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HARMONIC MAPPINGS INTO RIEMANNIAN
MANIFOLDS WITH
NON-POSITIVE SECTIONAL CURVATURE

STEFAN HILDEBRANDT, HELMUT KAUL, KJELL-OVE WIDMAN

1. Introduction.

Let 2 be a compact, connected n-dimensional Riemannian manifold
of class (4, with non-void boundary X and interior Q. In terms of local
coordinates x=(z!,...,2") on & the line element is given by

do? = y4(x)dx*da’ ,
and the Laplace-Beltrami operator A, on % is defined by
Agp = y D[y VyDgl, ¢eCH2R),

where y =det (y,).
Furthermore, let .# be a complete connected Riemannian manifold
without boundary of dimension N =2, class C%, and line element

ds? = g, (w)dutduk .

A mapping U € C¥Q2,.#) is said to be a harmonic map of 2 into 4 if
in local coordinates it is represented by u=(u!,%%,...,u") satisfying

(1) Ag+y*Th(u)DuiDgu* = 0, 12I<N.
Here I'}, are the Christoffel symbols of .#,

r fk = giT, ijk
with

ik G 094
Tie = 3 (aﬁ“auﬁw)'

The aim of the present paper is to prove the following

THEOREM. If A 18 simply connected and has non-positive sectional cur-
vature then to any boundary map @ € Cr+*(X, M) with « >0 there exists a
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harmonic map U of ¥ into M, of class CUZ,MH)nNC3(2,.H#), such that
U=® on 2.

This result was recently proved by R. S. Hamilton [4] in a complicated
and lengthy paper. In fact, Hamilton treats also different boundary
value problems, e.g. Neumann’s problem, as well as multiply connected
manifolds .#. His method is to apply the gradient method to the func-
tional E, defined below, so as to get a boundary-initial value problem
for a certain parabolic system of non-linear equations. Previously, this
approach has been used by Eells and Sampson [2], and Hartman [5],
in the case when Z has no boundary, to construct harmonic mappings
which are homotopic to a given mapping @: & — 4.

One of the first papers in this area appearing in the literature is due
to Bochner [1]. In a special case, he stated a priori bounds on harmonic
surfaces which, as he indicated, would have led to a solution of the
Dirichlet problem. However, there seems to be gaps in the proofs of some
of these estimates.

Here we want to show that with appropriate modifications Bochner’s
approach can be used to prove the theorem above in a fairly simple and
straightforward way.

So far, all known existence results are based in an essential way on
the assumption that the target manifold .# has non-positive sectional
curvature. To make our procedure transparent we have also restricted
ourselves to this case. However, the curvature assumption is by no
means essential for our approach as will be shown in the forthcoming
paper [7] of the same authors where also positive sectional curvatures
are admitted for .#.

2. Preliminaries.

By a well-known theorem due to Hadamard and Cartan (cf. [3, p. 201])
a simply connected complete N-dimensional manifold of nonpositive
curvature is diffeomorphic to R¥, the diffeomorphism being given by any
normal coordinate system. Hence, by using normal coordinates, mappings
U e C¢ (2,.#) can be represented by vector functions u € C¢ (2, R¥). We
shall fix a particular such representation, ‘“‘the standard representation
of U”, by choosing normal coordinates around an arbitrary but fixed
point 0 on 4.

For any C' map U: 2 - .# we define dV: & - R by

dV(z) = [dist(U(x),V)]?, Ve, zef.
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Moreover we introduce the “energy density’’ function of U, e: 2 - R,
which in local coordinates in & is given by
e = gik(u)y“ﬁD“uiDﬂuk

where u =wu(x) is any normal representation for U. The energy functional
of U is then given by

B(U) = {gedV,

dV being the area element of .
The defining equations for the harmonic mappings, (1), are the Euler—
Lagrange equations of this generalized Dirichlet integral.
For mappings % from 2 or 2 into R¥ we shall use norms of the type
[“loway,  |%lorracs .

These are defined in the usual manner, using an arbitrary, but fixed,
finite atlas of Z and X respectively, any two different such atlases yield-
ing equivalent norms.

3. Lemmata.

In what follows we shall always assume that .# has non-positive sec-
tional curvature.

LemMA 1. Let U € C*(2,.#) be such that in some mormal coordinate
system on M
(2) Ay +ty? I (u) D, wiDyuk = 0, 1<I<N.
Then if ¢t € [0,1] we have
Aglul2 = Ag 3V (u)? 2 2te.
In particular, if U e C¥Q,.#) ts a harmonic map then for every V € M
Agd? = 2e.

Proor or LEMMA 1.

Aglu|? = 2w Agew? + 2y D ,uf Dyuif
26{8 5, — I't(w)ul}y™ D yui Dyu® + 2(1 — )y D jud Dyud.

Obviously, the last term here is non-negative.
Since the I':, are calculated with respect to normal coordinates on .#,
we have (cf. [6, p. 211, formulas (50)-(52)])

Ga(up® = gk(uy* = ut,
Ty(w)w? + Ty(u)w! = 84— Gar, -
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The first of these formulas implies
r 510(’”/)’“’ = Dypu)w? .

Hence, the second one is equivalent to

Su— Ti(w)wl = gy(w) + Fygeg(u)ud .
Therefore we obtain

Aglul® = 2t{g;;(w) +Fikj(u)uj}yaﬂDauiDﬂuk .

Using Rauch’s comparison theorem and the fact that .# has non-positive
sectional curvature one derives the inequality

0 < Iy (wyuéiEk for all £e RV,
cf. [6, Lemma, 6]. This concludes the proof of the first part of the lemma

if we note that the trace 4,B* of the product of two positive semi-
definite matrices (4,,), (B*) is non-negative provided that one of them

is symmetric.
The second part of the Lemma is immediate since a harmonic mapping

satisfies (2) with {=1 and normal coordinates around any point ¥ € .#,
remembering that then d¥ = |u|2.

Lremma 2. For given & and A let U € C3(2,.#) be harmonic. Then there
exists a constant v =0, depending only on &, such that

Aypfe+d} 20 on 2.

Proor. We shall make use of the following differential inequality
derived by Bochner [1] in the special case of a flat manifold &, and, in

general, by Eells and Sampson [2, p. 123]:
ge 2 fi+fs

where
fi= '—ymﬁwaﬁkl(u)Dau{Dﬂu’fDﬂuvaul

and
fa = gu(w)P¥ D, u'Dyuk .
Here E,;, stands for the Riemannian curvature tensor of .#:

n _ OTh Ork

h h ol h ol
Ry = g Bijps ik = it T o + I3 = Ty,

and P* denotes the Ricci curvature tensor on &':
P# = y* oyt Ph,

where P/, is the Riemann curvature tensor on %.
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Since the sectional curvature of .# is assumed non-positive, we

have f,=0.
On the other hand, using a compactness argument one sees that there

is a number 7 such that |f,| < ve. In view of Lemma 1 the proof is com-
plete.

4. An a priori estimate.

LemMA 3. For given & and A there is a function k(o,M) defined for
x€(0,1) and M >0 such that if U e C¥Q, 4)nCY X, #) ts a harmonic
map with boundary values Ul|y=® such that dist(P(X),0)< M then

(3) supgd® < M*
and
) supge < ko, M)(1 + |@[é1iacz, rm)

where @ is the standard representation for P.

Proor. The first inequality follows immediately from the maximum
principle since, by Lemma 1, d° is a subharmonic function and, by as-
sumption, sup,d° < M2

To prove the second inequality we notice that by Lemma 2 and the
maximum principle

supge < supg{e+1d°} < supp{e+7d®} < supge+ T M2,

whence we see that it is enough to estimate supye.
Let zy€2 and 1 e T, Z be a unit vector and pointing outwards such

that

supsze = e(x,) < ,
where || || 4 is the norm in 7'.# induced by the metric in .#.

Excluding the trivial case when aU(x,)/dl is zero we walk a distance
of 4 on the geodesic ray from Uy= U(x,) in the direction of aU(x,)/dl,
to arrive at ¥,. An easy calculation then shows that

O = |2 w|,

On the other hand, consider the Riesz decomposition for the subharmonic

function dVo,
" = h+s
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where A, h=0 with h=d"® on X and where Ags20 with s=0 on Z.
Since ! is pointing outwards, the maximum principle implies that
—08[ol <0 and hence

odve oh

—o (@) S — = (@)

However, in view of the well-known Schauder estimates one easily rea-
lizes that

|hloya,ry S K (o, M)|Bloriacz,ry = (N +1)72k(oc, M)(1 + |l greaz,r) »

and the statement of the lemma is proved.

5. Proof of the theorem.
Let ¥=(¥1,%%,...,%Y) be that mapping of CY(Z, R¥) into itself which
is defined by ¥': u — v where

A.%'UZ = —r;ky“pDaufDﬂuk, léléN )
=0 onlt.

Well known results from potential theory imply that ¥ maps bounded
sets in CYZ,RY) into bounded sets in C'+4(Z,RY), if 0<f<1, and on
account of the Arzela—Ascoli theorem we see that ¥ is a compact map-
ping.

Now let h=h(p) € C**+*%,RY) be the uniquely determined solution of
the linear boundary value problem

h=¢ onl,

and consider the functional equation
(5) = Yu)+h, wuweCYZ,RN).

The Schauder estimates again imply that any solution of (5) is actually
of class C3(Q, RN)nC1+¥(Z',RYN), and hence to prove the theorem we need
only find a solution of (5).

Since ¥ is compact we may use the Schauder-Leray degree theory
(cf. [8]), and we shall, in fact, prove that the mapping u -~ F, ,(u), where

FI,B = I—tl]j—sh

has degree one, first for {0<¢<1,8=0} and then for {{=1,0=<s<1}.
Here the degree is calculated with respect to a set 4 < OY%, R¥) and the
element 0 € CY&,RY), 4 being defined by
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A = A(My,M,) = {ueCYZ,RY); du)< M, e(w)<M,}

where M, and M, are properly chosen positive numbers.

Now, since F , has degree one, the homotopy invariance shows that
F, , has degree one if 0 ¢ F, (94) for 0<¢=<1. However, as above, any
solution u € CY(%,RY) of F, o(u)=0 with u € 94 is of class C3(2,R¥) and
is thus a solution of (2) with boundary values zero. Lemma 1 and the
maximum principle then show that % =0, contradicting the assumption
that » € 04, with any choice of M, and M,.

The same argument applies to the set of mappings F; , and we find
that the degree of I, ; is one if 0 ¢ F; ((94) for 0=s=1.

To prove that we choose

M, > supglp|* and M, > k(o‘»Mo)(l‘H?’]CHa(z,RN)) ’

k being the function of Lemma 3. Repeating a by now familiar argument
we see that any w € CY(Z', R¥) satisfying € 04 and F; (u)=0 is actually
of class C3(2,R?Y). Hence u is a harmonic map with boundary values sp,
and the apriori estimate of Lemma 3 shows that

supgd®(w) < M, and supge(u) < M,,

contradicting the assumption that u € 04.
The theorem is proved.
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