another real number and let k be a non-negative integer
greater than 6. If then follows from Lemma 5.2 that R™* is an isometric iso-
morphism of #(5; p, q)(#(5; p, 00) resp.) onto #(6—k; p, q)(£(6—k; p, ©©)
resp.); denote its inverse by (R™%¥)~!. This lemma again implies that R%-* %
is an isometric isomorphism of ##(x; p, q)(#(«; p, o) resp.) onto #(6—k; p, q)
(A(6—k; p, v) resp.). Consequently, (R *¥)"1eR%™ 2% is an isometric iso-
morphism of #(x; p, ) (#(«; p, ) resp.) onto s#(3; p, q)(#(5; p, ) resp.).

Finally, we turn to the proof of (i). On account of part (v), it is no loss of
generality to assume that a<n/p. Let {u;} be a Cauchy sequence in #(x; p, q)
and set v;=R™*"'u; Then |t(v;—vyl,,~0 as j, k—oco. Since the semigroup
formula holds for v;—uv, by Corollary 2 to Theorem 2.1, it follows from Lemma
1.2 that

lv(x, 1) — v(x, DI S BT |t(v; — vl p,q

Hence, lim;,, v;=v exists and is harmonic in , and repeated applications of
Fatou's lemma imply that |tv],,<oco and |#v;—0v)ll,,—~0 as j—oco. Then it
follows from Theorem 3.5 that ves#,,,, Let u=R*'lv (which has a sense
because a<n/p). Then we conclude that ues#(x; p, q) and &§ (u;—u)=
ItR™*Y(u;—u)|,,—~0 as j—ooo. Moreover, if g=co and {u;}<=#(a; p, o),
then [[fR™*"1(u;—u)l . =5Sup,» ot M (R™* 'u;— R™*"tu; f)-0 as j— o0, and
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M (R *'u;; ty=0(t"!) as t—0+4+ and t—o0 for each j=1,2,.... From these
facts, we easily see that M (R™*"'u; )=o(t"') as t—-0+ and t-—o0, and hence
u € A(x; p, ). The proof of the theorem is now complete.

ReMARK. The mapping (R™¥)"1oR%"%~k in the proof of part (v) does not
depend on k>4. For if h is a non-negative integer, then repeated applications
of Theorem 3.2 and Lemma 5.2 give

(R™"—¥)~1oR~h=k+4-a = (R=k)~1o(R~H)~"loR-HoRS-a~k
= (R%)"1oRé- 2k,

Further, if u e s#(«; p, q) and u € 5, with a b>6—a (in particular, if ues# or
d<n/p), then (R7¥)"1oR% % ¥(y)=R¥R% **y)=R%*u by Theorem 3.2, where
R?-2y is defined by Definition Bin §3. Therefore, it is reasonable and consistent
to denote the isomorphism (R7¥)"1oRé2"k by R%* There should be no
ambiguity in using this notation as we shall always state explicitly when it is used;
otherwise, Riesz potential (for harmonic functions) is understood in the sense of
Definition B in §3. With this newly adopted notation, the proof of part (v)
implies that R? is an isometric isomorphism of s#(a; p, q) onto #(a+7y; p, q)
for all real o and y, and R™? is the inverse of R?. To prove the latter statement,
let k be a non-negative integer greater than max(«, a+7y). Then RY=(R7¥) 1o
R *=(R7¥)"1oR?oR™% by Theorem 3.2 and Lemma 5.2. Therefore, it follows
that (R?) '=(R7¥)"1o(R?)" 1R ¥ =(R7¥) 1R YR ¥ =(R™*¥) LR 7" k=R"7 by
a similar argument.

Next, we shall give a characterization of Poisson integrals of L(p, g)-func-
tions, which is a natural extension of a result of Stein and Weiss [14; Lemma 3.6].

ProPOSITION B. Let 1<p<o0, 1Sq9g=00. Then, a harmonic function u
defined in Q is the Poisson integral of an fe L(p, q) if and only if sup,.llu
< o0. Furthermore, under this condition, one has

Il pa

1fllpe = sup llue |l g

ProOF. Let f be in L(p, q) and u be its Poisson integral. It follows from
property (iii) in §1 that u}*(s)<f**(s) for all s, t>0. Consequently,
SUP;> o tel g < 1 f

Conversely, suppose that sup,,ollu,l,,<c0. If p=oco, then g=co and the
proposition is just the above quoted result of Stein and Weiss; therefore, we may
consider only the case p<oco. Assume first that g>1. Since {u,},., is bounded
in L(p, q) and L(p, 9)=L(p’, q’) by property (viii) of Lorentz spaces, Alaoglu’s
theorem implies that {u,},., is relatively w*-compact in L(p, q). Hence there
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are a sequence {1;} tending to 0 and an fe L(p, ) such that u,— f in the w*-
topology as i—» o0, which means that

S u(y, ri)g(y)dy—»ﬂ Fg(y)dy
R® Rn

as i — o for every ge L(p’, q').

Now let s>0, let x be in R”, and define g(y)=P(x—y, s) to be a function of y € R*;
then, g e L(p’, q) by (P5), so that

[ 0 0P = 3y — | JOIPCc= 3,9y s i— oo,

On the other hand, property (vii) in § 1 and Theorem 2.1 imply that the semigroup
formula holds for u. Therefore, it follows that u(x, s)=g P(x—y, s)f(y)dy.
Rn

To prove the equality in norms, let {t;} be a decreasing sequence of positive
numbers tending to 0. Then u(x, t;)— f(x) for almost every x e R” as i— o0 by
Theorem 1.1 (ii). Set fyx)=inf;s;|u(x, t;)|. Then fi(x)?1|f(x)| for almost
every x € R", so that f¥(#) 1 f*(¢) as i—»oo for every t>0 (cf. [15; Chapter V,
Lemma 3.5]). Hence, it follows that

S;BI(:)) ”ut“pq % ”un”pq g “fi”pq T ”f”pq'

To prove the result in case g =1, let k be a fixed positive number greater than
1. Then, by property (vi) in § 1, sup,. o[ x<o0. Therefore, by what has been
proved, u is the Poisson integral of an fe L(p, k). The fact that fe L(p, 1) and
the equality in norms holds follows in the same way as for ¢ > 1.

Motivated by Stein and Weiss [14; p. 30] and the above proposition we give
the following definition.

DeriNITION. For l<p=< o, 1 £q=Z w0, let H(p, q) be the linear space of all
functions u harmonic in € such that [u| g, =sup,s ol l,<cc with norm
I - lacpq In accordance with [14; p. 30], for 1<p<oo we shall write HP for

H(p, p).

From the above proposition, it follows that H(p, q) is isometrically iso-
morphic to L(p, q).

REMARK. If 1<p<oo, then, by using the above proposition and Mar-
cinkiewicz interpolation theorem [15; Chapter V, Theorem 3.15], one can derive
that H(p, q) will not change if one uses (n+ 1)-tuple of harmonic functions satis-
fying the system of generalized Cauchy-Riemann equations in its definition.

THEOREM 5.2. Let >0, 1<p<oo, l/r=1/p—a/n>0, and 1£q=0. Ifu
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is a harmonic function in #,(b>0) with &% (u)<oo, then u is the Poisson
integral of a unique fe L(r, q). Furthermore, there exists a positive constani
B=B(x, p, q) such that

1fl,q £ BEG, (u).
PrOOF. Assume first that g<oo. Let & be the positive number given by
1/6=n/r=n/p—a. Note that by Theorem 3.2, R**!(R™*"ly)=u, so that we
have the following integral representation of u:

u(x, n) = I'(acl—+1)g0 t*R™*lu(x, n + dt  for (x,n)eQ,

which, by property (iii) in § 1, implies that

u:*(s) =< T_(Oﬁ—lj_go t*(R™*"1u)**(s, n + t)dt, s > 0.

Therefore
© /
<go [sl/“u:”‘(s")]‘is‘lds>1 !

1/4

< TT&—I_T_I—)G:[S”"X:W(R‘“‘1u)**(s", n+ t)dt]%“ds)

1 ® @© o q _ 1/q
+ NCED) (So [SINS, t(R™*"tu)**(s", n + t)dt:l s 1ds)
= Il + 12.

Since [[tR™*"'u|, ,=&% ,(u)<oo, the semigroup formula holds for R™*"!u by
Corollary 2 to Theorem 2.1. Hence

(R™*1u)**(s™, n + t) = sup ,LS lg R™*"lu(x — y, )P(y, n)dy|dx
i [E|)gl)gn

E|zs
S IR tu(-, O -
The semigroup formula then implies that
(R™*71u)**(s", n + 1) < [R™* (-, D, = B(p)t~"/PM(R™*"1u; t[2),

which, together with Hardy’s inequality, gives the estimation I,<B&2 ,(u).
On the other hand, by Hélder’s inequality

ﬁSElR'a“u(x, 1+ Oldx = |E|7VPM(R™* 'us n + 1)

S sTPM Ry + t)

< sPM (R 1u; 1)
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if |[E|zs". Hence (R™*"1u)**(s", n+)<s™"PM,(R™*'u; t). By using Hardy’s
inequality again, we conclude that I, <B&% ,(u). Combining the above estimates,
we derive that sup,.olu,l,,<B&: ,(u), which, by Proposition B, implies that u

is the Poisson integral of a unique fe L(r, q) and | f|,, < B&% ,(u). Finally, we
observe that trivial modification works for the case g=co.

COROLLARY. 2#(a; p, )< H(r, q), and the inclusion mapping is continuous.

RemARrRk 1. As we shall see in §7 (cf. Corollary (ii) to Theorem 7.4), our
theorem provides an easy proof of a theorem of Herz (cf. [8; Theorem 5]).
Herz’s proof leans on an important inversion formula which allows one to recover

fe 50 from its difference. In fact, our proof is to some extent modelled after his.

RemaRrk 2. The above method can be used to treat temperatures (solutions
of the heat equation) and one can obtain similar results.

THEOREM 5.3. Leta>0, l<p<oo, 1/r=1/p—a/n>0, and t <q< 0. Then
H(p, g) =« #(—a;r1, q),
and the inclusion mapping is continuous.

Proor. Let u be the Poisson integral of an feL(p, q). Then by [4;
Theorems 8, 9] u € #,.,,,, and [t°u|, ,< Bl fl,,=Blullue,. Hence, the theo-
rem follows from Lemma 4.3.

THEOREM 5.4. Let 1Sp<r£o0,15q=5 00, o be a real number and =
(1/p—1/r)n. Then
.#(a;p,q)Céf(a—-é;r,q),

and the inclusion mapping is continuous.

Proor. First observe that n/p—oa=nfr—(x—3). Let u be in s#(«x; p, 9).
Let f8 be a real number greater than «. Theorem 5.1 (iii) implies that &%:5(u) is
equivalent to &3 ,(u). Consequently, the semigroup formula holds for R~fu
by Corollary 2 to Theorem 2.1. Using Young’s inequality (see [13; Appendices,
A. 2]), we have

MR Pu; 1) £ M (R Pu; t|2)M(P; t/2) (1/h =1 — é/n).
Property (Pg)in § 1 yields M,(P; t/2)<Bt=%. Hence M, (R™%u; t)< Bt~ M (R Fu;
t/2). Therefore

® /
d’ﬁ"q“’(u) = (SO [t”““”M,(R"”u; t)]qt—ldt>l q

© /
< B(S [tP~«M (R~Pu; t)]“t‘ldt)l ' = Best(),
0
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from which we obtain the desired result after making use of Theorem 5.1 (iii) again.

§6. Boundary values

In this section, we shall study boundary values (in the sense of distributions)
of functions in the space s#(a; p, g) defined in the preceding section. '

First, we prepare some lemmas.

LeMMA 6.1. Let 1<p, g£ 0, o be a real number and u be in 5#(a; p, q).
For s>0, let u®(x, t)=u(x, s+1) for all (x, 1) e Q.

(1) u®esf(a; p, q) and &% (D)L EL (u).

(i) If g<oo or g= and M (R™*lu; t)= o(t‘l) as t—-0+ and t— o0,
then u®—u in 3 (a; p, q) as s—0+.

ProoF. Since wues(x;p,q), &5 ,()=|tR™* uf,,<co. Hence the
semigroup formula holds for R~*~u by Corollary 2 to Theorem 2.1. Therefore,
Minkowski’s inequality gives

MR~ u®; t) < M(R™*"'u; 1),

which implies that &5 ,(u)< &2 (u).
We turn to the proof of (ii). For g< o0,

85,4 — ) = (] =1 0M R — wy; o3ear )

For each fixed t>0, (x, s)—» R * 1u(x, s+1) is the Poisson integral of the function
x—>R™* 'u(x, t). Therefore, M(R™*}(u'® —u); 1)~»0 as s-0+ by Theorem
1.1 (ii), (iii) (the uniform continuity of R™* u(-, f) in case p=oco follows from
the relation R™*"lu(., )=P(-, t/2)»R™* 'u(-, t/2) with P(-., t/2)eL! and
R~*"1y(., t{2)e L®). Hence (ii) is concluded by Lebesgue’s dominated con-
vergence theorem (g < o) or the hypothesis on the order of M,(R™* 1u; t)(g= )
if one notes that M (R™*~1(u®) —u); 1) S2M (R™*"tu; 1) for every s>0.

LEMMA 6.2. Let 1I<p<o0, f be a function in L? and u be its Poisson
integral.

(i) If a>0, then u®es(x;p,q) and &% (w9)<Bs™®|f|, for all
s>0and 1£g=< 0.

(ii) If a=0, then u) es#°(0; p, ©) and &5 H(U)<B|fll, for all s>0.

(iii) If k is a positive integer with 2k>a>0, and f is a C®-function whose
derivatives of all orders vanish at infinity and belong to LP, then ue s#(a; p, q)
and &%, ()< B(If1,+14*f1,) (1Sq S o).
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Proor. (i) and (i) follow easily from Theorem 3.3. Next we have by
Theorem 3.4 and Lemma 4.3

85.4() S BE3, () < B <M D3k ,u; Hrtdr.

1 ©

Split the integral intoS andg and denote them by I, and I, respectively. By
0 1

Theorem 3.3 M (D2%,u; t)<B| f|l ¢~ so that I, <B| f||,. Next

Dituutx, 0 = | DI.PGx = 3, S0y = (= D [48Px = 3, D10y

= (= 0¥ Px = 5, D4 £y
so that M, (DX u; )< | 4*f|,. Hence I, <B|4%f|,. Now (iii) follows.

LEMMA 6.3. Let 1<p, q< o0, a be a positive number and k be a positive
integer such that 2k>oa. Define

<U,V>,=<Uv>= L _{" 12k=1y(x, t/2)R™%*p(x,t/2)dxdt
(k) )o Ja»

for all u in s#(—a; p’, q') and all v in #(a; p, q).
(i) <., - > is a continuous bilinear form on #(—u; p', ¢)X #(2; p, q).
(i) Ifuesf(—uw; p', q') and v is the Poisson integral of a ¢ € &, then

<uv> =1im§ u(y, HP()dy.
s—»0+ JR"

Moreover, if <u, w> =0 for every w which is the Poisson integral of a function
in &, then u=0.

Proor. It follows from Hoélder’s inequality that
rQk) <u, o> gg“’ P2EM (5 t/2)M (R-2%0; t/2)t-4dt.
(o]

Therefore, Lemma 4.3 and Hélder’s inequality imply that
| <u,v>| = B&#, (WSS (v).

The bilinearity of < -, - > is obvious. Hence (i) follows.

We turn to the proof of (ii). Let ¢ be in & and v be its Poisson integral.
Lemmas 6.2 (iii) and 6.1 imply that v and v® are in #(«; p, q) for every s>0.
Further, by the semigroup formula and Fubini’s theorem we have
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<u v > = 7(127) S“’,zk-l{g u(y, 2R-2*u(y, s + t/2)dy}dt
R“

0

- ék) Swtz"'l{gmu(y, s/2 + HR2*u(y, s/z)dy}dt.

0

Denote the last integral on R* by I.  Since v is harmonic in £,

1= utv. siz+ 0%y, si2dy = (= V[ uv, 52 + 0tin(y, si2)dy.
Integration by parts and the harmonicity of u imply

I=(—1F SR" Aeu(y, s/2 + Doy, s/2)dy = SRHR‘Z"u(y, 52 + Doy, s/2)dy.
Hence, by using Fubini’s theorem and theorem 3.2 (ii) we obtain

< u, v > =T(£_k7 SR“ {S: PPR1R2ky(y, 52 + t)dt}u(y, s[2)dy
=, uCv, 512000, si2dy

- SR" u(y, 512) {XR"P(y — x, s/2)¢(x)dx}dy = SR"u(x, )P dx.

Note that various applications of Fubini’s theorem above are easily justified.
Lemma 6.1 (ii) and the continuity of the bilinear form <., - > then give

<u, v> =lim <u, > = limS u(x, $)P(0)dx.
s—0+ s—>0+JR"
Before proving the remaining part of (ii), we observe that, for any s>0
there is a sequence {u;} in # %, the set of all Poisson integrals of functions in
&, such that u;—P®) in 5#(«; p, ). To prove this observation, take a sequence
{¢;} in 2 with the property that ¢,—»P(-,s) and A4*¢;,—»A*P(.,s) in L». If
u; is the Poisson integral of ¢;, then it follows from Lemma 6.2 (iii) that u;—P®
in #(a; p, q). Now assume that <u, w> =0 for every we #%. For (x, s)
€ let v=P>*._ Then the above observation implies that <u, v>=0. Fur-
ther, repeated applications of integration by parts and Theorem 3.2 give

<u,v> = T S: fk-1 {SR u(y, H/2R-2*u(y, t/z)dy}dt

= 1w b ], R0 1200, 12y ar

L Sw 121 R 2ky(x, 5 + Hdt = u(x, s)
0
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so that u=0. The proof of (ii) is thus completed.
Remark. It follows from (ii) that <., - > does not depend on k.

Before stating the main result in this section, we give some definitions. Let
&, be the linear space of all functions ¢ in & such that D*@(0)=0 for all k€ Z;.
It is obvious that & is a closed subspace of & and hence a locally convex Fréchet
space; &, is also a Montel space so that it is reflexive. Therefore, it follows that
&, is dense in its dual ;=%"/2, the space of tempered distributions modulo
polynomials. For a real number «, the Riesz potential of order « (cf. § 1) can be
generalized as follows:

(R*9)~(&) = 2nlE)*$(¢)  for ¢pe¥p and (eR™

It is then obvious that R* is an isomorphism of &, onto &, with inverse R™¢
and R%RP=R**# for all real numbers o and f. We note that R~ 2¢p=—A4¢
for ¢ € &, because (A9)~(&)= —(2n|E2P(E).

For Te %} define R*T by (R*T)(¢)=T(R*¢), where ¢S, Then R*
has the same properties as R* defined on &, Let us see that the definition
- coincides with the above one for Y € #,. Let R*J be the one defined above.
If we regard Y as Te &, then

ReTY@) = wrepdx = weoax | e@nlyd-=ddy
= @y d0ias| ey
=, @G0 (= )y = | RN= D0y

= [ RUG)$0)dy

by Parseval’s formula. Thus R*T=R*J if T=1.

THEOREM 6.1. Let 1<p, g< 00, « be a real number and u be in 5#(a; p, q).

(i) If a<n/p, then lim, qu(-, ty=u(-, 0) exists in the sense of tempered
distributions, and u—u(-, 0) is a continuous linear map of #(x; p, q) into &'.

(ii) If a=n/p, then lim, qu(-, y=u(-, 0) exists in Sy, and u—u(-, 0) is
a continuous linear map of #(«; p, q) into &4,.

Proor. First, we shall prove (i) in case a<0. Since & is a (locally convex)
Fréchet space, to see the existence of u(-, 0), by the Banach-Steinhaus theorem

it is sufficient to show that lim,_,OS u(x, yo(x)dx=u(-, 0)(¢) exists for any
. R” .
¢e&. Let v be the Poisson integral of ¢ € &. Then, it follows from Lemma
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6.3 (i) and (ii) that u(-, 0)(¢)=<u, v>. To verify the continuity of the map
u—u(-, 0), let us take a sequence {u;} in #°(«; p, q) such that u;—u in 5#(«; p, q)
as j—~o00. Then

(-5 0)(@) — u(-, O(P)| = |<u; — u, v>].

The last term tends to 0 as j tends to co by Lemma 6.3 (i). This completes the
proof of (i) in case a<0. Assume next that 0<a<n/p. Let r be a positive
number such that p<r=<oco and d=(1/p—1/r)n>a. It then follows from Theo-
rem 5.4 that s#(x; p, g)=#F(ax—05; r, q), which implies (i) in this case after
making use of the corresponding result in case a<0.

Now we turn to the proof of (ii). Let k be a positive integer such that 2k >a.
Since R™2*u € (o —2k; p, q¢) by Lemma 5.2, (i) implies that lim,_,, SRnR‘Z"u(x, )
Y(x)dx=(R2*u) (-, 0)(Y) exists for any Yy e&. Given ¢ e, there is Yy €L,
such that A*y=¢, because (—1)¥A*=R~2k (recall R™2¢p=—A4¢p for ¢pe&,)
and R™2¢ is an isomorphism of &, onto %, as stated before Theorem 6.1.
Then

SR"u(x, DB(x)dx = SR"u(x, HARY()dx = (— 1)k SR" R-2*u(x, H(x)dx.

This shows that lim,_.og u(x, HP(x)dx exists for. any ¢ e Fq, and u(-, 0)(4%y)
RYI
=(—1*R2*u)(-, 0)(¥y). . We have also

u(-, 0 (44y) = (= DFu(-, 0)(R72Y) = (— D*R7*(u(-, ) (Y).

Hence R™%*(u(-, 0))=(R~?*u)(-, 0). On account of Lemma 5.2 u—R~ 2y is
continuous, and since —2k+a<0, R™?*y—(R™2*y)(., 0) is continuous so that
u—(R™2*u) (-, 0)=R2*(u(-, 0)) is continuous. Finally R~24(u(-, 0))—u(-, 0)
is continuous because R?* is an isomorphism of & onto &, as observed before
Theorem 6.1. Thus u—u(-, 0) is continuous.

ReEMARK 1. The map u—u(-, 0) in both (i) and (ii) of Theorem 6.1 is one
to one. The assertion for (i) follows easily from Lemma 6.3 (ii). To prove the
result for (ii), assume that u(-, 0)(¢)=0 for all p € &,. It then follows from
the proof of (ii) that (R™2*u)(-, 0)(¢)=0 for all ¢ € &#,. On account of Lemma
5.2 and Theorem 5.4, we may assume that R~y e s#(f; r, o0) for a f<0 and
I<rgw. Since GycFy, 0=(RZu)(-, 0)(¢)= <R 2ku, v> for every ¢pe
0, where v is the Poisson integral of ¢. Lemma 6.3 (i) and Theorem 7.2 then
imply that <R~2*u, v> =0 for every ve#(—f;r,1). Hence R 2u=0 by
Lemma 6.3 (ii), and by our identification in case «=n/p (see § 5) u is the zero ele-
ment in s2(x; p, q).
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ReEMARK 2. Let 1Sp<w, 1£g=<00, O<a<n/p and u be in s#(x; p, q).
Theorem 5.2 implies that u is the Poisson integral of an fe L(r, q) with 1/r=
1/p—afn. We shall show u(-, 0)=f. Let ¢(x, ) be the Poisson integral of
¢, and set Y {x)=¢(x, t)— ¢d(x). Then, from Fubini’s theorem, it follows
that

{, ux, gcodx = {  reosedx| = | o s

< [Tur s ©ds s 111 v O L = Wl Sl

First observe that, for every s>0, y**(s)< |y, ,—0 as t—0 by Theorem 1.1 (ii).

Since YF*ZY**(-, H+**L2¢0** and PeL(, 1), ¥, >0 as -0 by

Lebesgue’s dominated convergence theorem. Henceg u(x, t)¢(x)dx tends to
Rn

[ f@s0dx=1(8) as 1-0.

ReEmARK 3. Assume O<p<1 and a<0. Let u be a harmonic function
in @ such that ju(x, £)] £ Bt~* (b>0) for every x e R* and t>0, and suppose that
SUp;» 0t *M(u; )<co. Then, by imitating the method used in [3; Lemma 4],
we shall show that lim,,qu(., f)=F(fi,), where iy(E)=1n0(&, 6)e?*181% (§>0)
and & denotes the inverse Fourier transform.

To prove it we may assume p=1, because if M, (u; t)<Bt* with 0<p<]1,
then

M(u; 1) = Sm lu(x, OI'~"lu(x, HPdx < Bt'*0~PM (u; 1)
< Bt-b(i-P)ytar

where —b(1 —p)+ap<0. By taking Fourier transforms of

u(rt+8) = | PG =y, 0u(s, Ody = | PGx =y, Oy, dy

we have e 2r181tg(¢€, 0)=e271518q(¢&, 1). Hence

[i(E)e~2m11t] = |(E, )e2rlls-n)
=106 01 5 {_ luCe, Dldx < Bre.
If, in particular, t=1/||(¢ #0), then |,(£)| S B|E|~* follows. For ¢e&

{ uee necodx={_ac (e = 2O 121 G(E)dE,
R" R™ R®
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where ¢(x)=@(—x). Since fi, is continuous and [fo(£)| <B|E[7*(E #0),
Lebesgue’s dominated convergence theorem can be applied and shows that the

last integral tends tog ﬁ(,(Edé as t—0. Thus
R H

»

u(, 0@ =lim | uGr 09dx = | toddt = (@) @)

and hence u( -, 0)=Z(fi,).

§7. Lipschitz spaces
Following Herz ([8]), we define the spaces #° 4% , as follows.

DEerINITION C. (a) #* is the set of Poisson integrals of functions in @,.
(b) Az, is the closure of s#* in #(a; p, q).

If g==o0, then one needs only to take the closure in £(a; p, ) on account
of Theorem 5.1 (i), (ii).

In [8; §1], Herz defined the space Az, as the completion of &, for the
norm A%, in case «>0, and showed that it is continuously injected in &¢=<"/
2. He also proved that R? is an isomorphism of A2 , onto A%} if >0 and
a+y>0 [8; Proposition 6.1], and he then defined A2, for <0 so that R? is
an isomorphism of A%, onto A%'Y for all real « and y [8; p. 316], where R”
is the generalized Riesz potential (on &’/2) defined before Theorem 6.1. (Similar
spaces have been studied by Peetre [12] in which interpolation properties are

investigated.)

Before establishing the relation between A2 , and # Az, we need

LeMMA 7.1. Let a be a real number, fe &, and u be its Poisson integral.
Then

Reu(-, t) = P+R*f (1 > 0).

Proor. By an argument similar to the proof of Lemma 3.3 we can see
that u € 2. Hence R*u makes sense for every real «. First we consider the case
O<a<n. It is easy to check that fe L(p, q) for any p, 1<p<oo, and ¢q, 1<¢q
<. Hence by Theorem 3.1 (ii) R*u(-, t)=P,xR*f. If a=n, then take an
integer k>0 so that a/k<n. We apply k times the result in the case O<a<n
and obtain the required relation. If a= —2m <0, an even integer, then

R™my(., 1) = (= 1)"Px4A"f = P«R™2mf

(recall that R™2¢p=—A4¢ for ¢p€,). Finally, let 0>a# ~2m and take an
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integer ! so that 2/+a>0. Since R%u=R2"**(R™?!y), the desired result follows
from the two cases already considered.

REMARK. For any real number y, R? is a linear bijection of s#* onto #*.
This follows easily from Lemma 7.1 and the fact that R” is an isomorphism of
0, onto 0,. Next, observe that, for u e #*, R'u defined by Definition B in
§ 3 coincides with the one defined in Remark to Theorem 5.1. Therefore, R? in
the sense of Remark to Theorem 5.1 is an isometric isomorphism of # 42,
onto s# A%} for all real « and y, and 1<p, =< 0.

LEMMA 7.2. Let 1<p, q<o00, a be real, and u be the Poisson integral
of Y€y Then &% (u) is equivalent to AL ().

Proor. The assertion is true if O<a<1 by Lemma 4.5. In the general
case, take y so that O<a+7y<1. It follows from Lemma 7.1 that RYu is the
Poisson integral of R”j). Hence, the lemma in case O<a<1 implies that
ExY(Ru) is equivalent to AZXY(R™Y). Since &% (u)=~&3%7(R"u) by Lemma
4.1, andAZry (R*Y) is equivalent to A% (), &% (u) is equivalent to A% ().

Now we give

TreorEM 7.1. If 1<p, <0 and o is real, then H# A% , is isomorphic to
Az, (and also isomorphic to the space T A%, of Johnson [10; p. 310]).
Moreover, an isomorphism is given by the operation of taking boundary values

of functions in # A2 ,.

ProoF. Let u be in s# 4% ,, and {u;} be in s#* such that &2 (u;—u)—0
as j—oo. On account of Lemma 7.2 {u,(-, 0)} is a Cauchy sequence in 42 .
Therefore there is an fe A% , such that u,-, 0)—>f in A2, Hence u—f is
a bounded linear map of A4z , into A2 ,. Similarly we see that fi>u is also
a bounded linear map of A% , into # A%, and we conclude that it is an iso-
morphism. On the other hand, Theorem 7.1 implies that u(-, 0) exists and
u; (-, 0)~u(-,0) in &,. Since u;(-, 0)—f in Lo, u(-, 0)=f and the proof of

the theorem is complete.
Next we prove

THEOREM 7.2. Let 1 <p< o0, and a be a real number.

(i) If1£q<oo, then # A2 ,=5#(a; p, q).

(ii) IfO<a<n/p and 1Lq=Z 00, then a harmonic function u is the Poisson
integral of an fe A%, if and only if ue # A2 .

Proor. First, assume that O<a<min(l, n/p) and ues#(«; p, q). Theo-
rem 5.2 and Lemma 4.5 imply that u is the Poisson integral of an fe L(r, q)
(I/r=1/p=a/n), and Az (f)<B&: ,(u)<oo. Therefore, it follows from
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Theorem 0 of [8] that fe A, By Remark 2 to Theorem 6.1 f=u(-, 0).
Thus ue s#° A2 ,. To prove the result for general «, let y be a real number such
that 0<a+y<min(l, n/p), and let u be in s#(a; p, g). Then R'ues#(a+7y;
p, q) by Lemma 5.2. Since s#(a+7y; p, )= A%’} by what has been just proved,
there is a sequence {v;} in s#* such that &572(v;—R'u)—0. Setting u;=Rv;
€ #*, we obtain by Lemma 4.1 &5 (u;—u)=&5 (R (u;—u))=&%(v;—R'u)
—0. Hence ue s 4% ,. The proof of (i) thus complete.

To prove (ii), assume that 0<a<n/p and 1£g=<oc. Theorem 7.1 implies
that u e .9?11;,,1 if and only if u(-, 0)e 42 ,. It then follows from Theorem 5.2
that u is the Poisson integral of u(-, 0). The proof of the theorem is now com-
plete.

In a manner similar to that in [10; § 6], we shall use the space s#4% , to
give new proofs to many inclusion relations of Lipschitz spaces of Herz.

TuroreM 7.3. Let 1 <p=< 0, and o be a real number.
(i) Iftsq,£q,500, then # A2, cot A2, cH A2 .

p.q1 Psq2

(i) If p<r=<co,=(/p—1/r)n, and 1 £q=< 00, then
HAL < HALL.
In each case the inclusion mapping is continuous.

CoroLLARY (cf. [8; Theorem 3], [10; Theorem 8]). The same results hold
for the spaces A2 ,.

Proor oF THeoREM 7.3. (i) follows immediately from Theorem 5.1 (ii),
whereas (ii) follows from Theorem 5.4.

THEOREM 7.4. Let >0 and 1/r=1/p—a/n>0.
(i) Ifl<p<co, then

H(p, q) = s# 4. (1 <q< o).
(i) If1<p<co, then
#A;, < H(r,q9) (1=q5 ).
In each case the inclusion mapping is continuous.

By taking boundary values of functions of the above families, we obtain

CoroOLLARY. (i) Let p,r,q, and o be as in (i) of Theorem 7.4. Then
L(p, @y A;%(cf. [8; Theorem 5 and Proposition 7.1], [10; Theorem 97).

(i) Let p,r,q and « be as in (ii) of Theorem 7.4. Then A2  <L(r, q)
(cf. [8; Theorem 5J).
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ProOF OF THEOREM 7.4. (i) is a consequence of Theorems 5.3 and 7.2,
whereas (ii) follows from Corollary to Theorem 5.2.

THEOREM 7.5. (i) If 1<p=2, then HP c# A ,.
(i) If2<p<co, then #AS ,<H".
In each case the inclusion mapping is continuous.

CoroLLARY. (i) If 1<p=2, then L*c A3, (cf. [8; Lemma 8.2], [7;
Theorem 6]).
(i) If2=Sp<oo, then A3 ,=L” (cf. [7; Theorem 6]).

Proor oF THEOREM 7.5. Letu be in H?. Note that &9 ,(u) is equivalent
to |[tD, 1u]l,.. For p<2, Minkowski’s inequality gives

0 /
14D sl < ([0 1000 s, 2eae 7 )™
R™ 0

< (SR B: P u(x, t)lztdt]p/ 2dx)”",

where |Fu(x, )= Y 221|Du(x, 1)j2. Then, by [3; Theorem 9, Corrllary 3], we
derive that &9 ,(u) < Bllu| g».
To prove (i), let ue 5#° 43 ,. Then, u € #,,, and by the corollary to Lemma
4.4 one has
€,5%Du) £ B&Y,,(u) for j=1,...,n.
It follows that

<S: BR 7 u(x, t)|de]2/ ”tdt)” ‘< BEY (),

which, together with Minkowski’s inequality, implies that
© 12 \Up
(S B 7 u(x, t)|2tdt]” dx) < B& ,(u).
R o]

Hence, by applying again the above quoted result of Fefferman and Stein, one
concludes that [|ull g» < B&Y »(u).

Before stating the next theorem, we need one more definition. Let u be a
harmonic function in . The function u is said to be in H! if there exist n+1
harmonic functions (in Q) u,,..., u,, u,,, =u which satisfy

ntl1

2 Du; =0,

i=1

Diuj——:Djui, l,j= 1,...,n+ 1,

supg |F(x, t)ldx < o0,
t>0 JR"
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where |F(x, 1)|2= Y 22 {u(x, 1)|2. It is well-known that u e H! if and only if it
is the Poisson integral of an L!-function f whose n Riesz transforms R, f,..., R, f
belong to L, where

Rif() =lime,{  f(= pylyltdy, J = L.y and xeR"
g y|>e

with ¢,=n"(*1/2[((n+1)/2); it is a common practice to denote also by H!
the set of boundary values of functions in H!. (For properties of the space H!
and related matters, see e.g., [13; Chap. VII, § 3]).

Finally we shall prove two results of some interest mentioned by Johnson.

THEOREM 7.6. (i) #° 49 <H!'.
(i) Hlcw#dy,.
In each case the inclusion mapping is continuous.

CoRroLLARY. (i) 49, <H! (cf. [10; p. 314]).
(i) H' < A9 , (cf. [11; p. 135]).

PROOF OF THEOREM 7.6. Let u be in s# 49 ;. Note that &9 ,(u) is then
equivalent to [|tD, . u|l;,, by Lemma 4.3. Since u € 5#,, one has

u(x, t) = — Sw D, ,u(x, s)ds for (x, )el.
t

Hence it follows that u*(x)=sup,. o|u(x, t)|§goo |Dy 4 u(x, s)lds. Then, by using
0

[3; Theorem 9, Corollary 2] and the above estimate, one derives that |u] ;<
B&9,y(u). Thus (i) is proved.

To prove (ii), let u be in H'. ‘Then, by using the same method as in the proof
of Theorem 7.5 (i), one obtains &9 ,(u) < Bjju| 4.

Before going to the next section, we remark that in case p or ¢ is oo and
f is a measurable function with A% (f)<oo, f belongs to the corresponding
Lipschitz space of Herz provided some o-order at 0 and infinity is satisfied (cf.
[8; Theorem 0]). Hence, it is reasonable to denote these spaces by 4% ,; so we
have 2;,00 and 4%, o and we shall adopt these notations hereafter (cf. also
[10; p. 311]). The spaces 42 , and A% , are defined as follows:

For 1£p=< oo and real a, define

Az = {u(-, 0): ue #(x; p, )}

with the same norm as for u. It then follows from Remark 1 to Theorem 6.1 and
this definition that 42 ., is isomorphic to #(«; p, o). Hence, Theorem 5.1 (v)
implies that the spaces A;,w, where p is fixed and « varies, are isomorphic to one
another.
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The spaces 4%, , (1<g= o) are similarly defined.

§8. The dual of 4, ,

In [8; Proposition 7.1] Herz proved that the dual of 42, (1<p, g<) is
(isomorphic to) 4;%,.. The extreme cases, i.e., when either p or ¢ is 1 or o,
seem to be not completely solved. On the other hand, Johnson also made a
remark in [10; p. 315] about some uncertainty at these critical indexes. In this
section and the next one, we shali be concerned with the duals of 42 ; (1< p<c0),
43, (1<g<ow) and A, (ISp<oco). We shall work instead with the spaces
#(a; p, g) and # A2 . Our main result in this section is the next theorem
whose proof is modelled after [5; §§ 12-14]; however, in various computations
we must take into account the behaviour of ¢ at infinity. Hereafter E’ stands
for the topological dual of the normed vector space E.

THEOREM 8.1. If a is a real number and 1<p<co, then #(a; p, 1) is
isomorphic to s#(—a; p’, ).

We shall prove the theorem through several lemmas.

LemMMA 8.1. Let 1=Zp, q< o0, a be a real number and u be a harmonic
function in Q such that u'® € #(x; p, q) for every s>0. For each (y,s)eQ,
let u»® gnd Du®si=1,..., n+1) be the functions with domain Q given by

urI(x, ) = u(y — x,s + 1),

Diu(y,S)(x’ t) = Diu(y - X, S+ t);

and let
u(y+he;,s) _— u(y,s) .
Gip = 7 — D9 (i=1,..,n).
w(vssth) . 44 (3,5)
Yn = 2 = Dy qu>,

where h is real (and s+h>0 in the case of ;) and {e,,..., e,} is the natural
basis of R*. Then ¢, and \, tend to O in #(«; p, q) as h tends to 0.

ProoFr. Let(x, ) bein Q. Then

B
Gin(x, 1) = hi go [Du(y + oe; — x, s +t) — Du(y — x, s + t)]do

h 4
% So {So Diu(y + te; — x, s + t)dr}da'

h
= % So (h — ©)D?u(y + te; — x, s + t)dr.
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Hence, it follows from Minkowski’s inequality that

h
My 0 S phr | [, 5 = OMDRus 5 + e
= (|/DM(D}u; s + 1) = (|hl[2M (DFu®; 1).
Similarly, if k is any poéitive integer, then
M (D5i1ip3 1) < (|W/DM(Drsy Dius s + 1)
= (|hl/2M D3+ D}u'®); 1).

We shall treat the case g < oo only, because the case g = co can be similarly treated.
Let k be a positive integer greater than a. Then by Lemma 4.3 we have

(85,801 < B] [#-2M,(D8..9,5 D1or- 1t
1 [ee] 1
- BSO + BSI < Blhs SO a0\ 0 (DE, D3u; s)i-tds
+ Bhjs ST 2=\ (DK, DIu®); r-ide
= Il + 12.

Clearly I,=B|h|"M (D%, D3u; s)4. Note that D3u® e #(a—2; p, q) for every
s>0 (see the proof of Lemma 4.4). Since #(x—2; p, g)cs#(a—2; p, o) by
Theorem 5.1 (ii),

M (D}, D}u; s) = M (D%, D}usi?; 5/2) £ Bs*~27k&a-2(DiuGD)< 0

so that I;,—0 as h—0. Moreover, I,<B|h[4€% 2(D7u'®)>0 as h—0. The
desired result for ¢, , is thus proved. The proof for i, can be carried over in the
same manner.

LemMMA 8.2. Letu, p, q and o be as in Lemma 8.1. Let F be a continuous
linear functional on #(o; p, q) and let w(y, s)=Fu®9) for (y,s)eQ. Then
w is a harmonic function in Q and is bounded on R" x Jc, o[ for each ¢>0, and
w( -, s) is uniformly continuous on R* for each s>0.

PrOOF. An induction argument based on Lemma 8.1 shows that, for each
multi-index xe€Z},q, D*w(y, s)=F(D*u®-)). Hence w is harmonic in Q by
the linearity of F. Furthermore, the continuity of F and Lemma 6.1 (i) imply that

w(y, )| = IFE3,,u) < ||F||&5,,(u'®)

p.q

forall yeR” and s = ¢ > 0.
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Finally, w(-, s)=P(-, s/2)xw(-, s/2), and, since P(-, s{2)e L' and w(-, s/2)e L>,
w(-, s) is uniformly continuous on R” for each s> 0.

LemMA 8.3. Let 1<p, q< o0 and o be a positive real number. Let F be
a continuous linear functional on #(a; p, q) and let u(y, s)=F(P®9) for all
(v, s)e Q. Then for each bounded measurable function g on R" with compact
support and s>0

Xan u(y, s)g(y)dy = Fo®),

where v is the Poisson integral of g. (Note that P(%-% and v® belong to
s#(a; p, q) by Lemma 6.2 (i).)

Proor. Let K be the compact support of g. For each positive integer m,
let {K7} be a finite family of mutually disjoint Borel sets K=K, whose union
equals K, each K; having diameter less than 1/m. Let y,e K, and

Sm(%, 1) = 2P(y; — x, 5 + 1) SK g(y)dy for (x,t)eQ.

Then S,, is a finite linear combination of P»+% and hence belongs to s#(a; p, q).
We assert that
(A4 S, — v® in s(a; p, ) as m —> oo.

To prove the assertion (4), set

Unlx, ) = Sp(x, 1) — v9(x, 1) = S,,(x, £) — v(x, s + 1)
- ;Sm [P(x — y, 5 + ) — P(x — y, s + D]gO)dy for(x, e L.
It follows from Minkowski’s inequality that
MUni S T IPC =y + 0 = PG =3 s + Dl Jg0)ldy.

Since (x, )= P(x—y;, s+t)—P(x—y, s+1) is the Poisson integral of x~ P(x—y;,,
s)—P(x—y, s), we have

”P(° Vi S+ t) - P( =y, s+ )“p = ”P( — Vi S) - P( ) s)"p
=[1P(- +y — yi 8) — P(-, 9.

If 1Sp<oo, then |P(- +y—y;, s)—P(-, s)||,—0 as m—oco, while if p=oco, the
same statement follows from the uniform continuity of P(-,s) on R". Con-
sequently, M,(U,,; ?) tends to O uniformly in t as m tends to co. Now, let k be a
positive integer greater than «. Since
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DiiUn(x, )= £ | [D8iPGr = s+ 1)
1

— Di i P(x — y, s + D]g(n)dy,
an argument similar to the above shows that
(1) M (D, U,; t) — 0 uniformly in ¢ as m — oo,
Moreover, it follows from (Pg) and Minkowski’s inequality that
(2 M (Dx41Upy; 1) < Bliglly(s + t)nk+nir,

If g< o0, then

|+=2Dks U lig,, = So (=M y(D5+1 Uy )01 1dt

A <)
=S +S =L, +1I, (A>0).
[4] A

Inequality (2) now implies that I3/2<B|g|l,A~*"/*" so that I, is small'if A is
large enough. On the other hand, it follows from (1) that I, is small if m is suffi-
ciently large. Hence &% (U,)—0 as m—co on account of Lemma 4.3. Ob-
serve that trivial modification works for the case g=o0. The proof of the assertion
(A) is thus complete.

Next, the continuity of F and (A) imply that
F(o®) = lim F(S,) = lim ¥ F(P(Y'-‘))S g()dy
m-oo m-o i Ky

= ,f,‘f}o zi u(y,, s)SK g(y)dy.

Furthermore,

|2 ut 9 _ gy = §_u0r. 902y

s 2 10w ) = u0, 9l lg0)dy — 0 as m —s e,

because u(-, s) is uniformly continuous on R" by Lemma 8.2. The proof of the
lemma is now complete.

ProoF oF THEOREM 8.1. Since isomorphic spaces have isomorphic duals,
Theorem 5.1 (v) enables us to consider only the case >0. Let u be in s#(—a;
p', o) and k be a positive integer such that 2k>a. Then it follows from Lemma
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6.3 (i), (ii) that F,= <u, - > is a continuous linear functional on #(x; p, 1) with
|F, | £B&,%o(u), and F,=0 implies u=0. Conversely, assume that F
belongs to s#(x; p, 1)'. Let u(y, s)=F(P"9) for every (y,s)ef. It is
harmonic in Q on account of Lemma 8.2. Denote by v the Poisson integral of a
function ¥ in 2. Then by Lemmas 8.3 and 6.2 (i), we have

(Sm u(y, S)W(y)dyl = |F(v®)]

ZIF|¢g,(v®) = BIF|s~*¥1,

Hence

My = sup |{ (W] < BIFIs™,
llvilp=1

which, together with Theorem 3.5 (i) (¢ =00), implies u € #,,, ,, and together
with Lemma 4.3, implies &,#,(u)<B|F|. It follows that ues#(—a; p’, ).
We observe that ve s#(a; p, 1) by Lemma 6.2 (jii), and that v®—v in s#(x; p, 1)
by Lemma 6.1 (ii). The continuity of F and Lemma 6.3 (ii) then give

F(v) = lim F(u®) = lim S u(y, W()dy = Fo o).
s—=0+ s—0+ JR®

By definition s#* is dense in s# A% | which is equal to s#(a; p, 1) by Theorem 7.2.
Given |//e@0 there exists a sequence {{;} in 2 which converges to ¥ in the
topology of . Then P,+j; converges to Py in s#(x; p, 1) by Lemma 6.2
(iii). This shows that the set of all Poisson integrals of functions in 2 is dense in
#(a; p, 1). We conclude that F=F,. Combining the above results, we derive
that the mapping u—F, is an isomorphism of s#(—a; p’, 00) onto s#(«; p, 1)'.
Our theorem is now proved.

Next we obtain

THEOREM 8.2. If o is a real number and 1Sp<co, then the dual of A2,
is isomorphic to 4,2 .

Proor. Since the space A2, (4;%, resp.) is isomorphic to #(x; p, 1)
(##(—a; p’, ) resp.) by Theorems 7.1 and 7.2 (the definition of A%, resp.), the
desired result follows easily from Theorem 8.1.

§9. The duals of 4¢ , and 2%

In this section we shall consider the many important cases left out in the
preceding section. Namely, we shall investigate the duals of A, (1<g< o)
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and 2% (1£p<c0). An essential tool in our proof is an operator T* which is
similar to a class of operators developed by Herz [8] although our case is basi-
cally simpler. Our main result is the following theorem:

THEOREM 9.1. Let o be a real number.
(1) If 1<g<oo, then the dual of A3, is isomorphic to A%,
(i) If 1Zp<co, then the dual of A2  is isomorphic to A;%,.

As in the preceding section, we shall work instead with the spaces #(a; p, q)
and o A2 . respectively. In fact, Theorem 9.1 follows from the following theo-
rem in the same way as Theorem 8.2 was derived from Theorem 8.1.

THEOREM 9.2. Let o be a real number.
(i) Ifl<g<oo, then s#(a; 1, q)' is isomorphic to #(—a; 0, q).
(i) If1<p<oo, then # A2, is isomorphic to s#(—o; p', 1).

First, we shall prepare some lemmas. For >0 and we Cy, the space of all
continuous functions with compact supports in Q, define

[ro]
T ) = {7 1P = g s 4 0wy, Ddyds
0 n
for every (x, s)e Q. Note that T*(w) is the Poisson integral of the function
yHS S 1*~1P(y —z, t)w(z, t)dzdt, which belongs to L? for every 1<p< oo,
0 JR"

LeMMA 9.1. Let 1Sp=oo, 195 and a>0. For weCy, let THw)
be defined as above. Then T*(w)e s#(«; p, q) and there is a constant B, possibly
depending on a, n, p and q, such that

€5.{T*W)) = Blwll,,,

Proor. Let k be a positive integer greater than «. As observed above
T#(w) is the Poisson integral of an L'-function, and hence T%*w)e s, which is
contained in #},,,. Since

DE T (x, 9) = {7 | 151Dk POy 5 + Owix — », Dy,
it follows from Minkowski’s inequality and (Pg) that
M (Dk,, T*(w); 5) < B Sw (s + £)*M(w; Dr-dt.
0
Hence
Is%=2Dk,  T*(W) ., < B(S: [s""“ S“’ (s + 1)K M ,(w; z)rldt]“ s7tds )"
0

= B, + 1),
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[s"'“ S (s + KM (w; t)t‘ldt}q s-lds)” ‘
0 Ll :

[s“‘ Ss 1M (w; t)t“ldt}q s‘ldS>”" = Blwlp.
o]
and

I, = (S: [.;k-« Sm (s + £ %M (w; t)t"ldt:] "‘s—lds)” !

oo © /
< (S [s"‘“S kM (w; t)rldt]"s—lds)’ " < BIwl,,
0 s

by Hardy’s inequality. Note that trivial modification works for the case g = o0.
Therefore, the lemma follows from Lemma 4.3.

Remark. Note that, at least in the case 1< p<oo and O<a<n/p, T* is a
bounded linear operator from L(:%), the Banach space of all measurable func-
tions w on Q with |w|, ,< o0, into #(x; p, q); the proof is similar to the above
lemma. (We refer to [1] for properties of the spaces L®-9.) Also in this case,
if we define

T () e, 1) = L2 pmapr u(x, 1)

for all ues#(a; p, q), where k is a positive integer greater than o, then T_, is a
bounded linear operator from s##(«; p, q) into L(P-9 by Lemma 4.3, and T*T_,
=1, the identity operator on L®9), Each of the operators T* and T_, is a
modified version of some class of operators constructed by Herz [8; Propositions
5.1 and 5.2].

LEMMA 9.2. Let 1 Zp< o0 and a be a positive number. If v is the Poisson
integral of an fe L? and u e s#(—a; p’, ), then
<u®, v > = S u(y, s)u(y, dy
R'I
Jor all positive numbers s and t.

Proor. Let {y;} be a sequence in & which converges to f in LP. Then
v -v™ in s (a; p, 1) for each >0 by Lemma 6.2 (i), where v; is the Poisson
integral of ;. However, an easy application of Fubini’s theorem, the semigroup
formula and Theorem 3.2 imply as in the proof of Lemma 6.3 (ii) that

<u®, o > = S u(y, Sy, Hdy,
Rn
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which yields the required formula after making use of the continuity of < -, - >
and the fact that v (., )—uv(-, £) in Lr.

Lemma 9.3. Let 1<p, q< o0, « be a real number and u be a harmonic
function in Q such that u® e #(«; p, q) for every positive real s and sup g<s<y
82 (u)<co. Then ues#(a; p, q) and &% (u)=lim ., E% (u®).

Proor. Itisobviousthatu e #’},,—, and t—>M (R™*"1u®; f)=M (R™*1u;
s+1) is non-increasing on ]0, oo[ for each s>0. It is continuous in virtue of
Lemma 1.1. If g<oo, then the lemma follows from Lebesgue’s monotone
convergence theorem. If g=o0, then

lim &%, (1) = lim {sup tM (R~ 1u; s + 1)}
s—+0+

s=0+ >0

sup {sup tM (R™*"'u; s + 1)}
0

s>0 t>

sup {sup tM(R™*"u; s + 1)}

t>0 s>0

suptM (R™*lu; t) = &% (u).
t>0"

LEMMA 94. Let 1Sp<oo,1<g=<o0 and >0. If u is a function in
H#(—a; p’, 00) such that
sup | <uB®v>|<C<w forall s> 0,
ved’
If’q(v)_s_l
where < -, - > is defined as in Lemma 6.3, then ue #(—«; p', q') and &,% ,.(u)
<BC.

ProoF. Let s be a positive number. First, we prove that

le*u®| ., = sup 'Swg t*u(x, s + Hw(x, t)dxﬂ .
’ K 0 JR"® t
liwllp, g1
Denote by N(u) the right hand side of the above equality. On account of [1;

§2, Theorem 1] we need only to see that [t*u®|, .<N(u). For each A>1,
set E; = {|x] <A} x]1/4, A[ and
tu(x, s + t) if (x,fekE,
u((x, 1) =
otherwise.

Since |t*u@® |, o =sup 5, lu(Dll, 4, it is sufficient to show that  [u(D)],
EN(u) for every A>1. Fixa A>1. For any &>0, by [1; §2, Theorem 1] there
exists a measurable function w such that [w], <1 and
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N < ME ou(x, s + owix, Ddx 4| 4+ e

Furthermore, we -may assume that the support of w is a compact set C<E;.
For each 0<éd<1, let ¥(8) be a non-negative C*-function with compact support
in {|x] <d} x]1 =4, 1+6[and y(d)|f, ; =1, and define

w)(e )= (7 wix =y, 10O 0, Dy L

- S: SR" Wy, () (x — y, tfo)dy —d;r' (x, e Q.

Then w(d) is a C*-function with compact support in E, for small §. Further,
1w p g S Wl I¥(0)] 1,1 £1 by Minkowski’s inequality. On the other hand, if
d is small enough, we have

Swg rulx, s + Hw(d) (x, z)dx—‘f’i =S°°S 4()) (x, Hw () (x, tydx 2L
Rn o JR» t

0

= {{ w0, ’){Sl_a<,,,<,+,,S.x-y.<.,”(’”("’ V(O (x =y, ymdx- G ay 4T

The last term tends to
dt dt
SS u (), Dw(y, Ddy 2L = SS u(A) (. Dw(y, 0 dy &
c T Es T
as 6—0, because
{ [ s 0@ =y, tdx 2 — w3, 9
1-5<tfe<1+d/|x—y[<é

uniformly in (y, 7) € C as 6—0 by the uniform continuity of u(4) on any compact
set of E;. Consequently,

WDl s {7 oute, s + ow@ x, x4 | + 2

for sufficiently small 6. Hence |u(A)ll, ,<N(u), and the required equality
follows.

Now, for each we Cg the semigroup formula, Fubini’s theorem and Lemma
9.2 imply that

Swg u(x, s + Hw(x, Hdx 9L _g u(y, SI2TW)(y, 5/2)dy
0 JR" R" )

= < u(s/Z), T?(W)(SIZ) >,
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By applying Fubini’s theorem and the semigroup formula we see that the last
quantity is equal to <u'®, T*(w)>. Hence it follows that

ltru® = sup | <u®, T¥w) > |.
Iwlip, s 51
Fix a we Cxg such that |w|,,<1 and let {v;} be a sequence in s#* which con-
verges to T%(w) in £ A2 ;; note that this is equal to #(«; p, 1) by Theorem 7.2,
Then <u®,v;>-><u®, TYw)> by the continuity of <-.,.>. Since
€3 ,()<B&% ((-) for any g=1 by Theorem 3.4, Lemma 9.1 implies that

E3.40) £ €5 (v; — T*W) + &5 (T*(W))
<B for large j.

Therefore, we derive that [<u®, T*W)|> SBSUp yer,ex (g1l <u®, v>[.
Since w is arbitrary, we obtain

[t=u®| . ,» < B sup |<u®,v>]|=<BC.
veR*

l}’;"q(v)él
Hence, the desired result follows from Lemmas 4.3 and 9.3.

ProorF oF THEOREM 9.2. By a similar reason to that in the proof of
Theorem 8.1, we may assume that «>0. We shall prove (ii) first. For ue
H(—a; p', 1) and ve # 42, define <u, v> as in Lemma 6.3. Then <., >
is a continuous bilinear form on s#(—a; p’, 1) x # 42 ., and <u, v> =0 for all
ve# A%, implies that u=0 by Lemma 6.3 (ii). Conversely, let F be a bounded
linear functional on # A% .. Set u(y, s)=F(P®9) for all (y,s)eQ. By
Theorem 7.2 s#° A% =#(x; p, 1) and by Theorem 7.3 (i) # A2, ,c#As
so that s#(x; p, I)C.;fA;_w. Hence F may be considered as a bounded linear
functional on s#(a; p, 1). Therefore, Lemma 8.3 and the proof of Theorem 8.1
imply that u € s#(—oa; p’, o) and

Fo) = { uv, W)y

for every v which is the Poisson of a Yy € 2 and s>0. By Lemma 6.3 (ii) the
right hand side is equal to <u®, v>. Given ¢ e, there exists a sequence
{¢;} in 2 which converges to ¢ in &. Then P*¢;—P,+¢ in 5#(a; p, 1) by
Lemma 6.2 (iii). Lemma 6.1 (i) implies that (P,x¢ ;) —(P*@)® in #(x; p, 1),
and F((P*¢;)®)—>F((P*¢)®) on account of the continuity of F. Since

F((Px$;)®) = <u®, Pad,; > — < u®, Px¢p >,

F(v'®)= <u®, v> for all ve ##* and s>0. Consequently,
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| <ul®, v>| < |F||€5,o(v®) £ [[FI€,(v)
by Lemma 6.1 (i) and

sup {<u®ov>|Z|F| < o forall s> 0,
veER*
J';‘u(v)él

which, by Lemma 9.4, implies that ues#’(—«; p’, 1) and &,#,(u)<B|F|.
Note that ves#*c# 42, and v9(-, )=Px(Pxf). By taking the Fourier
transform of Paxf we see that P fed, Hence v'® e#*. By Lemma 6.1
(i) u®—u in #(—a; p, 1) and v®—v in # 4% . Hence F(v)= <u, v> for
every v e #°*. Since s#* is dense in #° A2 ., F(v)= <u, v> foreveryve # AL .
Thus we have shown that u—F,= <u, - > is an isomorphism of #(—a; p’, 1)
onto A2 '

Finally, the assertion (i) follows if we replace s# 4% ,, and s#(—«; p’, 1)
in the above proof by s#(«; 1, ) and s#(—«; o0, q’) respectively.

ReEMARK. We have removed some restriction on p and g imposed by Flett
[5]; Flett considered only the duals of A(x; p, D(1<p<co) and A(a; p, ©)
(1<p<). Further, he also noted that his mothod does not permit to say any-
thing about the dual of A(x; 1, ¢) (1 <q< o). The method used in this section
can be adopted to treat the spaces A(a; I, gq) and A(x; 1, o) as well.
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