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HARMONIC MAPPINGS OF MULTIPLY CONNECTED
DOMAINS

Peter Duren and Walter Hengartner

In this paper the theorem of Radó-Kneser-Choquet is
extended in two different ways to multiply connected do-
mains. One is a direct continuation of Kneser’s idea and has
nothing to do with convexity; while the other asserts that a
finitely connected domain can be mapped harmonically with
prescribed outer boundary correspondence onto a given con-
vex domain with suitable punctures. It is also shown that
a domain containing infinity admits a unique harmonic map-
ping, with standard normalization at infinity, onto a punc-
tured plane. For domains of connectivity n the dilatation of
the canonical mapping covers the unit disk exactly 2n times.
Furthermore, no other normalized harmonic mapping has the
same dilatation.

In 1926, T. Radó [22] posed the problem to show that for any homeomor-
phism of the unit circle onto the boundary ∂Ω of a bounded convex domain
Ω, the harmonic extension f maps the unit disk D univalently onto Ω. In
response, H. Kneser [14] supplied an elegant proof. Some 20 years later G.
Choquet [4], apparently unaware that the theorem was known, rediscovered
it and gave another proof. Fortunately, the two proofs are different and even
for simply connected domains they have different generalizations.

The dichotomy between the two approaches of Kneser and Choquet comes
into sharper focus as the theorem is generalized to multiply connected do-
mains. In presenting these generalizations, it will be expedient to distinguish
between “Kneser’s theorem” and “Choquet’s theorem”. Kneser’s proof has
little to do with convexity, while Choquet’s proof uses convexity in a more
essential way. Indeed, Kneser’s proof applies (as he indicates in [14]) when
Ω is not convex, under the additional hypothesis that f(D) ⊂ Ω. We shall
see that the main idea of his proof carries over to multiply connected do-
mains. On other hand, by methods more akin to Choquet’s proof we will
show that a finitely connected domain D can be mapped harmonically, with
prescribed boundary values, onto a given convex domain with punctures at
suitable points. Another result is that D can be mapped harmonically onto
a punctured plane, and such a mapping is unique up to a normalization. Our
proofs adapt an idea of Clunie and Sheil-Small [5], which gives yet another
proof of the Radó-Kneser-Choquet theorem.
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1. Introduction.

Every complex-valued function f harmonic in a domain D ⊂ C has a local
representation f = h+ g, unique up to an additive constant, where h and g
are analytic. Unless D is simply connected, h and g need not extend globally
to single-valued analytic functions. The Jacobian of the mapping f is

J = |fz|2 − |fz|2 = |h′|2 − |g′|2,

where fz = 1
2
(fx − ify) and fz = 1

2
(fx + ify), z = x + iy. If f is locally

univalent, a theorem of Lewy [18] says that J(z) 6= 0. The function f is
said to be orientation-preserving if J(z) > 0 and orientation-reversing if
J(z) < 0. Note that f preserves orientation if and only if its conjugate f
reverses orientation.

If f is an orientation-preserving harmonic function inD, then fz is analytic
and nonvanishing in D; while the ratio a = fz/fz = g′/h′ is an analytic
function satisfying |a(z)| < 1. This function a(z) is sometimes called the
second complex dilatation of f. Note that the Jacobian can be expressed as
J = |h′|2(1 − |a|2). In the converse direction, it is known (see [11]) that
if a(z) is analytic and satisfies |a(z)| ≤ k < 1 in the unit disk D, and if
Ω is a prescribed simply connected domain bounded by an analytic Jordan
curve, then there is a univalent orientation-preserving mapping f of D onto
Ω satisfying the Beltrami equation fz = afz.

In simplest form, the theorem of Radó-Kneser-Choquet [22, 14, 4] can
be stated as follows. If Ω ⊂ C is a bounded convex domain and if f∗ is an
orientation-preserving homeomorphism of the unit circle T = ∂D onto the
boundary curve ∂Ω, then its harmonic extension

f(z) =
1

2π

∫ 2π

0

1− |z|2
|eit − z|2 f

∗(eit) dt

maps D univalently onto Ω. The theorem remains true, as Kneser’s proof
shows, if Ω is not convex but f(D) ⊂ Ω. Also, the boundary function f∗

need only be a “weak homeomorphism”, possibly constant on some arcs. If
Ω is convex, Choquet’s proof applies at once to give the univalence even if
f∗ has jump discontinuities (suitably restricted), but then the range of f is
typically a polygonal region inscribed in the boundary of Ω.

In attempting to generalize the theorem to multiply connected domains,
the first problem is to define the notion of an orientation-preserving homeo-
morphism of the boundary. If for instance the target region has an interior
slit, it is not easy to specify the direction in which the image point “goes
around” the corresponding boundary component. For a suitable definition
it will be convenient to interpose certain conformal mappings.
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First consider a mapping f∗(eit) = eiθ(t) of the unit circle onto itself. This
mapping f∗ will be called an orientation-preserving weak homeomorphism if
θ(t) is continuous and nondecreasing, and θ(2π) = θ(0) + 2π. Thus as the
point eit runs once around the unit circle, its image eiθ runs once around
the circle, moving continuously in the same direction, although it may have
intervals of constancy.

Now let D be a bounded Jordan domain of finite connectivity n, with outer
boundary C0 and inner boundary curves C1, C2, . . . , Cn. Let D0 denote the
bounded component of C \ C0 (this is D with the “holes filled in”). For
j = 1, 2, . . . , n, let Kj be the bounded component of C \Ω that contains Cj.
Let Ω be another bounded domain of the same connectivity n, whose outer
boundary Γ0 is a Jordan curve and whose inner boundary components Γj
(for j = 1, 2, . . . , n) are locally connected. For 1 ≤ j ≤ n, let ∆j denote
the component of C \ Ω that contains Γj. Let ϕ0 be a conformal mapping
of the unit disk D onto D0, and let ψ0 map D conformally onto Ω0. Finally,
let ϕj (resp. ψj) map the exterior of D onto the complement of Kj (resp.
∆j, whenever ∆j is not a single point), with ϕj(∞) = ψj(∞) = ∞. Since
the boundary components of Ω are locally connected, the mappings ϕj and
ψj have continuous extensions to the boundary. A mapping f∗ from ∂Ω is
said to be an orientation-preserving weak homeomorphism if f∗(Cj) = Γj for
0 ≤ j ≤ n and the composition ψ−1

j ◦ f∗ ◦ ϕj is an orientation-preserving
weak homeomorphism of the unit circle onto itself unless ∆j is a single point
(and hence f∗ is constant on Cj).

2. Generalization of Kneser’s theorem.

We are now prepared to state a generalization of Kneser’s theorem to mul-
tiply connected domains.

Theorem 1. Let D be a bounded finitely connected Jordan domain, and
let Ω be a bounded domain of equal connectivity whose outer boundary is a
Jordan curve and whose inner boundary components are locally connected.
Let f∗ be an orientation-preserving weak homeomorphism of ∂D onto ∂Ω.
Let f be the solution of the Dirichlet problem, the harmonic extension of f∗

to D. If f(D) ⊂ Ω, then f maps D univalently onto Ω. Conversely, if f is
univalent in D, then f(D) = Ω.

Since the harmonic extension f is in particular a continuous function on D
that maps ∂D onto ∂Ω, a known theorem from topological degree theory (see
for instance [24]) guarantees that f(D) ⊃ Ω. Thus the hypothesis f(D) ⊂ Ω
implies f(D) = Ω, and an equivalent formulation of the theorem is that f
maps D univalently onto Ω if and only if f(D) = Ω.
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The basic strategy of proof is that of Kneser [14], but the presence of
additional boundary components creates an additional complication, as will
be seen below. In the spring of 1994 we used a connectedness argument to
overcome the problem, and we announced the result in [6] and [3]. However,
we later received a preprint from Lyzzaik [19] which suggested to us an idea
of homotopy to handle the difficulty in a more elegant way. In the following
proof we have modified our original argument accordingly.

Proof of theorem. The first step is to show that f is locally univalent in D,
or equivalently that its Jacobian J(z) 6= 0 in D. The second step is then to
apply the argument principle for harmonic functions to conclude that f is
globally univalent. The third step is to show that f cannot be univalent in
D if it assumes a value outside Ω.

Step 1. Suppose on the contrary that J(z0) = 0 for some point z0 in D.
Then with the notation f(z) = u(z) + iv(z), the system of linear equations

αux(z0) + βvx(z0) = 0, αuy(z0) + βvy(z0) = 0

has a nontrivial real solution (α, β). In other words, the real-valued harmonic
function ψ(z) = αu(z) +βv(z) has a critical point at z. Since f(D) does not
lie on a line, ψ(z) cannot be constant on D. Let c = ψ(z0) and let Λ denote
the component of the level-set ψ(z) = c that contains z0. At the critical
point, Λ splits into 2m branches (m ≥ 2) emanating from z0 at equal angles.
As Λ extends away from z0 it may branch again as it meets other critical
points, but it cannot terminate at any interior point of D.

Let L be the line in the w-plane (w = u + iv) given by the equation
αu + βv = c, and let L be the component of L ∩ Ω containing the point
w0 = f(z0). Thus L is an open segment in Ω with endpoints P and Q on
∂Ω. Since f(D) ⊂ Ω, it is clear that f(Λ) ⊂ L.

In what follows, we will say that a set A ⊂ C clusters at a set B if there
is a sequence of points zk in A which converges to a point of B. Note that
f−1(P ) and f−1(Q) are disjoint intervals of ∂D, possibly single points, since
f∗ is a weak homeomorphism. (Here f−1(P ) and f−1(Q) are the prime ends
determined by the segment L.) If the set Λ clusters at ∂D, it must do so
either on f−1(P ) or on f−1(Q). If Λ does not cluster at ∂D, it must contain
a closed loop in D. Because Λ has at least 4 branches emanating from z0,
there are two possibilities (not mutually exclusive) to consider. Either
(i) Λ contains a closed loop in D; or
(ii) Two different branches of Λ cluster at the same set f−1(P ) or f−1(Q).

Suppose first that (i) occurs, so that Λ contains a Jordan curve Λ̂ in D
on which ψ(z) ≡ c. If Λ̂ surrounds no boundary components of D, then
since ψ is harmonic inside Λ̂ it follows from the maximum principle that ψ
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is constant there and so ψ(z) ≡ c in D, which is certainly not true because
f(D) is not contained in a line. Thus we may suppose that Λ̂ surrounds some
interior boundary component, say C1. However, we will show that this too
is impossible. Extend the boundary function f∗ to a continuous function
Fj on Kj such that Fj(Kj) = Λj for j = 2, . . . , n. (See Section 1 for the
notation.) Extend the given harmonic function f to a continuous function
F on the doubly connected domain D1 = D ∪ K2 ∪ · · · ∪ Kn by defining
F = Fj on Kj for j = 2, . . . , n. Recall now that by hypothesis, f(D) = Ω.
Thus F is a continuous mapping of D1 onto the doubly connected domain
Ω1 = Ω ∪ ∆2 ∪ · · · ∪ ∆n. Moreover, Λ̂ is homotopic to C0 in D1, while its
image L̂ = F (Λ̂) ⊂ L lies on a line segment in Ω ⊂ Ω1 (since f(D) ⊂ Ω), and
so L̂ is not homotopic to Γ0 = f∗(C0) in Ω1. But this is impossible, because
homotopy classes are invariant under continuous mappings. This shows that
Λ cannot have the property (i); it cannot contain a closed loop in D. A
similar argument rules out the possibility (ii). The assumption J(z0) = 0
has therefore led to a contradiction, and we conclude that J(z) 6= 0 in D.

Step 2. Since f is locally univalent and its boundary function f∗ is orienta-
tion-preserving, it follows that f is an orientation-preserving harmonic func-
tion, whose dilatation a satisfies |a(z)| < 1 in D. A standard appeal to the
argument principle for harmonic functions (see [7], for instance) now shows
that f maps D univalently onto Ω.

Step 3. Suppose now that f is univalent in D but f(z1) /∈ Ω for some
point z1 ∈ D. By Lewy’s theorem f is orientation-preserving in D and its
dilatation a = fz/fz satisfies |a(z)| < 1. In particular, f is an open mapping.
Choose a point z0 ∈ D such that f(z0) ∈ Ω, and let z = z(t), 0 ≤ t ≤ 1, be
a Jordan arc in D from z0 to z1. Define

τ = inf{t ∈ [0, 1] : z(t) /∈ Ω},
and let z2 = z(τ). Then w2 = f(z2) ∈ ∂Ω, and f maps each open neighbor-
hood of z2 onto an open neighborhood of w2, since f is an open mapping.
However, f has a continuous extension to the boundary, and f(ζ) = w2 for
some point ζ ∈ ∂D. From this we conclude that f assumes certain values
near w2 at two distinct points in D, one near z2 and the other near ζ. In
other words, f is not univalent. Thus f(D) ⊂ Ω if f is univalent in D. But
we have already noted that f(D) ⊃ Ω for any continuous extension of the
boundary function f∗, so f(D) = Ω if f is univalent. This concludes the
proof of Theorem 1.

The key to Kneser’s proof is the observation that wherever the Jacobian
of a complex-valued harmonic function f = u+iv vanishes, some real-valued
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harmonic function ψ = αu+ βv has a critical point. If the Jacobian matrix
has rank one at this point z0, or equivalently if |h′(z0)| = |g′(z0)| 6= 0, where
f = h + g is a local representation of f in terms of analytic functions,
then there is exactly one line segment passing through w0 = f(z0) whose
preimage splits at z0. Surprisingly, the direction of this line depends only on
the dilatation of f at z0; specifically, the direction is a(z0)

1/2
. The following

proposition can be verified by straightforward calculation.

Proposition. Let f = h + g be harmonic in a domain D, and suppose
that f(D) does not lie on a line. Suppose that the Jacobian J = |h′|2 − |g′|2
vanishes at some point z0 in D, with |h′(z0)| = |g′(z0)| 6= 0. Let Λ be the set
of points z in D for which f(z) = u(z) + iv(z) lies on a line αu + βv = c
passing through w0 = f(z0). Then Λ splits at z0 if and only if α/β = tanϕ,
where a(z0) = g′(z0)/h′(z0) = e2iϕ is the dilatation of f at z0.

3. Generalization of Choquet’s theorem.

Suppose now that the Jordan domain D is simply connected and that Ω
is a bounded convex domain. Let f∗ be an orientation-preserving weak
homeomorphism of ∂D onto ∂Ω. Then according to Choquet’s theorem, the
harmonic extension f maps D univalently onto Ω. This result is contained
in Kneser’s earlier theorem, since the convexity of Ω ensures that f(D) ⊂ Ω,
but we call it Choquet’s theorem because his proof made stronger use of
convexity. We shall now generalize Choquet’s theorem to multiply connected
domains, where the convexity hypothesis will be essential.

Theorem 2. Let D be a finitely connected domain bounded by Jordan
curves C0, C1, . . . , Cn, where C0 is the outer boundary component. Let Ω be
a bounded convex domain. Suppose that f∗ is an orientation-preserving weak
homeomorphism of C0 onto ∂Ω. Then there is a function f harmonic in D
and continuous in D, mapping D univalently onto Ω with n points removed,
with the prescribed boundary values: f(z) = f∗(z) on C0.

It must be emphasized that the locations of the punctures are not pre-
scribed independently, but will depend upon the given boundary function f∗.
The theorem was previously known for doubly connected domains (n = 1).
Nitsche [21] constructed a harmonic mapping of an annulus onto a disk
punctured at the center. Bshouty and Hengartner [2] proved Theorem 3 for
doubly connected domains, where D may be taken to be an annulus, and
they found in that case that the inner boundary component may always be
mapped to the average value of f∗.
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Proof of theorem. Applying an appropriate conformal premapping, we may
assume without loss of generality that each boundary component of D is
an analytic Jordan curve. We first solve the Dirichlet problem to produce
a function F harmonic in D and continuous in D, with F (z) = f∗(z) on
C0 and F (z) ≡ 0 on the rest of the boundary. Evidently F need not be
univalent, and can not be if n ≥ 2, but it has the other required properties.

Let ωj be the harmonic measure of Cj with respect to D, j = 0, 1, . . . , n.
Let

pjk =
∫
Ck

∂ωj/∂n ds, j, k = 0, 1, . . . , n,

denote the period of the harmonic conjugate of ωj around Ck, and let

γk =
∫
Ck

∂F/∂n ds, k = 1, . . . , n.

It is well known (see e.g. Nehari [20], Chapter 1) that the submatrix (pjk)
for j, k = 1, . . . , n is nonsingular. Thus the linear system

n∑
j=1

λjpjk + γk = 0, k = 1, . . . , n,

has a unique complex solution (λj). Define

f = F +
n∑
j=1

λjωj.

Then f is a harmonic function with boundary values f(z) = f∗(z) on C0

and f(z) ≡ λk on Ck for k = 1, . . . , n. By construction,∫
Ck

∂f/∂n ds = 0, k = 0, 1, . . . , n.

We claim now that all of the points λk lie in Ω. If not, then for a suitable
choice of angle α,

max
z∈D

Re
{
eiαf(z)

}
= Re

{
eiαλj

}
for some λj. This conclusion is justified by the maximum principle for har-
monic functions and the convexity of Ω, together with the properties f(C0) =
∂Ω and f(Ck) = λk for k = 1, . . . , n. Preceding f by a conformal mapping,
we may suppose that Cj is a circle |z − ζ| = ρ with center ζ and radius ρ.
By conformal invariance,

r
∂

∂r

∫ 2π

0

f(ζ + reit) dt =
∫
Cj

∂f

∂n
ds = 0.
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Thus

1
2π

∫ 2π

0

f(ζ + reit) dt ≡ λj ρ < r < ρ+ ε,

for some ε > 0. It now follows from the extremal property that Re{eiαf(z)} =
Re{eiαλj} in the annulus ρ < |z| < ρ+ ε and so (by harmonic continuation)
throughout the domain D. But this is not possible, since f maps C0 onto
∂Ω and so its values in D do not lie on a line. Thus we conclude that all λk
are in D.

It remains to show that f is univalent in D. First observe that f has a
global representation f = h + g, where h and g are analytic in D. Indeed,
the property ∫

Ck

∂f

∂n
ds = 0, k = 0, 1, . . . , n,

says that f has a single-valued conjugate function in D. But if f = h+ g is
a local representation, then Re{f} = Re{h + g} and Im{f} = Im{h − g}.
It follows that h+ g and h− g have single-valued analytic extensions to D.
Thus h and g extend to single-valued analytic functions in D, and f has a
global representation f = h+ g.

Now define the analytic function

φα = eiαh− e−iαg = eiαf − 2 Re{e−iαg},

where α is a real parameter. Since the boundary components Cj are analytic
curves and f is constant on Cj (j = 1, . . . , n), we see that f admits a
harmonic continuation and thus h and g admit analytic extensions across Cj.
Thus the image sets φα(Cj) are bounded horizontal intervals, j = 1, . . . , n.
Because f(C0) = ∂Ω bounds a convex region, it follows that Im{φα} is
nondecreasing on one arc of C0 and nonincreasing on the complementary
arc. Since φα is an open mapping, this implies that φα(C0) is a curve in
the extended complex plane bounding a domain convex in the horizontal
direction, containing all of the segments φα(Cj), j = 1, . . . , n. Let G be the
domain inside φα(C0) with the segments φα(Cj) removed.

To see that φα is univalent in D and maps it onto G, we apply the argu-
ment principle. Fix a point w0 /∈ ∂G and note that∫

∂D

d arg{φα(z)− w0} =
∫
C0

d arg{φα(z)− w0}

=

{
2π if w0 ∈ G
0 if w0 /∈ G.
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Thus φα is univalent in D, and it follows that

φ′α(z) = eiαh′(z)− e−iαg′(z) 6= 0

in D for every α ∈ R. In particular, |h′(z)| + |g′(z)| 6= 0 and |a(z)| 6= 1 in
D. Since f∗ is an orientation-preserving weak homeomorphism of ∂D onto
∂Ω, we conclude that |a(z)| < 1 in D. This allows us to apply the argument
principle [7] to f. For w0 /∈ ∂Ω and w0 6= λj for j = 1, . . . , n, we see that∫

∂D

d arg{f(z)− w0} =
∫
C0

d arg{f∗(z)− w0}

=

{
2π if w0 ∈ Ω
0 if w0 /∈ Ω.

Hence we conclude that f is univalent in D and maps it onto Ω with the
points λk removed. Since f preserves the connectivity of D, the n points λk
must all be distinct. This concludes the proof of Theorem 3.

As corollaries of the proof, we can state two closely related results. The
first may be viewed as a direct generalization of Choquet’s theorem, because
it says that any harmonic extension of the prescribed boundary function is
univalent if it is constant on the inner boundary components, under a mild
hypothesis that holds automatically for simply connected domains. The
second corollary generalizes a characterization of convex mappings due to
Clunie and Sheil-Small [5].

Corollary 1. Let D be a finitely connected domain bounded by Jordan
curves C0, C1, . . . , Cn, where C0 is the outer boundary component. Let Ω be
a bounded convex domain. Suppose that f∗ is an orientation-preserving weak
homeomorphism of C0 onto ∂Ω. Let f = h+ g be any function harmonic in
D and continuous in D, with h and g (globally) analytic in D, such that
f(z) = f∗(z) on C0 and f(z) is constant on each of the inner boundary
components C1, . . . , Cn. Then f is a univalent mapping of D onto Ω minus
the points f(Ck), k = 1, . . . , n.

Corollary 2. Let f = h+ g be harmonic in a finitely connected domain D
and continuous in D. Then f is a univalent mapping of D onto a punctured
convex domain if and only if for each α ∈ R the function φα = eiαh− e−iαg
is a conformal mapping of D onto a slit domain convex in the horizontal
direction.

This last result will be further generalized in Section 4. We now conclude
the present section with some remarks and two examples. First we note
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that Choquet’s theorem fails for unbounded convex domains. An example
was given in [2], but the following example is more instructive. Begin with
the conformal mapping ζ = ξ + iη = 2z/(1 + z) of the unit disk |z| < 1 onto
the half-plane Re{ζ} < 1. Note that the harmonic polynomial

p(ζ) =
1
2

(ζ + ζ) +
1
4

(
ζ2 − ζ2

)
= ξ(1 + iη)

maps each vertical line ξ = ξ0 6= 0 univalently onto itself, while it sends the
whole line ξ = 0 to the origin. Thus

w = f(z) = p

(
2z

1 + z

)
maps the unit circle univalently onto the line Re{w} = 1, but its harmonic
extension to the disk is not univalent.

Choquet’s theorem also fails in spaces of higher dimension. Laugesen [17]
has constructed a homeomorphism of the unit sphere in R3 whose harmonic
extension to the ball is not univalent.

Example 1. As we have already mentioned, one cannot prescribe the loca-
tions of the punctures in Theorem 3 or in Corollary 1. In the special case
where n = 1, we may take D to be an annulus ρ < |z| < 1, so that C1 is the
circle |z| = ρ. Then the construction in the proof of Theorem 2 (or in [2])
gives ∫

C1

∂f

∂n
ds = 0,

so that
∫ 2π

0 f(reiθ) dθ is constant for ρ < r < 1 and the puncture is

λ1 =
1

2π

∫ 2π

0

f∗(eiθ) dθ,

the average of the prescribed boundary function. However, there are other
choices for λ1. For instance, take Ω to be the unit disk and f∗(eiθ) = eiθ.
Then

∫ 2π

0 f∗(eiθ) dθ = 0 and λ1 = 0 is a possible choice. Here the solution of
the Dirichlet problem is

f(z) =
z − ρ2/z

1− ρ2
,

which maps D univalently onto Ω \ {0}. But for any complex constant c the
function

F (z) =
z − ρ2/z

1− ρ2
+ 2c log |z|

is also harmonic in D and has the same boundary function F (eiθ) = eiθ. If
|c| < ρ/(1−ρ2), we claim that F maps D univalently onto the disk punctured
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at p1 = 2c log ρ. This will follow at once from the argument principle if we
can show that the dilatation A = Fz/Fz satisfies |A(z)| < 1 in D. But direct
calculation of the derivatives Fz and Fz leads after some manipulation to
the formula

A(z) = ζ
ζ + b

1 + bζ
, ζ = ρ/z, b = c(1− ρ2)/ρ.

Since ρ < |ζ| < 1 for ρ < |z| < 1, it follows that |A(z)| < 1 in D if |b| < 1,
or if |c| < ρ/(1− ρ2). It is easily checked that |2c log ρ| < 1 under the same
condition.

Example 2. It is natural to ask whether the generalized version of Choquet’s
theorem (Corollary 1) still holds if f is allowed to carry each inner boundary
component to a horizontal segment, not necessarily a single point. If the
dilatation of f has the property |a(z)| < 1, then the answer is YES, by
the argument principle. But in general the answer is NO, as the following
example shows.

Again let n = 1 and let D be the annulus ρ < |z| < 1. Consider the
harmonic function

f(z) = 4z − z/3− 1/(6z)− 2/z,

or

f(reiθ) =
(

11r
3
− 13

6r

)
cos θ + i

(
13r
3
− 11

6r

)
sin θ.

Then the mapping

w = f(eiθ) =
3
2

cos θ +
5
2
i sin θ

is an orientation-preserving homeomorphism from the unit circle onto the
ellipse (

2u
3

)2

+
(

2v
5

)2

= 1, w = u+ iv.

Now choose ρ =
√

11/26, so that 13ρ
3
− 11

6ρ
= 0 and f maps the inner boundary

circle C1 = {z : |z| = ρ} onto a segment of the real axis. Specifically,

f(C1) =
[
−16/

√
286, 16/

√
286

]
≈ [−0.9461, 0.9461],

which lies inside the domain Ω bounded by the ellipse specified above.
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However, a simple calculation shows that f has dilatation

a(z) =
2(6− z2)
24z2 + 1

,

and it is easy to check that a(±ir) = −1 for r = σ =
√

13/22, which satisfies
ρ < σ < 1. Thus the Jacobian of f vanishes at points in D, so by Lewy’s
theorem f cannot be univalent.

It is interesting to go a step farther and investigate the geometric behavior
of this harmonic function f in the annulus. Observe first that f maps the
circle |z| = σ onto the vertical segment i[−16/

√
286, 16/

√
286]. The image

of every other circle |z| = r, for ρ < r < 1, is an ellipse. As r decreases from
1 to σ, these ellipses shrink to the given vertical segment, and indeed f maps
the annulus σ < r < 1 univalently onto Ω minus this vertical slit. However,
as r decreases from σ to ρ, the ellipses begin to overlap and gradually flatten
out to the given horizontal segment as folding occurs. Figure 1 shows the
image of circles |z| = r for r in each of the intervals σ < r < 1 and ρ < r < σ.

Figure 1.

4. Harmonic mappings onto punctured planes.

In this section we show that any domain can be mapped harmonically onto a
punctured plane. It will be convenient to consider a domain in the extended
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complex plane Ĉ, containing the point at infinity. The simplest example is
the domain ∆ which lies outside the closed unit disk. It is easy to see that

f(z) = z − 1/z = (r − 1/r)eiθ, z = reiθ,

maps ∆ univalently onto Ĉ\{0}, the extended plane punctured at the origin.
More generally, it was shown in [12] that a function f provides a univalent
orientation-preserving harmonic mapping of ∆ onto a punctured sphere Ĉ \
{p} if and only if it has the form

f(z) = p+ b[z + cdz + 2(c+ d) log |z| − cd/z − 1/z]

for complex constants b, c and d with b 6= 0, |c| < 1 and |d| ≤ 1. The
corresponding dilatation function is

a(z) =
(
b/b
) 1 + cz

z + c

1 + dz

z + d
.

If we add the requirement that f(z) = z + o(1) near infinity, then p = 0,
b = 1 and c = d = 0; so the function f(z) = z − 1/z is uniquely determined.

Given any domain D ⊂ Ĉ containing the point at infinity, we will say that
f is a canonical harmonic punctured-plane mapping if f provides a univalent
harmonic mapping of D onto some domain Ω of the form

Ω = Ĉ
∖⋃

j∈J
{pj},

for some points pj ∈ C; and if f(z) = z+o(1) near infinity. Observe that the
univalence of f and the normalization at infinity imply that f is orientation-
preserving.

Theorem 3. Every domain D ⊂ Ĉ containing the point at infinity admits
a canonical harmonic punctured-plane mapping F = H+G, where H and G
are analytic (and single-valued) in D. If ∂D has countably many components,
such a mapping is unique.

Proof. Let {Dn} be an exhaustion of D by precompact domains Dn ⊂ D
of finite connectivity which contain the point at infinity and whose bound-
ary components are analytic Jordan curves. Denote by Jθ,n the canonical
conformal mapping of Dn onto a parallel slit domain of inclination θ (with
respect to the positive real axis), normalized at infinity by Jθ,n(z) = z+o(1).
(For the existence and uniqueness of this mapping, and special properties,
see [1, 8, 9].) In particular, J0,n (resp., Jπ/2,n) maps Dn onto a horizontal
(resp., vertical) slit domain, and

Jθ,n(z) = eiθ[cos θJ0,n(z)− i sin θJπ/2,n(z)].
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It is shown in [1] that Jθ,n(z) converges locally uniformly to a function Jθ(z)
which maps D conformally onto a parallel slit domain of inclination θ and is
again normalized at infinity by Jθ(z) = z + o(1). If ∂D has countably many
components, then Jθ is the only function with these properties. Moreover,
the identity

Jθ(z) = eiθ[cos θJ0(z)− i sin θJπ/2(z)]

remains valid.
Now define the function F (z) = Re{Jπ/2(z)} + Im{J0(z)}. Observe that

F is harmonic in D, and it maps each component of ∂D onto a single point.
It also has the standard normalization F (z) = z+o(1) near infinity. Finally,
F has a global decomposition F = H +G, where

H(z) =
1
2
[
Jπ/2(z) + J0(z)

]
and

G(z) =
1
2
[
Jπ/2(z)− J0(z)

]
are single-valued analytic functions in D.

Now consider again the analytic function

Φα = eiαH − e−iαG = eiαF − 2 Re{e−iαG},

where α is a real parameter. The formulas for H and G show that Φα takes
the remarkable form

Φα(z) = cosαJ0(z) + i sinαJπ/2(z) = eiαJ−α(z).

In particular, Φα is univalent and hence Φ′α(z) 6= 0 in D for each α ∈ R. By
the definition of Φα, it follows that |H ′(z)|+ |G′(z)| 6= 0 and |A(z)| 6= 1 in D,
where A = G′/H ′ is the dilatation function of F. But the normalizations of
J0 and Jπ/2 at infinity show that H ′(∞) = 1 and G′(∞) = 0, so A(∞) = 0
and we conclude that |A(z)| < 1 in D.

We claim now that the composed function Q = F ◦J−1
0 is univalent on the

horizontal slit-domain J0(D). To see this, write w = u + iv = Q(ζ), where
ζ = ξ+ iη. Observe first that v = Im{Q(ζ)} = Im{ζ} = η, by the definitions
of Q and F. In other words, the mapping Q sends each horizontal line into
itself. In order to determine the action of Q on a given horizontal line, we
calculate the derivative

∂u

∂ξ
= Re

{
∂

∂ξ
Jπ/2

(
J−1

0 (ζ)
)}

= Re
{
J ′π/2(z)/J ′0(z)

}
,
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where z = J−1
0 (ζ). However, in view of the expressions for H and G in terms

of Jπ/2 and J0, we see that J ′π/2 = H ′ +G′ and J ′0 = H ′ −G′. Thus

∂u

∂ξ
= Re

{
1 +A(z)
1−A(z)

}
> 0, z = J−1

0 (ζ),

because |A(z)| < 1 in D. This implies in particular that Q has a univalent
restriction to each horizontal line that lies entirely in the horizontal slit-
domain J0(D). Furthermore, Q is univalent on each horizontal half-line or
segment that ends at a boundary point of J0(D). To see that two such images
cannot overlap, we have only to recall that F sends each component of ∂D
to a point. The conclusion is that Q is univalent on J0(D), performing
a “horizontal shear” that collapses each boundary component to a single
point. From the univalence of Q it follows that F is univalent in D, so it is
a canonical punctured-plane mapping.

To prove the uniqueness, suppose that ∂D has countably many compo-
nents and let F1 = H1 +G1 and F2 = H2 +G2 be two canonical punctured-
plane mappings of D, with Hk and Gk globally analytic in D. Since each Fk
(k = 1, 2) is univalent and Fk(∞) = ∞, the image Fk(∂D) = ∂Fk(D) is a
bounded set of points. Thus it follows from the maximum principle that the
harmonic function f = F1 − F2 is bounded in D, because f(∞) = 0. Note
also that f is constant on each component of ∂D.

Consider now the analytic functions

Φk,α = eiαHk − e−iαGk = eiαFk − 2 Re{e−iαGk}, k = 1, 2;

and

ψα = Φ1,α − Φ2,α = eiαh− e−iαg = eiαf − 2 Re{e−iαg},

where f = h + g. Since each Fk is univalent in D and Im{Φk,α(z)} is con-
stant on each component of ∂D, the argument principle shows that Φk,α

is univalent in D for every α ∈ R. On the other hand, the normalization
Fk(z) = z+ o(1) near infinity implies that Φk,α(∞) =∞. As a consequence,
the two sets Φk,α(∂D) are bounded for each α. Since ψα(∞) = 0, we conclude
from the maximum principle that ψα is bounded on D. However, we observe
that Im{ψα} = Im{eiαf} is constant on each component of ∂D. There-
fore, if ψα is not constant on D, then ψα(D) is a bounded domain whose
boundary misses all but a countable number of horizontal lines, which is im-
possible. Thus ψα(z) ≡ 0 in D for every α, since ψα(∞) = 0. In other words,
g(z) ≡ e2iαh(z) in D for every α ∈ R. This shows that h(z) ≡ g(z) ≡ 0 in
D, so F1 = F2 and Theorem 3 is proved.
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The following remark may shed some light on the uniqueness assertion in
the theorem. If an infinitely connected domain D has a countable number of
boundary components, then the canonical conformal mapping J0 of D onto
a horizontal slit domain is uniquely determined. This is true more generally
if D admits a normalized conformal mapping onto a horizontal slit domain
whose boundary components project orthogonally onto a set of measure zero
on the imaginary axis. However, for an arbitrary domain containing infinity
there may be more than one normalized conformal mapping onto a horizon-
tal slit domain. (These results go back to Koebe [15]; see also Reich [23]
and Kühnau [16].) Therefore, we cannot expect uniqueness of canonical har-
monic punctured-plane mappings for arbitrary domains. Even in the case
of nonuniqueness, however, it is possible to single out the (well-determined)
mapping obtained through exhaustion by finitely connected domains. This
will be called the canonical harmonic punctured-plane mapping of the in-
finitely connected domain.

The analytic function G in the punctured-plane mapping F = H + G
plays an important role in geometric function theory. Given a domain D
containing infinity, let

D(f, g) =
1
π

∫ ∫
D

f ′(z)g′(z) dxdy

denote the Dirichlet integral of a pair of functions f and g analytic in D.
Then G has a basic “area-minimizing” property, as follows.

Theorem 4. Let D be a domain containing infinity, not a punctured plane,
and let F = H + G be the canonical harmonic punctured-plane mapping of
D. Let G have the expansion

G(z) =
∞∑
n=1

Bnz
−n

near infinity. Then B1 < 0 and D(f, f) ≥ D(G/B1, G/B1) for every func-
tion f analytic in D with the form

f(z) =
1
z

+
∞∑
n=2

cnz
−n

near infinity.

Proof. We will show that D(f,G) = −c1 for every analytic function f with
the form

f(z) =
∞∑
n=1

cnz
−n
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near infinity. In particular, −B1 = D(G,G) > 0, or B1 < 0. But the Schwarz
inequality gives

|D(f,G)|2 ≤ D(f, f) D(G,G),

so it will follow that D(f, f) ≥ −1/B1 = D(G/B1, G/B1) if c1 = 1.
To prove that D(f,G) = −c1, it is enough to consider a finitely connected

domain D bounded by analytic Jordan curves; the general result will then
follow by exhaustion. By the Cauchy-Green formula,∫

∂D

fG′ dz = 2i
∫ ∫

D

f ′G′ dxdy,

where the boundary curves are traversed in the positive (clockwise) sense
with respect to D. Thus

D(f,G) = − 1
2πi

∫
∂D

fG′ dz.

On the other hand,
H ′ dz +G′ dz = dF = 0

on ∂D, because F is a punctured-plane mapping. Consequently,

D(f,G) =
1

2πi

∫
∂D

fH ′ dz = −c1

by the residue theorem, since H(z) = z + o(1) near infinity.

Corollary. If the domain D omits a disk of radius R, then |B1| ≥ R2, and
this inequality is sharp.

Proof. Suppose for convenience that D omits the disk |z| ≤ R, and choose
f(z) = 1

z
. Then

1
|B1| ≤ D(f, f) =

1
π

∫ ∫
D

1
|z|4 dxdy ≤

1
π

∫ 2π

0

∫ ∞
R

1
r3
drdθ =

1
R2
,

or |B1| ≥ R2. To see that the estimate is sharp, observe that F (z) = z−R2/z
is the canonical punctured-plane mapping of the domain |z| > R.

The following theorem was obtained in [11] for simply connected domains.

Theorem A. Let a(z) be an analytic function on the unit disk D with
|a(z)| < 1. Let Ω be a bounded Jordan domain containing the point w0.
Then there exists a univalent solution of the Beltrami equation fz = afz
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such that f(0) = w0, fz(0) > 0, f(D) ⊂ Ω and f∗(eit) ∈ ∂Ω a.e., where f∗

denotes the radial limit of f.

Such a theorem does not hold on the domain ∆ = {z : |z| > 1} exterior
to D. Indeed, the following example was given in [12]. Let a(z) = 1/z2 and
let K be a continuum. Then there is no univalent solution of fz = afz such
that f(z) = z+ o(1) at infinity, f(∆) ⊂ Ω = Ĉ \K, and f∗(eit) ∈ ∂Ω a.e. In
fact, the only univalent normalized solution is the canonical punctured-plane
mapping F (z) = z − 1/z.

We shall now see that this example is actually a special case of a much
more general theorem. For a domain D ⊂ Ĉ containing the point at infinity,
let

∑
H(D) denote the class of all univalent harmonic mappings f defined

on D and normalized at infinity by f(z) = z + o(1). Then in contrast to
Theorem A, the following uniqueness theorem holds true.

Theorem 5. Let D ⊂ Ĉ be a finitely connected domain containing the
point at infinity, let F = H +G be the canonical harmonic punctured-plane
mapping of D, and let A = G′/H ′ be its dilatation function. Let f ∈∑H(D)
be a solution of fz = Afz in D. Then f = F.

Proof. With no loss generality, we may assume that each boundary compo-
nent Cj, j = 1, . . . , n, is an analytic Jordan curve. Therefore, F admits a
harmonic continuation across ∂D and A has an analytic continuation across
∂D. Suppose first that f is continuous together with its first partial deriva-
tives in D \ {∞}. In what follows, integrations over the boundary ∂D are
taken in the positive (clockwise) direction with respect to D. By Green’s
theorem,

1
2i

∫
∂D

f(z)f ′(z) dz = −m(K) ≤ 0,

where m(K) is the area of the compact set K = Ĉ \ f(D) omitted by f. If
f 6= F , then F − f is a nonconstant orientation-preserving mapping, since it
satisfies the Beltrami equation with |A(z)| < 1 in D. Thus by the generalized
argument principle (see [7]), F−f is an open mapping. Since F−f is smooth
up to the boundary and (F − f)(∞) = 0, it follows that the area integral∫ ∫

D

{|H ′ − h′|2 − |G′ − g′|2} dxdy
=

1
2i

∫
∂D

{(
H − h

)
(H ′ − h′)−

(
G− g

)
(G′ − g′)

}
dz

=
1
2i

∫
∂D

(
F − f

)
d(F − f) > 0,

where f = h + g and Cauchy’s theorem for analytic functions has been
applied. In other words, the last integral is finite and positive. On the other
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hand, F is constant on each component of ∂D and so dF = 0. Consequently,

1
2i

∫
∂D

(
F − f

)
(F − f) =

1
2i

∫
∂D

f df − 1
2i

∫
∂D

F df = −m(K) ≤ 0,

a contradiction which proves that f = F under the smoothness assumption.
The result is now extended to the general case by applying the special result
to a sequence of smoothly bounded domains Dn ⊂ D which exhaust D. The
conclusion is again that∫ ∫

D

{|H ′ − h′|2 − |G′ − g′|2} dxdy = 0,

which implies that f = F. This proves the theorem.

Finally, the dilatation of the canonical harmonic punctured-plane mapping
has a remarkable property: It maps the domain D onto the 2n-times covered
unit disk, where n is the connectivity of D. This property was previously
noted in [12] for doubly connected domains; see also [13]. The general result
is essentially contained in Goluzin’s book ([8], Chapters V and VI; see esp.
pp. 291-292), where it is presented in a different context. Goluzin’s parallel
slit mappings are normalized at a finite point rather than at infinity, but
small modifications of his argument establish this property of the dilatation.
Acknowledgments. The work of the first-named author was supported
in part by an NSF grant (DMS-9401693), that of the second-named author
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