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Abstract. A molecular theory of harmonic generation in free molecules is developed using 
the principles of quantum electrodynamics. A Cartesian tensor formalism is employed and 
emphasis is placed on the rotational average which is required to account for the random 
molecular orientations in the pump beam. It is demonstrated that even harmonics are 
forbidden to all orders of the multipolar interaction Hamiltonian and in the appendix a new 
relation involving the rotational average of an arbitrary rank Cartesian tensor is presented. 

1. Introduction 

When intense laser light passes through a medium with suitable non-linear optical 
properties, harmonic frequencies are generated. The most familiar effect is second 
harmonic generation, or frequency doubling, which is often used as a means of 
producing uv radiation from lasers operating at visible wavelengths. Although this 
process can in principle take place in any non-centrosymmetric crystalline solid, it does 
not generally occur in gases or liquids unless the isotropy is removed by an electric or 
magnetic field. However, higher order harmonics have been detected in gases, notably 
the ninth harmonic observed by Grozeva et a1 (1977) in sodium vapour. By a 
combination of harmonic generation and frequency mixing processes, coherent radia- 
tion of very short xuv wavelengths can thus be produced. Such methods have 
important applications for the generation and study of ultrashort laser pulses (Auston 
1977). 

In this study, a molecular theory of harmonic generation in free molecules is 
developed using the methods of quantum electrodynamics. A Cartesian tensor formal- 
ism is employed and particular emphasis is placed on the rotational average which is 
required to account for the random molecular orientations in the pump beam. 
Harmonic generation is just one of a large class of non-linear parametric interactions 
whose observation with circularly polarised light is precluded on symmetry grounds by 
virtue of this rotational average. 

An expression is derived for the intensity of odd harmonics using a new relation 
concerning the rotational averages. This result gives the explicit dependence of the 
harmonic intensity on Cartesian components of the non-linear susceptibility tensor. It 
is then demonstrated that when the full multipolar interaction Hamiltonian is intro- 
duced, the exclusion of even harmonics still rigorously applies. 
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2. General theory in the electric dipole approximation 

We start with the quantum electrodynamical Hamiltonian for the system: 

Here Hmol(() is the usual Schrodinger operator for the molecule labelled (; Hint(() 
represents the interaction of this molecule with the electromagnetic field, and H r a d  is the 
second-quantised Hamiltonian for the radiation; the sums are taken over all the 
molecules in the interaction volume. It is convenient to discuss harmonic generation 
processes within the framework of time-dependent perturbation theory using product 
eigenstates of C5 Hmol([) and Hrad as the basis set and Et Hint(e) as the perturbation. In 
this section, we retain only the leading electric dipole term in the multipole expansion of 
Hint((); higher order terms are given in 0 3. Assuming that there is no static electric or 
magnetic field applied to the system, we have 

H i n t ( ( )  -P (6). e'(R5) (2) 

where ~ ( 5 )  is the electric dipole moment of molecule ( located at RE, and el(&) is the 
transverse electric field due to the photon flux 

In equation (3), a( ' ) (k)  and L Z + ' ~ ' ( ~ )  are the annihilation and creation operators for 
photons of wave-vector k (circular frequency w = clkl) and polarisation vector e'A); V is 
the quantisation volume. 

The detailed temporal evolution of a harmonic generated by a pulse of laser light can 
be studied using quantum electrodynamical methods described in other recent papers 
by Andrews (1978) and Elgin (1980). For simplicity, however, we shall now consider 
the continuous-wave solution with a time-independent rate given by the Fermi rule 

here Afi is the matrix element connecting the initial and final states of the system, and pf 
is the density of final states of the radiation field. In the dilute gas approximation, Afi 
may be written as a sum of contributions Mfi from each molecule, 

with the usual perturbation series expansion 

In this equation states and energies, for example iif) and E(&, relate to the system 
comprising the molecule 5 plus the radiation-hence the introduction of the subscripts. 
The primes denote omission from the intermediate-state summations of the initial and 
final states of the system. 
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Thus the leading contribution to equation (6 )  for phase-matched m-harmonic 
emission in the forward direction is as follows (using the implied summation convention 
for repeated indices): 

Here n is the number of photons in the incident radiation mode with frequency w and 
polarisation vector e;  it is assumed that the radiation mode for the harmonic, with 
polarisation e', is initially empty. The non-linear polarisability tensor Tfl,,,im+l can be 
evaluated with the aid of time-ordered diagrams (Ward 1965), a typical example of 
which is shown in figure 1. This diagram represents the successive absorption of q 
photons, followed by emission of a photon at the m-harmonic frequency, followed by 
further (m-q) absorptions before the molecule returns to its ground state. There are 
(m + 1) topologically distinct diagrams to be considered, each of which we can label with 
an index q in the range 0 G q G m. The full result for the susceptibility tensor may be 
expressed most compactly in the following form, dropping the label 6 for clarity: 

EO-EI, + h w  
Figure 1. One of the time-ordered diagrams for 
m-harmonic generation. I, is the label for successive 
intermediate states of the molecule and AEn is the 
corresponding difference in energy of the system 
from the initial state. 

Here prarb is the electric dipole transition moment for the transition between-inter- 
mediate molecular states Ila)t]lb). The energy of state Ila) is Era, and both /lo) and 
Ilm+l) are identified with the ground state 10) of the molecule. In writing equation (8), 
use has been made of the convention 

l = p  
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Now from equations (4), (5) and (7) the rate of harmonic emission is given by 

The expression is strictly applicable only in the case where the incident radiation is 
represented by a pure number state. The coherence and statistical properties of the 
light may be taken into account by adopting a more general representation in terms of a 
linear combination of such number states, and the corresponding result for the 
harmonic radiant intensity 9'" may then be written in terms of the mean irradiance To 
and the degree of mth order coherence g(m) as follows: 

For harmonic generation in free molecules, this expression has to be averaged over all 
possible molecular orientations. Denoting the required rotational average for molecule 
5 by angular brackets ( . . . )*, we thus have 

(12) 
assuming there is no orientational correlation between different molecules. The result 
of rotationally averaging each of the terms in angular brackets is then independent of 
the particular molecule upon which the average is performed. Hence with A" molecules 
in the interaction volume we have 

- 1  - x (J(TL1 l , + l ~ ~ m + Z  r*,,zer, * ' ' e~,,,elm+lel,,,+z * * ~lzm+,eL,,,+z) 

+J(J- ~ I K T , ,  ,,,,+,e,, . . . eI,,,Z,,,+l)12). (13) 
The two terms in the angular brackets respectively denote incoherent and coherent 
contributions to the harmonic intensity. The incoherent contribution is relatively weak 
and is only significant when considering non-forward harmonic emission; see for 
example Kielich and Kozierowski (1972). For present purposes we may ignore this 
term. Hence we may write 

(14) --I 3'" = z(m)I(~,, ,,,,+,e,, . . . e,,,,e,,+, ) I2 
where 

The detailed procedure for dealing with. the rotational average of a Cartesian tensor 
product, as in equation (14), has been discussed in a previous paper (Andrews and 



Harmonic generation in free molecules 4095 

Thirunamachandran 1977). The result may be written as 
I m + l )  9'" = =.@m)I ~ , . . . ~ , , , + , e i ~  . ei,ai m + l ~ ~ l . . . i ~ + l ; ~ l . . . ~ m + l  1 2 -  

Here components of the susceptibility tensor are referred to a molecule-fixed frame and 
components of the polarisation vectors are referred to a space-fixed frame; 
l i ~ , ~ ~ ) + , ; A l . . . A m + l  is the rotational average of a product of direction cosines l ipAp relating 
coordinates in the two frames and defined by 

where 4, 8 and + are the Euler angles for the frame transformation. 

of isotropic tensor products; in general we have 
The result for the rotational average can be written explicitly as a linear combination 

In this equation f f ~ . ! ~ ~ ~  are isotropic tensor components referred to the space-fixed 
frame, gKif.:, are the corresponding tensor components referred to the molecule-fixed 
frame, and ml:' are real coefficients which can be determined by matrix inversion 
methods (Andrews and Thirunamachandran 1977). From equations (16) and (18) we 
thus have 

In this expression the product of polarisation vector components ei,  . . . eimP;,,,+,, whicii 
we may refer to as the polarisation tensor, is contracted with each isotropic tensor 
f!;,:::! in the space-fixed frame, and the non-linear susceptibility tensor TA ,...h,+l is 
contracted with each isotropic tensor g!iT,Ti::, in the molecular frame. 

For even n, isotropic tensors of rank n are products of n / 2  Kronecker delta tensors 
such as S i l i z .  . . Sin-lin; for odd n they are products of one Levi-Civita antisymmetric 
tensor and (n  - 3)/2 Kronecker deltas, for example E ~ ~ ~ ~ ~ ~ S ~ ~ ~ ~  . . . Sin-lin. Because of the 
form which these tensors take, it is immediately possible to draw some general 
conclusions regarding the result of equation (19), using the fact that the polarisation 
tensor eil . . . ei,,,2i,,,+, is symmetric with respect to any permutation of the indices 
i l . .  . i,. From this it is clear that the result of every index contraction 
(ei ,  . . . eimZi,,,+, f ~ , , . , i ; + l )  is zero if m + 1 is odd, for then a Levi-Civita tensor would 
appear with an antisymmetry in two or three of the indices i l  . . . i,. Hence the coherent 
generation of even m harmonics in isotropic media is forbidden, as is well known. This 
conclusion is naturally valid irrespective of the molecular geometry and it is shown in § 3 
that the validity is retained even when all the higher order multipolar contributions to 
the interaction Hamiltonian are taken into account. 

For the generation of odd m harmonics, it is important to note that the contraction 
( e i , .  . . eimi!:m+l f ! ~ , : ~ ~ ~ )  must contain at least one factor ( e . e )  and this is zero for 
circularly polarised light. Hence we also directly obtain the result that generation of any 
harmonic is forbidden if the pump beam is circularly polarised; see also Bloembergen 
(1969), Tang and Rabin (1971). It should be added, however, that these arguments are 
only applicable to the coherent contribution to the harmonic intensity. The usually 
insignificant contribution from the incoherent term in equation (13) remains finite both 

m + l , r )  
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for even harmonics and for circularly polarised radiation, whether for forward or 
non-forward emission. 

In passing, it is worth noting that the same reasoning can be applied to other 
non-linear interactions in isotropic media. In general, the result always involves a linear 
combination of scalars formed by contracting the polarisation tensor, which is the 
product of polarisation vector components for each photon involved in the process, with 
an isotropic tensor of the same rank. Therefore, unless the polarisation tensor has a 
zero-weight component (corresponding in angular momentum terms to a Am = 0 
process), all such scalars vanish identically and the process is forbidden. The conditions 
which this imposes on the polarisation tensor are quite restrictive and, in general, we 
can conclude that every parametric process which involves the absorption or emission 
of two or more circularly polarised photons of the same handedness and direction of 
propagation is forbidden in an isotropic medium. This is true regardless of whether or 
not the photons have the same frequency. In the case where there is one absorption and 
one emission of a circularly polarised photon, the process is forbidden if the photons 
have the same direction of propagation but opposite handedness. 

Returning to equation (19) and assuming in the light of the above remarks that the 
incident beam is plane polarised, we find that the contraction of eil . . . eimZim+l with any 
f ~ ~ , ~ ~ ~ ~ ~  gives the result (e.e'). Hence, as for the trivial case of forward Rayleigh 
scattering ( m  = l), there is retention of polarisation in the harmonic emission. We now 
introduce a fully index-symmetric tensor ?Al . . ,Am+l ,  derived from TA1...A,+l by summing 
over all index permutations and multiplying by a normalising factor l / (m + l)! .  With 
e = e', equation (19) can then be written as 

$ 2  

Note that this expression is exact and not an approximation based on the Kleinman 
condition of negligible dispersion (Kleinman 1962). The introduction of ?Al.,.h,+l is 
simply a reflection of the fact that any antisymmetric components of the susceptibility 
tensor give vanishing contributions to 9'"'. 

Now we have 

for all r, and by virtue of the index symmetry of ?Al..,h,+l we also have 

for all s, where 

Hence, equation (20) may be written as 

\ r,s / 

Final evaluation of this expression thus requires knowledge of the rotational average 
coefficients m!T+') which are known only for m s 7 (Andrews and Thirunamachandran 
1977). Even for seventh-harmonic generation requiring the rank-8 average, the 
procedure for determining all the m:) necessitates the construction and inversion of a 
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91 x 91 matrix and the problem rapidly becomes more len thy with increasing m. 
However, it is possible to obtain a general result for E , ,  m!;+" by a method described 
in the appendix and using this result we obtain the final expression for the radiant 
intensity of an odd m harmonic: 

3. Consideration of higher order terms in the interaction Hamiltonian for coherent 
generation of even harmonics 

We can now show that even harmonics are forbidden not only in the electric dipole 
approximation, but also when all higher order multipolar contributions are considered. 
The methods used here are similar to those adopted by Healy (1974) in a study of 
optical rotation; the symmetry arguments used in this section, however, relate to the 
properties of the radiation field rather than the molecular response tensors. 

The full expression for the interaction Hamiltonian Hint(,$) before carrying out a 
multipolar decomposition can be written as follows: 

see for example Babiker et a1 (1974), Power and Thirunamachandran (1980). Here 
P(*)l(r)  is the transverse electric polarisation vector field, M'"(r) is the magnetisation 
vector field and Ocn(r, r') the diamagnetisation tensor associated with molecule 6; e'(r) 
is the transverse electric field and b(r )  the magnetic field resulting from the photon flux. 
The multipolar expressions for PtoL(r),  M(*)(r )  and O(*)(r, r ' )  may be derived from the 
following equations by expanding the delta functions in Taylor series about ( r  -RE): 

In each case the sum is taken over all particles a (6) of charge ea(E) and mass m , ( ~ )  in the 
molecule 8. 

The matrix element A4Fi for the harmonic generation process may be written as a 
sum of terms in which each photon absorption or emission is associated with one of the 
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multipolar contributions to (26 ) .  It is readily shown that each term takes the form 

Here Ail...imcp+q+l is a molecular response tensor of rank ( m  + p  + q + l), and w ( ~ )  are 
unit vectors (either real or complex) in the plane perpendicular to the incident and 
harmonic propagation unit vectors k .̂ In the electric dipole approximation of § 2 ,  both p 
and q are zero, cf equation (7). 

Because harmonic genefation is a coherent process, the result for the harmonic 
intensity involves the square modulus of the rotational average of Mji (for incoherent 
processes the average of IMFi l 2  is required). Hence, we have to evaluate 

l 2  9 * wim+l ki,+z - * * cim+p+q+lI' 11 ... l m + p + q + l  ' ;At  ... A m + p + q + l  
(1) ( m + l )  A m + p + q + l )  

I ~ ~ l . . . ~ m + p + q + l w i l  

( m + p + q + l )  (1)  ( m + l )  A m + p + q + l ; r )  
(wil * * wim+l k i m + z  * * * c i m + p + q + 1 f j l . , . i m + p + 4 + 1  = 1: mrr 

2 

(31) ( m + p + q + l ; s )  11 
( A A i  . . . A , + p i q + ~ g h i . . . A m + p + q + ~  * 

We now consider the two cases where p + q is either even or odd. 
Suppose p +q is even. For an even m harmonic, m f p  + q + 1 is odd and the 

isotropic tensors f ~ ~ , ~ ~ ~ ~ ~ q l ~ l  involve one Levi-Civita tensor and ( m  + p  +q - 2 ) / 2  
Kronecker deltas. The Levi-Civita tensor must contract with two non-collinear w 
vectors and one k  ̂ vector to give a non-vanishing result; hence there remain ( m  - 1) w 
vectors and ( p  + q - 1) k^ vectors to contract with the Kronecker deltas. Since ( p  + q - 1) 
is odd, the result must involve at least one scalar product between a w vector and a k  ̂
vector; therefore, the result vanishes entirely. 

If p + q is odd and m is even, then ( m  + p + q + 1) is even and f ~ ~ , ~ ~ ~ ~ ~ ~ q l ~ l  is a product 
of ( m  + p  + q  + 1)/2 Kronecker deltas. The contraction with the product of w and k̂  
vectors in equation (31) thus again involves at least one scalar product between a w 
vector and a k* vector, leading to a vanishing result. 

Hence, to all orders in the multipole expansion of the interaction Hamiltonian, 
coherent generation of even harmonics is forbidden in free molecules. 
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Appendix. Proof of the relation X , ,  m ::") = 1/(2n + 1) 

Consider the rotational average of eiA.=, where A is a real molecule-fixed vector and a is 
a real space-fixed vector; by explicit integration using the Euler angle rotation matrix it 
is readily shown that 

sin Aa 
Aa ' 

(eiA.=) = - 
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Taking the Taylor series expansions of both sides of (A.l) we obtain 

= f  (iAa)2q 
q=o (2q + l)! * 

f ((iA a ) P )  
p = o  p !  

The left-hand side of (A.2) can be written as 

f ((iA.a)P) O0 ip 
p = o  p !  p = o  p .  

= 1 ?(Ai, . . . Aipail . . . ai,) 
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('4.2) 

Now 
u p  ( p  even, all r )  
0 ( p  odd, all r )  

A P  ( p  even, all s) 

( p ; r )  - 

( p  odd, all s) 

ai1 . ai,f ii...tp - 

AA, . . A,+pgE!"',, = 0 

in view of the form of the isotropic tensors (see main text). Hence, we have 

1 mlf" 
=f-- (iAa)'" 

m=o (2m)! 1,s 
5 ((iA a ) P )  

p = o  p !  

Comparing coefficients of (iAa)2" on the right-hand sides of equations (A.2) and (A.6) 
hence gives the result 

This relation will provide a useful check on results for high rank rotational averages with 
2n > 8, which have yet to be calculated. The condition represented by (A.7) must be 
satisfied by both reducible and irreducible forms of these averages. 
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