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Abstract Harmonic Grammar (HG) is a model of linguistic constraint interaction in
which well-formedness is calculated as the sum of weighted constraint violations. We
show how linear programming algorithms can be used to determine whether there
is a weighting for a set of constraints that fits a set of linguistic data. Our associated
software package HaLP provides a practical tool for studying large and complex
linguistic systems in the HG framework, and thus it can be valuable for comparing
HG’s linear model to the model of constraint ranking assumed in Optimality Theory.
We describe the translation from linguistic systems to linear systems, and we report
on some recent work modeling HG typologies using HaLP.

Keywords: Harmonic Grammar, Optimality Theory, linear programming, linguistic
typology

1 Introduction

We introduce a method for translating learning problems in Harmonic Grammar
(HG; Legendre, Miyata & Smolensky 1990a,b; Smolensky & Legendre 2006) into
linear models that can be solved using standard algorithms from linear program-
ming (LP). The version of HG that we assume is identical to the standard version
of Optimality Theory (OT: Prince & Smolensky 1993/2004), except that the
optimal input–output mapping is defined in terms of weighted rather than ranked
constraints.

The LP model returns either a set of weights that correctly prefers all of the
intended optimal candidates over their competitors or a verdict of infeasible when
no weighting of the given constraints prefers the indicated optima. Thus, we
provide for HG the equivalent of what the Constraint Demotion Algorithm (Tesar
& Smolensky 1998b) provides for OT: an algorithmic interpretation of the central
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solution concept of the theory. In addition, we present HaLP (Potts, Becker, Bhatt
et al. 2007), a Web-based implementation of these ideas that takes as input learning
data formatted according to the standards defined for the software package OTSoft
(Hayes, Tesar & Zuraw 2003). The public availability of HaLP will help research
on weighted constraint interaction to build on research already conducted in the
OT framework.

We start by discussing the model of HG we adopt and its relationship to its
better-known sibling OT (section 2). We then describe our procedure for turning
linguisic data sets into linear systems (section 3). Section 4 is a brief discussion
of typology in HG. That discussion deepens our comparison with OT, and it
highlights the usefulness of using LP algorithms to solve linguistic systems.

2 Overview of Harmonic Grammar

In an optimization-based theory of generative grammar, a set of constraints chooses
the optimal candidates, which are pairs 〈In,Out〉 consisting of an input structure In
and an output structure Out. In HG, optimality is defined in terms of a harmony
function, which associates each candidate with the weighted sum of its violations
for the given constraint set:

Definition 1 (Harmony function) Let Cn = {C1 . . .Cn} be a set of constraints,
and let Wn = w1 . . . wn be a vector of real numbers (weights). Then the harmony of a
candidate A is given byHCn ,Wn

(A) =
∑n

i=1 wi (Ci (A)).

The constraints themselves are functions from candidates into natural numbers,
where C(A) = 4 means that A violates constraint C four times.

In the version of the theory that we work with here, the optimal candidates are
those with the lowest harmony scores. But this competition is limited to candidates
that share a single input structure: two candidates with different harmony scores
can both be optimal if they have different input structures, whereas candidates
with the same input structure are always in competition. In anticipation of the
discussion in section 3, we make this more precise by first defining the notion of a
tableau, the basic domain over which competitions are defined:

Definition 2 (Tableaux) A tableau is a structure (AIn,Cn), where AIn is a (possi-
bly infinite) set of candidates sharing the input In, and Cn is a constraint set with
cardinality n.

We can then define optimality in terms of individual tableaux:

Definition 3 (Optimality) Let T = (AIn,Cn) be a tableau, and let Wn be a weight-
ing vector for Cn . A candidate A = 〈In,Out〉 ∈ AIn is optimal iff HCn ,Wn

(A) <
HCn ,Wn

(A′) for every A′ ∈ (AIn−{A}).
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Example (1) is a typical representation of a tableau for HG. The single shared
input is given in the upper left, with candidate outputs below it and their violation
scores for the constraints given in tabular format. The representation is exactly
like those used for OT, but with the left-to-right order of constraints irrelevant, as
well as the addition of a weighting vector in the topmost row and the harmony
scores for each candidate in the rightmost column.

(1) A weighted constraint tableau

Weights 2 1 H
Input C1 C2

� OutputA 0 1 1
OutputB 1 0 2

By the definition in (3), OutputA is chosen as the optimal output for Input. Optimal
candidates are marked with the pointing hand.

We aim to process sets of tableau, which is just to say that we want to determine
optimality for sets of inputs structures. Thus, we deal primarily with tableau sets,
which are sets of tableaux that share a single set of constraints but have different
inputs:

Definition 4 (Tableau sets) A tableau set is a pair (T,Cn) in which T is a set of
tableaux such that if T = (AIn,Cn) ∈ T and T ′ = (A′

In′
,C′n) ∈ T, then In 6= In′ and

Cn =C′n .

Given a tableau set (T,Cn), a weighting vector Wn determines a language by
selecting all and only the optimal candidates from each tableau T ∈ T.

Models of roughly this form are explored by Keller (2000, 2006), Prince (2002a),
Smolensky & Legendre (2006), and Pater, Bhatt & Potts (2007). (See also Prince &
Smolensky 1993/2004: 236.) In some versions, the most harmonic candidates are
those with maximal harmony values and violations are given in terms of negative
integers. This formulation is equivalent to ours. (We return to this issue briefly
at the end of section 3.4.) In order to facilitate comparison with OT, we limit
ourselves to positive weights, though not all versions of HG impose this limitation.

Like the standard version of OT (and much work in generative grammar), this
model abstracts away from variation and other forms of gradience. By studying
a model that differs so minimally from OT, it becomes possible to gain a clearer
understanding of the difference between a theory of grammar that has ranked
constraints and one that has weighting.

HG is of particular interest as a theory of grammar because its linear model
is computationally attractive. HG was originally proposed in the context of a
connectionist framework. OT ranking has so far resisted such an implemention
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(Prince & Smolensky 1993/2004: 236; Legendre, Sorace & Smolensky 2006: 347).
Beyond connectionism, HG can draw on the well-developed models for learning
and processing with linear systems in general. See Pater, Bhatt & Potts 2007 for a
review of extant learning proposals for HG and HG-like linguistic systems and
discussion of their advantages over accounts in OT for learning gradually, learning
in noise, and learning probabilitic patterns.

It might seem surprising that, despite these attractive properties, HG has been
little used in analyzing the patterns of constraint interaction seen in the grammars
of the world’s languages. To a large extent, this neglect is likely due to the fact that
it can be difficult to calculate by hand a weighting for a set of constraints that will
correctly prefer the observed output forms over their competitors. Furthermore,
in doing linguistic analysis, we are often interested in showing that a particular
set of outputs can never co-exist in a single language, that is, in showing that a
theory is sufficiently restrictive. Establishing that none of the infinitely many
possible weightings of a set of constraints can pick a set of outputs as optimal may
seem to be an insurmountable challenge. These problems are the motivation for
our development of a translation from HG learning to LP solving, and for the
implementation of this procedure in a publicly-available Web-based format (Potts,
Becker, Bhatt et al. 2007).

The learning problem for HG that we address, in this paper and with HaLP, is
defined in (2).

(2) Let (T,Cn) be a tableau set, and assume that each tableau T = (AIn,Cn) ∈ T
contains exactly one designated winning candidate o ∈AIn. Let O be the
set of all such winning candidates. Is there a weighting of the constraints in
Cn that defines all and only the forms in O as optimal (definition 3)? If so,
what is an example of such a weighting?

This is analogous to a well-studied problem in OT (Prince & Smolensky 1993/2004;
Tesar & Smolensky 1998b; Prince 2002c): given a set of grammatical forms and a
set of constraints C, is there a ranking of the constraints in C that determines all
and only the grammatical forms to be optimal?

It is typically fairly easy to answer question (2) for small systems like (3). Here
we follow Prince (2002b) in referring to the optimal form as the ‘Winner’, and the
sub-optimal candidate as the ‘Loser’.

(3)
Input C1 C2 C3

Winner 4 0 4
Loser 0 2 0

For (3), we can swiftly reason to the conclusion that a weighting 〈1,4.1,1〉 suffices.
That is, the weights for C1 and C3 are both 1, and the weight for C2 is 4.1. This
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gives 〈Input,Winner〉 a total weighted violation count of 8 and 〈Input,Loser〉 a
total weighted violation count of 8.2. And it is easy to see furthermore that many
other weightings work as well. But it quickly becomes challenging to reason this
way. Hand-calculations are prohibitive even for modestly-sized systems. This is
where LP methods become so valuable. They can answer question (2) quickly for
even very large and complex systems. We turn now to the task of showing how to
apply such algorithms to these data.

3 From linguistic data to linear systems

In this section, we build a bridge from linguistics into the domain of LP algorithms.
In doing this, we make powerful and efficient tools available to the linguist wishing
to grapple with large, complex data sets. Our description closely follows the
algorithm we employ in HaLP. Our discussion proceeds by way of the simple
tableau set in (4).

(4)






Input1 C1 C2
Winner1 3 2

Loser1 6 1

Input2 C1 C2
Winner2 1 1

Loser2 0 2







Our optimization task: find the minimal weighting w that favors 〈Input1,Winner1〉
and 〈Input2,Winner2〉, if there is such a w; if there isn’t, return infeasible. (For the
purposes of this paper, a weighting w is minimal iff the sum of all the members of
w is smaller than the sum of all the members of any other feasible weighting; see
section 3.3.)

3.1 Equations in the linear system

We first convert the weighting conditions into linear inequalities. For each winner–
loser pair, we want an inequality that guarantees that the winner has a lower
weighted violation total than the loser. Our initial attempt to formulate the desired
restriction for the pair of candidates 〈Input1,Winner1〉 and 〈Input1,Loser1〉 is (5).

(5) 3w1 + 2w2 < 6w1 + 1w2
= 3w1 −1w2 > 0

This expresses what we want, namely, that the Winner1 output is favored by the
weighting over the Loser1 output. But it’s not a suitable optimization problem:
we could always get closer to 0. It won’t do to turn the strict inequality into a
nonstrict one, because that would accept weightings that assign the hopeful winner
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weighted violation totals that are equal to the weighted violation totals of some
losing candidates. We want the winner to be strictly better. For this reason, we
solve for a special constant a. It can be arbitrarily small, as long as it is above 0. It
allows us to have regular inequalities without compromising our goal of having
the winner win (not tie). So the final form our linear inequality is (6).

(6) 3w1− 1w2 ¾ a where a > 0

One repeats the above process for every winner–loser combination in one’s
tableaux. It is the heart of the translation procedure.

Our use of the constant a renders certain systems infeasible that would other-
wise be feasible. These are the systems in which a winner can at best tie its losing
competitors. We want these systems to be infeasible, because we want the winners
to be strictly better. But one might wonder whether certain choices of a could rule
out systems that we want to judge feasible. For instance, what happens if a is set to
be very large? Could this incorrectly rule out a feasible analysis?

The answer is no. We assume that there is no maximal weighting for any
constraint, and none of our systems contain the ¶ conditions that would impose
such a ceiling for particular cases. This means that the feasible regions of our
systems are ‘open at the top’, that is, if we attempt to maximize the objective
function, the algorithm returns unbounded for any nonempty feasible region.

Thus, assume that the chosen constant is a, and assume also that there is a
weighting W for which one of the inequality statements sums to a constant d that
is smaller than a. Then we simply find a linear rescaling of W that respects our
choice of a rather than d . This rescaling could leave the feasible region only if
there were a maximal value for some weight. But we assume that there are no such
maxima.

Different choices of a will return different optimal weightings. But our concern
is primarily with the question of whether there is a feasible weighting at all, and
thus we see no reason to impose conditions on the size of a beyond demanding
that it be positive.

3.2 Blocking zero weights

The next substantive question we address is whether to allow 0 weights. A weight-
ing of 0 is equivalent to canceling out violation marks. To prevent such cancella-
tion, we can impose additional conditions, over and above those given to us directly
by the weighting conditions: for each constraint Ci , we can add the inequality
wi ¾ b , for some positive constant b , which can be the same as a or distinct
from it. Once again, because our nonempty feasible regions are open at the top,
excluding this subregion does not yield spurious verdicts of infeasibility.
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It is worth exploring briefly what happens if we remove the extra non-0 restric-
tions (if we set b to 0). In such systems, some constraint violations can be canceled
out when weighted, via multiplication by 0. This cancellation occurs when a given
constraint is inactive for the data set in question, i.e., when it is not required in
order to achieve the intended result. For example, our current reduction process
returns 〈1,1,1〉 as the minimal solution for the small system in (7) (assuming that
we set the righthand sides of all the equations to 1).

(7)
Weights 1 1 1 H

Input C1 C2 C3
Winner 0 1 0 1

Loser 1 0 1 2

In this solution, C1 and C3 gang up on C2: with this weighting, neither suffices
by itself to beat the loser, but their combined weighted scores achieve the result.
However, if we do not ensure that all weights are at or above a, then the minimal
solutions for these data are 〈1,0,0〉 and 〈0,0,1〉, with either of C1 or C3 decisive
and the other two constraints inactive. Such insights into the relationship between
the intended optima and the constraint set should prove useful for studying one’s
constraint set and also for locating differences between OT and HG.

Finally we note that linear systems come with nonnegativity conditions : for
all weights wi , we demand that wi ¾ 0. (A system that lacks these conditions can
be converted into an equivalent system that enforces them; Cormen, Leiserson,
Rivest et al. 2001: §29.1.)

3.3 The objective function

Our solution to (3) above probably made it apparent that there are infinitely many
other feasible solutions: 〈1,4.1,1〉 is the solution we used, but of course 〈2,5,2〉
is also feasible, as is 〈200,387400,401〉. There is no maximum weighting. This
demands that we define our systems as minimization tasks. For our system (4):

(8) minimize 1w1+ 1w2

Of course, there is a sense in which 〈1,4.1,1〉 is not our minimal solution to (3)
either. 〈1,4.001,1〉 would also do the job, for example. Once we have translated
into the linear setting, though, that minimal value is bounded by the constants a
and b (however they are chosen).

Given that all the objective-function coefficients are 1, we can define a weighting
as minimal iff the sum of its weights is at least as low as the sum of the weights of
any other feasible solution, as in (3). Translated back into the linguistic systems,
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this means that the sum of the weights will be minimal, subject to the restrictions
that every loser’s score will be at least a greater than the winner, and every weight
will be at least b .

3.4 The final form of the system

The linear system derived from (4) using the above procedure is given in figure
1 along with a geometric representation. To provide a concrete solution and a
visualization, we’ve set all the righthand sides to 1 — recall that this just stands in
for any positive value. The optimal weighting here is w1 = 1 and w2 = 2.

minimize 1w1 + 1w2

subject to 3w1 − 1w2 ¾ 1
−1w1 + 1w2 ¾ 1

1w1 ¾ 1
1w1 ¾ 1

Figure 1: The translation and graphical representation of (4)

The current version of HaLP accepts OTSoft files as input, converts them into
tableau sets, translates them using the above procedure, and then solves them with
the simplex algorithm, the oldest and perhaps most widely deployed LP algorithm
(Dantzig 1981/1982; Chvátal 1983). Because the constraints are all of the form
‘· · ·¾ x’, where x is greater than 0, we invariably employ the two-phase simplex,
which constructs an auxiliary program whenever the origin point of the polytope
(〈0,0〉 in our example) is not a feasible solution.

We noted in section 2 that some versions of the theory use negative integers to
represent constraint violations. The optimal candidates are, in turn, those with
the maximal harmony values for their respective tableaux. We obtain such systems
from the above by multiplying through the objective function coefficients by −1,
turning the problem into a maximization problem, flipping the signs from ¾ to ¶,
and solving for −a and −b .
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4 HG typology

OT provides a successful theory of linguistic typology, and this has been a key
component of its success. The present section continues the comparision between
OT and HG by reporting on theoretical and practical results concerning the
typological space determined by HGs.

4.1 The size of the typology

OT typology is often called factorial typology, because the number of distinct
languages that a given set of OT constraints C can determine is bounded by the
number of ways in which the members of C can be totally ordered, which is
|C|!. We emphasize that this is merely an upper bound. Riggle (2004a,b) shows
that realistic OT grammars typically predict far fewer languages that the factorial
typology suggests, because of facts about the candidate set and relationships among
constraints.

If the constraint set and the nature of optimization are left completely open,
then a given HG grammar can determine an infinity of languages. This was
shown first by Smolensky & Legendre (2006), who use a controversial Gradient
Alignment constraint (McCarthy & Prince 1993) in their example. Pater, Bhatt &
Potts (2007) deepen the problem by showing that comparable patterns can arise
even for quite mundane constraint sets. However, Pater, Bhatt & Potts (2007) go on
to show that a finite typology can be guaranteed for HG if one general restriction
is enforced: each constraint must have a finite co-domain.1 They prove that, with
this assumption in place, the HG typology is finite. The proof builds on an insight
of Samek-Lodovici & Prince (1999) and Prince (2002a) that an OT grammar cannot
distinguish between two candidates if they have the same violation marks for that
grammar. HG grammars also have this property. With the constraints’ co-domains
kept finite, the number of violation profiles is also kept finite, which in turn
ensures that, even with an infinite candidate set and an infinite set of weighting
vectors, the grammar can select a finite number of distinct subsets (languages) of
the full space of candidates.

4.2 Typological modeling with HaLP

A lesson of the above theoretical results is that the nature of the constraints is cru-
cial to answering questions about HG typologies. The present section emphasizes

1 This is the same restriction employed by Frank & Satta (1998) and Karttunen (1998) to obtain
an attractive finite-state perspective on OT, so it is not surprising that it proves central to the
tractability of HG as well.
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this point by exploring the typological spaces determined by two different classes
of constraint that have been used to solve similar linguistic problems: Gradient
Alignment constraints, which appeared briefly in the previous section, and the
Lapse constraints of Kager (2006). Our findings were obtained using HaLP, which
allowed us to explore enormous typological spaces quickly.

The background of our investigation is as follows. McCarthy & Prince (1993)
propose an account of stress placement in terms of alignment constraints, which
demand coincidence of edges of prosodic categories. Gradient Alignment con-
straints are ones whose degree of violation depends on the distance between the
category edges: roughly, if x should be at, say, the leftmost edge of a certain
domain and it surfaces n segments (feet, syllables) from that edge, then x incurs
n violations for the candidate containing it. Kager (2006) proposes an alternative
account of stress placement in OT that replaces Gradient Alignment constraints
with a set of Lapse constraints. To examine the typological predictions of the two
accounts, Kager constructed OTSoft files (Hayes, Tesar & Zuraw 2003) with a
set of candidate parsings for words from two to nine syllables in length. Separate
files contained the appropriate violation marks for each constraint set. For each
of these, there were separate files for trochaic (left-headed) feet and for iambic
(right-headed) feet; here we discuss only the trochaic results. Using OTSoft, Kager
found that the Gradient Alignment constraint set generated 35 languages, while
the one with Lapse constraints generated 25.

In OT, a language is a set of optimal forms picked by some ranking of the
constraints, and the predicted typology is the set of all the sets of optima picked
by any ranking of the constraints. OTSoft determines the predicted typology by
submitting sets of optima to the Constraint Demotion Algorithm (CDA; Tesar &
Smolensky 1998a), which either finds a ranking or indicates that none exists. Since
HaLP returns the same verdicts for weightings, it can be used in the place of the
CDA to determine the predicted HG typology.

OTSoft builds up the typology by using an iterative procedure that adds a
single tableau at a time to the CDA’s dataset. When a tableau is added to the data
set, the sets of optima that are sent to the CDA are created by adding each of the
new tableau’s candidates to each of the sets of feasible optima that have already been
found for any previously analyzed tableaux. The CDA then determines which
of these new potential sets of optima are feasible under the constraint set. This
procedure iterates until all of the tableaux have been added to the data set. This is a
much more efficient method of finding the feasible combinations of optima than
enumerating all of the possible sets of optima and testing them all.

We used a modified version this procedure, replacing the CDA by HaLP.2

2 We thank Michael Becker for implementing the HG typology calculator. It is available as part of
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The results for the two constraint sets discussed above, derived from OTSoft files
prepared by Kager, are shown in (9). We provide the number of languages that
each combination of constraints and mode of interaction predicts, out of a total of
685,292,000 possible combinations of optima.

(9) Number of predicted languages

OT HG
Gradient Alignment 35 911

Lapse 25 85

As expected, HG generates a larger number of languages than OT, and, also
as expected, this increase is particularly dramatic with the Gradient Alignment
constraints.

The source of this dramatic increase is the manner in which Gradient Align-
ment constraints assign violation marks. To illustrate, we show four potential
parses of a six-syllable word, and the violations they incur on two constraints. Foot
edges are indicated by parentheses, and prosodic word edges by square brackets.
ALIGN(FT, WD, L) demands that the left edge of every foot be aligned with the
left edge of the word and is violated by each syllable intervening between these two
edges. PARSE-SYL is violated by every syllable that fails to be parsed into a foot.

(10) Violation profiles

ALIGN(FT, WD, L) PARSE-SYL

a. [(ta.ta)(ta.ta)(ta.ta)] 2 + 4 = 6 0
b. [(ta.ta)(ta.ta)ta.ta] 2 2
c. [(ta.ta)ta.ta.ta.ta] 0 4
d. [ta.ta.ta.ta.ta.ta] 0 6

ALIGN(FT, WD, L) and PARSE-SYL conflict in that every foot added after the
leftmost one satisfies PARSE-SYL at the cost of violating ALIGN(FT, WD, L). This
cost increases as feet are added: the second foot from the left adds two violations,
the third one adds four, and so on. This increasing cost interacts with weighting
to produce a rich typology. With an appropriate weighting (e.g., a weight of
1 for ALIGN(FT, WD, L) and a weight of 2 for PARSE), a second foot will be
added to avoid violating PARSE, but not a third one: ((10)b) emerges as optimal.
This outcome would be impossible in HG, as it is in OT, if each non-leftmost
foot added the same number of violations of ALIGN(FT, WD, L) (or whatever
constraint replaces it).3

the downloadable, publicly available application OT-Help (Becker, Pater & Potts 2007).
3 See McCarthy 2003 for extensive arguments for the replacement of Gradient Alignment in OT; see

Pater, Bhatt & Potts 2007 for further discussion of the benefits for HG).
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The HG typology with Lapse constraints is much closer to that of OT, but it
still yields more than a three-fold increase in predicted languages. We believe that it
would be a mistake to take this sort of result to argue definitively for OT. First, it
was arrived at using a constraint set designed for OT. Weighted interaction allows
for different constraints than those used in OT (see Pater 2007 for an example), and
it is important to explore these possibilities to better understand the theory and
how it differs from OT. Second, the result also depends on a particular mode of
evaluation: the entire representation is evaluated once and only once by the entire
set of constraints. As Pater, Bhatt & Potts (2007) show, changing assumptions
about mode of evaluation yields positive results for HG typology, parallel to those
that McCarthy (2006) demonstrates for OT.

5 Conclusion

We have shown that constraint weighting problems translate into linear systems
and are thus solvable using LP algorithms. This is an important mathematical
connection, and it should provide significant insights into the nature of linguistic
optimization. It has a practical component as well: our linear solver HaLP should
facilitate comparison between weighting and other constraint-based approaches.
This implementation, freely available and requiring no software downloads or
specialized user expertise, gets us over the intrinsic practical obstacles to exploring
weighting systems. We can then focus attention on the linguistic usefulness of HG
and other weighting-based approaches (Pater, Bhatt & Potts 2007).

The formal results of this paper are best summarized by drawing an explicit
connection with the fundamental theorem of linear programming (as stated in
Cormen, Leiserson, Rivest et al. 2001: 816):

Theorem 1 (The fundamental theorem of linear programming) If L is a lin-
ear system in standard form, then there are just three possibilities:

a. L has an optimal solution with a finite objective function.

b. L is unbounded (in which case we can return a solution, though the notion of
optimal is undefined).

c. L is infeasible (no solution satisfies all its conditions).

Our method reveals a deep connection between this theorem and HG. The un-
bounded output is not of much concern to us. The sense it has here is not ‘the
feasible region is unbounded’, but rather ‘there is no limit to how good the solu-
tion can be’. Thus, even though the feasible regions for phonological systems are
unbounded, we solve minimization problems, thereby avoiding this pitfall. The
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infeasible verdict is essential. It tells us that the current grammar cannot deliver the
set of optimal constraints we have specified. This might be a signal that the analysis
must change, or it might prove that a predicted typological gap in fact exists for
the current constraint set. And if we are presented with an optimal solution, then
we know our grammar delivers the specified set of forms as optimal. Moreover, we
can then analyze the solution to learn about the relations among our constraints.

We obtain these results efficiently, and they hold for the full range of linear
systems, including very large ones. We therefore see the translation of HG systems
into linear systems as providing a valuable tool for the serious exploration of
constraint weighting in linguistics. We also see great promise in the approach
for developing theories of learning, for determining the nature of the constraint
set, and for gaining a deeper mathematical and algorithmic understanding of the
theory’s main building blocks.
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