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HARMONIC MAPS INTO SINGULAR SPACES
AND p-ABIC SUPERRIGIDITY

FOR LATTICES IN GROUPS OF RANK ONE

By MIKHAIL GROMOV and RICHARD SCHOEN

Introduction

In Part I of this paper we develop a theory of harmonic mappings into non-
positively curved metric spaces. The main application of the theory, which is presented
in Part II, is to provide a new approach to the study of /?-adic representations of
lattices in noncompact semisimple Lie groups. The celebrated work of G. Margulis
[Mar] establishes "superrigidity" for lattices in groups of real rank at least two. The
fact that superrigidity fails for lattices in the isometry groups of the real and complex
hyperbolic spaces is known. In fact, Margulis deduced as a consequence of superrigidity
the conclusion that lattices are necessarily arithmetic in groups of rank at least two.
Arithmeticity of lattices was conjectured and proved in some cases by A. Selberg (see
[Se] for discussion). Constructions of nonarithmetic lattices in the real hyperbolic case
were given by Makarov [Mak], Vinberg [V], and Gromov-Piatetski-Shapiro [GPS].
For the complex hyperbolic case, nonarithmetic lattices have been constructed in low
dimensions by G. D. Mostow [Mos] and Deligne-Mostow [DM]. In this paper we
establish /?-adic superrigidity and the consequent arithmeticity for lattices in the
isometry groups of Quaternionic hyperbolic space and the Cayley plane (the groups
Sp(n, 1), n^2 and F^20). Archimedian superrigidity for these cases has been esta-
blished recently by K. Corlette [C] who used harmonic map theory together with a
new Bochner formula and vanishing theorem to prove the result. We show here that
representations of lattices in Sp(n, 1) and F4 in almost simple/?-adic algebraic groups
have bounded image. This is accomplished by the construction of an equi variant
harmonic map from the symmetric space into the Euclidean building of Bruhat-
Tits [BT] associated to the ^-adic group. We analyze the structure of such maps in
detail, and show that their image is locally contained in an apartment at enough
points so that differential geometric methods may be applied. In particular, we apply
the Corlette vanishing theorem to show that the harmonic map is constant, and
conclude that the representation has bounded image.

We also prove that equivariant harmonic maps of finite energy from a Kahler
manifold into a class of Riemannian simplicial complexes (referred to as F-connected)
are pluriharmonic. The class of F-connected complexes includes Euclidean buildings.

* Research partially by NSF grant # DMS-03076.
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This result generalizes work of Y. T. Siu [Siu] which implies the same result for maps
to manifolds with nonpositive curvature operator.

We now briefly outline the contents of this paper. We consider maps into locally
finite Riemannian simplicial complexes, by which we mean simplicial complexes with
a smooth Riemannian metric on each face. In the first four sections of this paper we
develop methods for constructing Lipschitz maps of least energy in homotopy classes
or with the map specified on the boundary provided the receiving space (complex)
has non-positive curvature in a suitable sense. This generalizes the theorems of J. Eells
and J. H. Sampson [ES] and R. Hamilton [Ham] who proved these results for maps
to manifolds of nonpositive curvature. We also prove and use convexity properties
of the energy functional along geodesic homotopies to prove uniqueness theorems

generalizing those of P. Hartman [Har]. A key property of harmonic maps which we
exploit to prove these results is a statement to the effect that harmonic maps can
achieve their value at a point only to a bounded order, and near the point they can
be approximated by homogeneous maps from the tangent space of the domain
manifold to the tangent cone of the image complex at the image point. These
homogeneous maps have degree at least one and, at most points, they must have
degree equal to one. The homogeneous maps of degree one are compositions of an
isometric totally geodesic embedding of a Euclidean space into the tangent complex
with a linear map of Euclidean spaces. In particular, these maps identify flat totally
geodesic submanifolds of the tangent complex.

In section 5 we define an intrinsic notion of differentiability for harmonic maps
based on how well approximated they are near a point by maps which are homoge-
neous of degree one in an intrinsic sense. We then prove a result which enables us to
establish differentiability of a map based on the differentiability of maps into a totally
geodesic subcomplex which approximately contains the local image of the map. This
result is the main technical tool of the paper as it can be used to show that the local
image of a harmonic map under appropriate conditions is actually in a subcomplex
whose geometry is simpler than that of the ambient complex. We then apply this
result to assert differentiability of harmonic maps into one-dimensional complexes.

In section 6 we define a class of complexes which we refer to as F-connected. A
^-dimensional complex is called ^-connected if each of its simplices is isometric to a
linear image of the standard simplex and any two adjacent simplices are contained in
a /r-flat, by which we mean a totally geodesic subcomplex isometric to a region in R\
We then show that harmonic maps into F-connected complexes are differentiable, and
we give a detailed discussion of the size of the set of nonsmooth points, by which we
mean points for which the local image of the map is not contained in a ^-flat.

In section 7 we carry through the Bochner method (in particular the Corlette

vanishing theorem) for maps into F-connected complexes. We establish pluri-harmonic
properties for maps of Kahler manifolds, and show that finite energy equivariant
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maps are constant from the Quaternionic hyperbolic space or the Cay ley plane. We
also extend the existence theory to include the construction of finite energy equivariant
maps into buildings associated to an almost simple ^-adic algebraic group H. We
show that either the harmonic map exists or the image of the representation lies in a
parabolic subgroup of H. In particular, if the image of the representation is Zariski
dense in H, then the harmonic map exists. The hypothesis on the domain manifold is
very general here. One requires only that it be complete. In section 8 we establish our
^-adic superrigidity results and discuss the arithmeticity of lattices.

Finally in section 9 we discuss the structure of harmonic maps of Kahler manifolds
into trees and buildings. We describe an extension of our work to maps in Z-trees
and use it to show that the fundamental group of a Kahler manifold cannot be an
amalgamated free product unless the manifold admits a surjective holomorphic map
to a Riemann surface. Applications of harmonic maps into trees similar to those done
in section 9 were also obtained by C. Simpson [Sim].

A technical device which plays an important role in determining the structure of
harmonic maps into nonpositively curved complexes is the monotonicity in a of the
ratio Ord (x, a, Q) defined in section 2. For harmonic functions on R" this is a
classical fact which is the L2 version of the Hadamard three spheres theorem. It
says that the logarithm of the mean L2 norm of a harmonic function on a sphere of
radius r is a convex function of log r. We prove in section 2 a global geometric version
of this result. Its proof relies on the usual monotonicity formula for harmonic maps
(which plays an important role in the regularity theory of Schoen-Uhlenbeck [SU] for
energy minimizing maps into manifolds) combined with the strong convexity of the
distance function on a nonpositively curved complex. A ratio of this type has been
used by a variety of authors on various elliptic PDE problems. A partial list includes
Agmon [Ag], Almgren [Al], Garofolo-Lin [GL], Landis [Lal, La2], Lin [Lin],
Miller [Mi]. The first author to realize the importance of this type of result for proving
unique continuation properties of solutions of general classes of elliptic equations
seems to have been S. Agmon [Ag] in 1965. (The earlier papers of Landis are also
quite closely related.) The optimal unique continuation result was proved by this
method only recently in [GL].

The work in this paper was initiated by a suggestion of the first author that it
might be possible to develop a harmonic map theory into nonpositively curved metric
spaces, and that, in interesting cases, the resulting maps might be regular enough so
that the Bochner method could be applied. In particular, he had a conjecture on the
singular structure of harmonic maps into trees. He also proposed a version of the
heat equation method which might be used to produce such harmonic maps. The
work in Part I of this paper comprises the second author's solution to this problem.
The approach taken is a variational approach rather than a heat flow method. The
conjectured behavior of harmonic maps to trees is shown to be substantially correct
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(with a slightly worse blow-up of derivatives near singular points than conjectured).
Note that the theory developed in this paper is largely independent of discrete group
theory, and should be viewed as a part of the geometric calculus of variations.

The authors are grateful to Kevin Corlette for pointing out several errors in the
first version of § 9 and to Ralf Spatzier for a useful conversation about buildings.
The second author thanks Scot Adams and Alex Freire for several suggestions for
improving the exposition. Many of these have been incorporated in the final version
of the paper.

History, motivation and examples

We develop in this paper a theory of harmonic maps into certain singular spaces
with non-positive curvature. The simplest example of such a space is the tripod

(see Figure 1) that is the union of three copies of the segment [0, 1] identified at zero,
such that the distance between every two points a and b lying in different copies of
[0, 1] by definition equals a +6,

FIG. i.

Similarly, one may consider n-pods obtained by joining n intervals. Then we
see further examples by looking at graphs (i.e. connected 1-dimensional simplicial
complexes) which are endowed with metrics locally isometric to the above n-pods.

Notice that the distance between every two points x and y equals the length of the
shortest path in X between x and y that is an isometric embedding of the interval
[0, 5 = Dist (x, y)] c R into X with 0 \—> x and 8 \—>y. If the points x and y lie sufficiently
close together, then the minimal path is unique. In fact, if X is a k-pod then this
uniqueness holds for all pairs of points and this manifests the (not yet defined) non-
positivity of curvature of X.

The next important example is provided by Bruhat-Tits euclidean buildings asso-
ciated to reductive ^-adic Lie groups. For us, a building is a simplicial complex X
which is accompanied by a simplicial action of a (p-adic Lie) group G. One knows
that such an X carries a G-invariant metric (with curvature ^0) such that

(a) Every simplex in X is isometric to an affine simplex in some Euclidean space.

(b) Every two points in X can be joined by a unique shortest path (geodesic)

lying in the union of some top-dimensional simplices.
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Moreover, the buildings have the following remarkable property:

For every two points x and y in X there exists an isometric embedding of R^ into

Xfor /r=dimX, such that the image of this Rk, called a k-flat in X, contains x and y .

(See [BT] and [B] for information on buildings.)

One can easily grasp the geometry of 1-dimensional buildings as these are just
regular trees i.e., simply connected 1-dimensional simplicial complexes where all edges
have the same length and where all vertices have the same number of adjacent edges.
The geometry of higher dimensional buildings is somewhat more elaborate but one
gains some insight by looking at the Cartesian products of regular trees. (These
products are not quite buildings in the above sense as they are built of cubes rather
than simplices but they are buildings in the sense of [BT] — which allows polysimplicial
complexes — , they do have non-positive curvature and all pairs of points are connected
by ^c-Hats.)

We shall not discuss at this stage the general notion of non-positive curvature,
expressed by K (X) ̂  0, for general metric spaces X, but rather indicate the following.

Examples. — (1) If X is a smooth Riemannian manifold, then K(X)<0 signifies
that the sectional curvature ofX is everywhere ^0. In particular, the symmetric spaces

of non-compact type have K<0.
Recall that these symmetric spaces have the form X = G/H where G is a connected

semisimple Lie group with finite center and without non-trivial compact factor groups
and H is a maximal compact subgroup. Every such X admits a G-invariant Riemannian
metric (since H is compact) and this metric has K^O by a theorem of E. Cartan. The
basic example here is the space

X=SL,(R)/SO(^»

which may be thought of as the space of positive definite quadratic forms on the
^-dimensional linear space.

Notice that the buildings discussed earlier are substitutes, for ;?-adic groups, of
the symmetric spaces. In the ;?-adic case one has several maximal compact subgroups
in G corresponding to different G-orbits on the set of vertices of the building. Also
observe that the dimension of a building corresponds to the rank (rather than dimen-
sion) of a symmetric space X.

Recall that rank (X) is the dimension of a maximal flat in X, i.e., a totally
geodesic submanifold isometric to Rk. For example, rank (SL^ (R)/SO (n)) = n — 1 and
a maximal flat consists of the set of quadratic forms which are diagonal with respect
to a fixed basis.

(Super) rigidity. — Consider a symmetric space of non-compact type, called M,
(it is secretly thought of as the universal covering of a compact manifold M) and let
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r be a discrete faithful group of isometries acting on M (if F acts freely on M then,
in fact, M is the universal covering of M = M/F). Then we take another space, say X,
and let r act isometrically on X, where now the action need not be discrete or faithful.
In the cases we are most concerned with, X is either a building or a symmetric space
of non-compact type. In this case, X is topologically contractible and therefore there
exists a continuous F-equivariant map UQ : M -> X which is unique up to F-equivariant
homotopy. (If the actions of F on M and X are discrete and free then F-equivariant
maps M —> X correspond to continuous maps M/F -> X/F.)

We call the above setup rigid if the map UQ is F-equivariantly homotopic to a
geodesic map u: M -> X, which means that the graph F^ c= M x X is a totally geodesic
subspace of the Cartesian product.

The first instance of rigidity was discovered by Mostow in the case where M
and X are manifolds of constant negative curvature of equal dimension ^ 3 and where
the action of F is discrete and cocompact on M and on X. ("Co-compact" signifies
"the quotient space is compact".) This was extended later by Mostow to other
equidimensional symmetric spaces and then a similar result was proven by Prasad
and Ragunathan for equidimensional buildings. Finally there came.

Margulis' superrigidity theorem. — If M is an irreducible symmetric space of

rank >2 and the action ofY has finite covolume (i.e., Vol M/F<oo) then the above

setup is rigid (i. e., UQ is homotopic to a geodesic map whenever X is an arbitrary building

or a symmetric space).

The celebrated corollary of this rigidity is Margulis's arithmeticity theorem for F
which says that F is obtained from the lattice SL^ (Z) <= SL^ (R) by certain elementary
algebraic manipulations. (These are: taking the intersection of SL^ (Z) with Lie
subgroups in SL^ (R), applying surjective homomorphisms between Lie groups with
compact kernels, replacing discrete groups by subgroups of finite index or enlarging

groups by finite index extensions.)

Remarks. — (a) Margulis has also proved his theorem for certain reducible spaces
(which are Cartesian metric products M ^ M ^ x M ^ ) but we stick to the irreducible
case for the purpose of the exposition. In this case every geodesic map u: M -> X is
either constant or is an injective map onto a totally geodesic submanifold M' c= X. In
fact, the map M -> M' becomes an isometry if we change the metric in M by a
multiplicative constant. Furthermore, if X is a building, then u is necessarily a constant
map which sends all of M to a fixed point of F acting on X. Thus the j^-adic
superrigidity amounts to the existence of a fixed point for every action of F on a

building.

(b) The superrigidity fails to be true for certain symmetric spaces M of rank one.
Such examples are easy to construct for M a real hyperbolic space and there are
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(more complicated examples) for the complex hyperbolic space. What remains of rank
one are the quaternionic hyperbolic spaces and the hyperbolic Cayley plane. These
long have been suspected to be as rigid as rank ^2 spaces as Kostant has shown that
they satisfy Kazhdan's T-property (see [HV]) and also a kind of metric rigidity proven
by Pansu (see [GP]). Then, recently, the real superrigidity (i. e., for X a symmetric
space) was proven by K. Corlette [C] using harmonic maps M -> X and one of the
goals of the present paper is to do the same in the /?-adic case where X is a Bruhat-
Tits building.

(c) Margulis9 approach, unlike those by Mostow and Corlette, does not directly
involve symmetric spaces and geodesic maps but rather deals with Lie groups and
continuous homomorphisms. Notice that a geodesic map between symmetric spaces
immediately gives us a homomorphism between the relevant (isometry) groups as
central symmetries of a geodesic subspace canonically extend to symmetries of the
ambient space. But going from group homomorphisms to geodesic maps (which we
do not need for this paper) requires a non-trivial Lie algebraic lemma by Mostow
(see [GP]).

Idea of harmonic maps. — The classical Dirichlet energy of a smooth function u,
r r

that is l l g r ad^H 2 or better, ||^||2, can be defined for a smooth map between
J j

Riemannian manifolds, u: M -> Y, by

E(u)= e(u)d\ji
JM

where e (u) is the so called energy density of u whose value at m e M is given by

e(u)(m)=^\\D^u)\\\

where

D,(^:T,(M)-.T^(Y)

is the differential of u whose norm is defined by || D || = Trace D* D where D* denotes
the adjoint operator. (If one uses orthonormal bases which diagonalize D the ||D||2

dim M

becomes ^ 'kf for the diagonal entries ^.)
1=1

One should slightly modify the domain of integration for F-equivariant maps
u: M -^ X by first observing that the density function e (u) is F-equivariant and so
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descends to a function on M=M/F, also denoted e(u). Then we set

^ def F
E(u)= e(u)dvi.

JM

A smooth map between Riemannian manifolds is harmonic if it satisfies the Euler-
Lagrange equation for the energy functional. Thus every energy minimizing map
M -> Y in a fixed homotopy class (if such a map exists at all) is harmonic. The similar
conclusion applies to F-equivariant map M -> X minimizing the above equivariant
energy.

The theory of harmonic maps into nonpositively curved manifolds starts with the
following existence theorems proven by Eells and Sampson [ES] in 1964 which came
before the first rigidity result by Mostow.

If X is simply connected, K (X) ̂  0 and the actions of Y on M and X are discrete

and co-compact then there exists a smooth energy minimizing Y-equivariant map

u\ M^X.

Moreover, one knows in the above situation that every harmonic map necessarily
is energy minimizing, and such a map is unique up to a parallel translation in X. This
means (apart from some irrelevant pathological examples) that there exists a
r-invariant totally geodesic submanifold X' c X which isometrically splits as
X' = Xo x R' such that the image of every F-equivariant harmonic map M -> X is
contained in X' and any two such maps can be obtained one from another by applying
the (obvious) action of R' on X\ (This uniqueness result is due to Hartman [Har].)

Notice that every geodesic map M -> X is (obviously) harmonic and, moreover,
energy minimizing (at least in the case where the total energy is finite). Furthermore,
the above parallel translation moves geodesic maps again to geodesic maps and so
the existence of a single geodesic F-invariant map M -> X implies that every harmonic
map is geodesic. This suggests the following approach to the (super) rigidity problem:
First construct an energy minimizing F-equivariant map M -> X and then show that
every harmonic map is geodesic. In fact, such a result appears in the original paper
by Eells and Sampson, as they prove that every F-invariant harmonic map of M = R"
into an arbitrary manifold X with K (X) ̂  0 is geodesic. Then they combine this with
their existence theorem and come to the following conclusion.

Let M and Y be closed (i. e. compact without boundaries) Riemannian manifolds

where M is flat (i.e., K(M)=0) and K(Y)^0. Then every continuous map M-^Y is

homotopic to a geodesic map. In particular, if the fundamental group of Y contains a

subgroup isomorphic to Z2
 then Y contains an immersed totally geodesic flat torus.

The proof of the implication

harmonic => geodesic
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is similar to the following classical argument showing that every harmonic function u

on a closed manifold M is constant. The basic formula here reads

div (u grad u) = || grad u ||2 + u Au.

If u is harmonic and A^=0, this formula shows that ||grad^||2 equals the divergence
of a vector field and so integrates to zero

r r|| grad u ||2 = d\v(ugradu)=0.
JM JM

Thus grad u=Q which means (as M is assumed connected) u is constant.
The proof of Eells and Sampson uses a more elaborate expression which involves

the Hessian of u (rather than the gradient) which measures the totality of the second
derivations of u and which vanishes if and only if u is geodesic. Here is the Bochner
formula of Eells and Sampson:

If M is flat then every smooth harmonic map u'. M -> X satisfies at each point
meM,

llHess^H^A^+K*

where e denotes the energy density (function) on M and K* is a certain (real valued)
function on M obtained by pulling back the curvature tensor of Y to M by the
differential of u and then by taking an appropriate trace of the resulting tensor on M.
The explicit formula for K* is not important at the moment but we need the following
crucial property of K*:

if K (Y) ̂ 0 then also K*^0

(this is true for all C^-maps u, not only for harmonic ones). Now, since A=div grad,
the integral of Ae over M vanishes and thus

r
llHess^)!!2^ K*<0

«/

which for K(Y)^0 implies that

Hess (u) = 0

as well as

K*=0.

The first relation, as we know, tells us that u is a geodesic map and the second relation
says (once the explicit formula for K* is written down) that the curvature (2-form)
of Y vanishes on the image of the differential of u. (In this particular case the second
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conclusion can be derived from the first one but for some Bochner-type situations
one should keep track of both terms separately.)

The idea of using harmonic maps for rigidity problems was widely discussed since
the appearance of the first paper by Mostow. One also was encouraged by the local
rigidity results established earlier by Calabi-Vesentini and A. Weil where the Bochner
method had been successfully carried through in the infinitesimal (and hence linear)
setting. However, it took more than 10 years before the first usable Bochner formula
was found by Siu in 1978. Siu's formula applies to harmonic maps between Kdhler

manifolds and shows, in the case where a certain curvature of the target space is
nonpositive, that every harmonic map is either holomorphic or antiholomorphic. Siu's
formula was modified by Sampson who considered harmonic maps u of a Kahler
manifold M into an arbitrary Riemannian manifold. Sampson expressed the complex

Hessian \\dJ du\\
2 as a sum of a divergence term and a certain curvature expression

(like the above K*) pulled back from the target manifold. Then, assuming his curvature
is ^ 0, Sampson concludes the vanishing of the Hessian dJ du (here J stands for the
complex structure operator in M and the two d ' s are appropriate differentials) which
means (more or less by definition) that u is a pluriharmonic map, i.e., the restriction
of u to every complex submanifold in M is harmonic. Furthermore, Sampson has
shown that his curvature is ^ 0 for symmetric spaces of non-compact type and thus
proved the following pluriharmonic (rather than geodesic) rigidity theorem.

Every continuous map of a compact Kdhler manifold into a compact locally sym-

metric space X with K(X)^0 (i.e. of non-compact type) is homotopic to a pluriharmonic

map.

(This result together with the circle of surrounding ideas was explained by
D. Toledo to the first author some time ago.)

The simplest case where Sampson's theorem applies is that of the flat torus Y=T
where the Siu-Sampson formula reduces to the classical Hodge identity /^u=28*9u

for some function u: M -> C. (The corresponding pluriharmonicity theorem claiming
that every continuous map M -> T" is homotopic to a pluriharmonic map can probably
be dated back to Poincare or maybe to Riemann.)

Maps to singular spaces. — Now we turn to the /?-adic (super) rigidity problem
where the receiving space X is a Bruhat-Tits building and we want to see what remains
of the theory of harmonic maps when the target space is singular. First of all we
should define a notion of the energy for maps into non-Riemannian metric spaces.
This can be done in a variety of ways in a quite general situation. The most direct
definition uses the squared ratio (stretch) between the distances in M and Y, i.e.,

S(m^ m^)=Dist^{u(m^), u(m^))/Dist^(m^, m^)

which makes sense (for m^m^) for maps between arbitrary metric spaces. Then one
can integrate S over the s-neighborhood of the diagonal in M x M, say Ng <= M x M
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(here one needs the Riemannian measure in M and one assumes d imM^l) and
define the energy by

r
E(u)= lim sups"^"^ S(mi, m^dm^dm^

e -+ 0 JN.

Notice that in the smooth case this agrees with the classical definition up to a
normalizing constant. In fact, the above limit formula gives an intuitive explanation
for the Dirichlet energy classically defined with infinitesimals. (One may slightly modify
the above by using instead of the Riemannian measure restricted to Ng another
approximation to the 5-measure on the diagonal, for example the normalized heat
kernel on M for time tending to zero.)

Another more practical (but indirect) definition for maps into buildings X (and
similar spaces) can be made by locally isometrically embedding X into some R^^ thus
reducing the definition to the classical case (see section 1).

The simplest case to look at is where M=[0, 1] and where one can define the
energy density of a map u at m by

e(u)= -lim supS(m\ m")
2. m' -> m

and then set

r1
E(u)= e(u)dm.

Jo

This energy E(u) on maps u: [0, 1] —> X is well behaved under rather general assump-
tions on X and E(u) assumes its minimum at the geodesic curves in X parametrized
by a multiple of the length parameter. (A geometric study of these curves in the
situation where the singularity comes from an obstacle inside a smooth manifold Y
was conducted in [ABB].)

Notice that one can recapture some properties of the energy E (u) for dim M ̂  2
from dim M = 1 by restricting u to the unit geodesic segments in M, taking the energy
of the restricted maps and then by integrating over the unit tangent bundle of M. Yet
one does not expect a meaningful higher dimensional variational theory for E (u)

unless the "curvature" of the receiving (singular!) space X is somehow bounded
from above. The most convenient (for us) definition of K(Y)^0 (suggested by

A. D. Alexandrov many years ago) can be best seen in the universal covering X of Y.
Here is a list of the properties of X given in the order of increasing strength which
can be used as a definition for K(X)^0 (and thus for K(Y)^0, compare section 2.1).
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1. Every two points in X can be joined by a unique distance minimizing geodesic
segment.

2. The distance function Dist (x^, x^) on X x X is convex on the cartesian products
of geodesic segments.

3. The distance function on X is "more convex" than the distance on X'=R2 .
Namely, if we take geodesic segments of the same length in X and X' which are both
identified with [0, 8] <= R (for 5 the distance between the ends), then the equalities

Dist(xo, 0)=Dist(xo, 0)
X' X

Dist(xo, 8)= Dist (^o, 8)
X' X

imply that

Dist(xo, 0>Dist(xo, t)
X' X

for all te[0, 8].
The convexity of the distance implies that the energy E(u) is convex under

geodesic deformations of maps which implies Hartman's uniqueness theorem (see
section 4). Furthermore, the convexity of the distance allows one to define a good
notion (in fact several non-equivalent notions) of the center of mass (see [K]) of a
finite measure |LI on X. (The standard definition of center (|LL) refers to the point XQ e X

r
which minimizes Dist2

 (x^ x) d^. Another possible definition uses the map
Jx

c: X x X -> X assigning to (x^, x^) the center of the geodesic segment between x^ and
x^. This c pushes forward the measure \i x ^ to a measure on X, say (^, and thus, by
induction, one has (^ coming from |̂  x |̂  etc. Then one defines the center of ^ as
the (one point!) support of the weak limit of ̂  for ;' -> oo.) This gives us a possibility
to regularize a map u: M -> X using smoothing kernels K (m, m) on M as follows.
Assign to each point m e M the measure K^ = K (m, m) dm for the Riemannian
measure dm' on M, and define the regularization u of a given map u by defining u

(m) to be the center of the ^-push-forward of K^ to X, meM. This operation works
particularly nicely if M is a compact flat manifolds, say a flat torus T", and K is of
the form K(m, mf

)=L(m—m
f
). In order words, the |LI in this case comes from some

measure X, (corresponding to L) on the torus acting on itself by parallel translation.
In fact, given any family of selfmappings o fM (e.g., of isometries or more general
selfdiffeomorphisms) and a measure on this family, we obtain by composing with u a
family of maps M -> Y, say u with a measure dk. Now we can "average" this family
over the parameter space with the measure ^ by applying a center of mass construction
at each point meM.
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In the case where the measure ^ is supported on the isometries ofM, this
smoothing decreases the energy density at each point of M (for any conceivable
definition of the energy) provided the chosen center of mass operator is contracting
in the appropriate sense. (Here it is appropriate to use the center of mass defined
above with the map c : X x X - ^ X where the needed contraction property directly
follows from the convexity of the distance function on X x X.) It follows that every
energy minimizing map u: M -> X is invariant under such regularization and conse-
quently, in the case M = T" (and more generally, for M Hat), the minimizing map is
geodesic. Thus the "flat => geodesic" theorem of Eells-Sampson extends to maps into
singular spaces.

Recall that the basic existence theorem of Eells and Sampson for harmonic maps
is based on a certain construction of a heat flow (in the space of maps u: M -> Y)
which can be (at least formally) perforce used for singular spaces Y with K(Y)^0
using the above smoothing operators. (The smoothing operators, the way we describe
them, must be performed for the corresponding maps between the covering mani-
folds M-^X=Y on the global center of mass defined in X but not Y. Yet this
causes no problem as all relevant constructions are invariant under F c= Isom.
group (X).) Namely, for every t>0 and f = l , 2 , . . ., we consider the ordinary heat
kernel K (w, m\ t / i ) on the covering M on M (corresponding to the universal
covering X of Y) and apply the smoothing i times to a given map u: M-^X.
(Here we speak the language of F-equivariant maps M -> X corresponding to maps
M=M/r -> Y=X/F). The limit (or sublimit, whichever existence one is able to prove)
of these iterated smoothings for ; -> oo defines the action of the heat flow on u at the
time i. Since the (regularity) properties of the Eells-Sampson heat flow are "uniformly
good" for K (Y) < - J^2 for ^f -^ oo one may expect that every map M -> Y can be
homotoped to a (essentially unique) sufficiently regular (at least Lipschitz) energy
minimizing map. Evidence in favor of this conclusion is provided by those singular
spaces with K^O which can be approximated by Riemannian manifolds with K^O.
For example, take a unit geodesic triangle in the hyperbolic plane with curvature
-J^2 and let J'f^oo. Then we obtain in the limit the tripod described at the
beginning of the introduction. In fact, an arbitrary finite graph Y admits a similar
approximation. Namely, there exists a sequence of compact manifolds Y^ with convex
boundaries and with constant curvatures -J^2 for J'f-^oo, such that Y admits
embeddings Y c Y^. for all ^ with the following properties:

(i) each edge of Y isometrically goes to a geodesic segment of Y;

(ii) sup Dist (/, Y) -̂  0 for ^ -> oo;
y' ey^

(iii) for each Jf there exists a homotopy retraction Y^. -> Y (which is moreover
Lipschitz and the implied Lipschitz constant is independent of Jf).
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Now one can construct Lipschitz harmonic maps MeY by using (sub)limits of
harmonic maps M -> Y^ for Jf7

 -> oo, as the latter maps (in a fixed homotopy class)
satisfy uniform Lipschitz bounds by the Eells-Sampson theorem.

Another geometrically significant class of singular surfaces Y which admit a
smooth approximation comes from ramified coverings of smooth manifolds Y() with
K^O. If the ramification locus is totally geodesic (of codimension 2) in Yo, then the
induced singular metric in Y has K ̂  0 and usually it can be approximated by smooth
metrics with K ^ — £ for c -> 0. (In fact, the same is true for more complicated
ramification loci such as unions of totally geodesic submanifolds with 90°-crossings).
On the other hand, a smooth approximation of higher dimensional buildings appears
more difficult though not inconceivable as certain buildings (and building-like spaces)
do appear in the limits of (parts of) symmetric spaces (of rank ^2).

On Bochner formulas in singular spaces. — In order to derive an interesting
geometric conclusion from the general theory of harmonic maps u : M -> Y (or
M -> X = Y) one needs a Bochner formula showing that a map u, a priori only harmo-
nic, is, under favorable conditions on the curvature of Y, more special, e.g. geodesic
or pluriharmonic. If Y is a piecewise Euclidean polyhedron (e.g. the universal covering
X of Y is a Euclidean building) then one may think that the required curvature
condition is somehow encoded in the local combinatorial structure of X. For example,
one knows a combinatorial formulation for K(X)^0 in terms of the numbers of
different simplices adjacent to every face and similar but stronger conditions might be
responsible for Siu-Sampson type curvatures and their generalization. A comprehensive
understanding of such conditions appears a rather difficult (and still unresolved)
problem but the examples presented below indicate a way out of this difficulty for
maps having certain regularity properties.

Consider a map u of the plane R2 near the origin to the unit tripod Y with the
edges numbered 1, 2 and 3, see Figure 2. Here the sectors T, 2 and 3 represent the

1\./3

FIG. 2

^-pull-backs of the corresponding edges of Y and the tripod Z in R2 formed by the
boundaries of these sectors equals the pullback of the central point in Y. At first sight

the map u seems necessarily singular at Z as Z goes to the singular locus (the center)
of Y. Yet if we look at the map u restricted to two out of three sectors, say on T + 2,
we see that this (T + 2)-sector is mapped into the union of the edges 1 and 2 of Y.
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This union, from the intrinsic point of view, has no singularity as it is just isometric
to the real segment of double length and so our map u to T + 2 (as well as to T + 3
and 2+3) reduces to a real valued function. Thus the "true singularity" of u is
concentrated at the origin of R2, where the three sectors meet.

Now let us see what we need of such a map u in order to prove some integral
Bochner formula. We assume we do have some infinitesimal Bochner identity defined
on M where the map u in question is smooth and the global identity is obtained by
integrating this formula over M. A non-trivial effect is achieved by the presence of
some divergence term in the identity which integrates to zero if M is a closed manifold
and the vector field, call it 5, whose divergence we integrate is smooth. If Y has

F
singularity and 5 is not everywhere defined, then, in general, div8 need not be zero.

JM
On the other hand if 5 decays near the singularity, then one may expect (and prove
whenever the decay is sufficiently strong) that div 5 does integrate to zero. Here, let
us recall that the field 5 in all relevant Bochner formulas appears as a bilinear
expression in the first and the second derivatives of u, something like £ S, u 8^1 u. (In
the Eells-Sampson formula the divergence term is

81| Q) u ||2 = div grad ̂ 8,u 9^ u).

If, for example, the map u in question has a singular set of codimension two or more
(as in the above picture of maps from R2 to Y), and if the first and the second
derivatives are bounded, then the divergence of such 5 obviously integrates to zero as
is seen by integrating 5 over the complement of s-neighborhoods of the singular locus

r
and then letting s -> 0. In fact what one needs for the vanishing div 5 is the decay of

•/
c~ 11| Q) u || || Q2

 u || for s -> 0. (In fact, if the codimension of the singularity is two, one

can relax the "bounded derivatives^condition to ||^^|| H ^ ^ I ^ O (£~1) for the dis-
tance E -> 0 from the singularity of u).

Let us exhibit actual examples of harmonic maps into our tripod Y. To do that
we embed Y into a two-dimensional singular space, namely to the unit cone Y7 over
the circle of length 3 n. The natural (Z3-symmetric) embedding of Y to Y7 is isometric
and Y divides Y7 into three sectors each isometric to the half-plane. The projections
of these half-planes to the boundary lines define a projection of Y7 to Y. Then we
observe that Y7 is conformally equivalent to the unit disk D2 and we think of Y7 as
D2 with a singular Kahler metric (with K^O). It is easy to see that every holomorphic

map of an arbitrary Kahler manifold M into Y7 is harmonic (in fact pluriharmonic)

and by composing with the projection Y7
 -> Y we obtain harmonic maps M -> Y. The

simplest of these corresponds to the identity map of M = D2 (with the flat metric) to
Y'=D2 (with the singular metric). Notice that the derivative of such a map at zero
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decays with the rate &
112

. (If we use the circle of length kn we have the derivative
OO^2-1)).

The above considerations have led the first author to the following:

Conjecture. — If Y is a building, every harmonic map to Y must have a singular
set of codimension at least two and \\Qu\ H ^ 2 ^ ! ] should have a sufficient rate of
decay in order to validate Bochner formulas.

It is also natural to expect that harmonic maps into general spaces Y of nonposi-
tive curvature exist and are Lipschitz. These conjectures were proved by the second
author and the proof occupies sections 1-6 of the present paper.

Before entering the analytic discussion of singular spaces on the technical level
we add a few more motivating examples.

First we observe that the harmonic maps into tripods (and graphs in general)
coming from holomorphic maps do satisfy the above regularity properties.
Furthermore by looking at the level curves of the simplest such map of the disk Q

1

into the tripod Y we recognize (see Fig. 3) the familiar pattern associated to a quadratic
differential on a Riemann surface.

FIG. 3

Then we show that every harmonic mapM: D2
 —>Y gives rise to a holomorphic

quadratic differential on D2 which is equal away from the singular locus of u to the
complexification of the form dy

2 for the length parameter y on the nonsingular part
of the tripod Y. This is done by approximating Y by (regular) spaces Y^ ^ Y of
constant negative curvature —J'f, for J^-^oo, and then by approximating u by
harmonic maps u^ —^ Y^. Every such map gives rise to a holomorphic quadratic
differential on D2 coming from the (2, 0)-part of the pullback of the Riemannian
metric of Y^. to D2 and these differentials converge to the desired limit and are

associated to the original harmonic map u: D2
 —> Y. Thus we see that the harmonic

maps of surfaces into graphs are non-singular apart from a discrete set (where the
corresponding quadratic differential vanishes). Then one can express Q)u and Q^u
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(outside the singularity) in terms of the quadratic differential and check the regularity
properties.

If dim M ̂  3 it seems more difficult to obtain local regularity results by the above
approximation. Yet the global Bochner type theorems do follow this way. For example,

Every harmonic map of a compact Kdhler manifold into a graph is pluriharmonic.

This immediately follows from the corresponding result by Jost-Yau and Carlson-
Toledo for harmonic maps into spaces with constant negative curvature.

We conclude with an example of a map into a surface with K ̂  0 with an isolated
singularity where the singular locus of the map in the domain has codimension one.
We take the unit cone over the circle S^ of length l>2n for Y and let M be the
cylinder M = M o > < [ - l , 1] for some closed manifold Mo. We map the boundary
5M=(Mo x -1) U (Mo x 1) to the boundary S1 =3Y in such a way that the angular
distance between the images of Mo x - 1 and Mo x 1 in S^ is at least n. For example

we may send Mo x { -1 } to an arc of length s^ - l-n and then send Mo x 1

symmetrically to the opposite arc in the S^. It is easy to see that the convex hull in Y
of two such arcs equals the union of the cones over these arcs and so the harmonic
map M -> Y solving the Dirichlet problem will be contained in this union of cones
and thus have a singular hypersurface in M (separating Mo x -1 from Mo x 1) sent
into the common vertex of the cones, where the metric of Y is singular. See Figure 4.

(Notice that the solvability and Lipschitz regularity of the solutions of the
Dirichlet problem follows for this Y by an approximation of the singular metric on Y
by regular metrics with K^O.)

Additional remarks. — (a) The conjectured regularity property of harmonic maps
referring to Bochner formulas does not provide such formulas but rather allows us
to reduce those to the nonsingular locus of the map. The relevant formula for our
p-adic superrigidity is the one discovered by Corlette in the non-singular frame-
work. (One could also use the Kodaira-Siu-Sampson formula applied to an auxiliary

Kahler foliation associated to the domain manifold. But the "foliated" approach
becomes somewhat cumbersome, though quite interesting from a geometric viewpoint,
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when the curvature of the receiving space is not strictly negative. Yet there are certain
cases where the global conclusion obtained by using foliations cannot be achieved
with known Bochner formulas). Notice here that Corlette also arrived at the idea that
the harmonic maps into buildings may provide the solution of the /?-adic superrigidity
problem.

(b) Although there are some instance of harmonic maps into singular spaces
which have been considered, the subject has not attracted a great deal of attention.
(We should mention that Hodge theory and function theory on singular manifolds
has been considered by a number of authors. A cohomology theory on Euclidean
buildings was developed by H. Garland [G] to study j^-adic group cohomology. The
work of J. Cheeger has brought the subject of global analysis on singular spaces into

prominence recently.) The uniform Lipschitz bound was exploited by the second
author in the late seventies to construct Lipschitz harmonic maps into surfaces with
cone metrics of nonpositive curvature. This work was refined and used to characterize
the Teichmuller map by M. L. Leite [L]. S. Alexander, I. D. Berg, and R. Bishop
[ABB] have studied geodesies for obstacle problems from this point of view and
Nikolaev [N] has constructed minimal surfaces in singular spaces with curvature
bounded from above. The works of Almgren [Al] and Lin [Lin] both deal with
harmonic maps into special singular spaces. The paper by Y. J. Chiang [Ch] discusses
harmonic maps into V-manifolds.

Part I: Harmonic maps into singular spaces

In this first part of the paper we develop some basic existence, uniqueness, and
regularity results for harmonic maps into a class of nonpositively curved singular
spaces.

1. Preliminary results

Let X be a locally compact Riemannian simplicial complex. By this we mean a
space which is the geometric realization of a locally finite simplicial complex such that
each geometric simplex is endowed with a Riemannian metric which is the restriction
to the standard simplex of a smooth Riemannian metric defined in a neighborhood
of that simplex. Moreover, assume that the maximal dimension of a simplex in X is k.

Assume finally that X is properly isometrically embedded in a Euclidean space R1^ in
the sense that the induced Riemannian metric on each simplex coincides with the
given metric.

Let M be a smooth Riemannian manifold of dimension n and Riemannian
metric g. For a bounded domain Q c M with smooth boundary, define the space
of H1 maps from Q to X by
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Hl(^X)={ueHl(0,RN):u(x)eX a.e. xeO]

where H1 (Q, R^ is the Hilbert space of R1^ vector valued L2 functions on Q with
first distributional derivatives in L2. The H1 inner product is given by

/ x f / . v^ 8u 9u ^ \
(u,v),=\ (u.v+ ^ —- ——g^(x)\d^

JQ\ a , p = i 8^ Qx^ )

where we use u.v to denote the Euclidean dot product of vectors in R^ For
ueH1 (Q, X), we denote the energy of u by E(^), so that

E(^)=f |V^|2^
J^

where [V^l^ ^ g'ap— . — denotes the energy density. We now observe the
a , p = i ax" 8x^

following result which allows us to construct energy minimizing maps in the space
H1 (Q, X) with arbitrarily specified boundary data. Recall that if u, veH

1 (0, R^, we
say that u=v on 80. provided u—veH^(Q., R^) where H^(Q, R^ is the H^-norm
closure of smooth compactly supported Revalued maps on Q.

Lemma 1.1. - Let (peH^Q^X). There exists ueH^Q.^X) such that u=(p

on SO,, and E (u) ̂  E (v) for all v e H1 (Q, X) with v = (p on 3Q.

Proof. — Let { ^ } be a minimizing sequence of maps in H^Q^X) with u^=(p

on 80.. Since bounded subsets ofH1 (f2, R^ are weakly compact, there is a subsequence
again denoted { ^ } which converges weakly to a map MeH^QR^. Since X is a
closed subset of R1^ and a subsequence of { u ^ } converges pointwise almost everywhere,
it follows that ^eH^Q.X). Since the set [veH

1
^ R^: v=(f) on 80} is a closed

affine subspace of H^Q.R^ it is weakly closed. Thus u=(f> on <9Q, and we have
established Lemma 1.1.

We now discuss the distance function on X and give a treatment of harmonic
maps of an interval into X. Assuming that X is connected (which we do without loss
of generality), we see that any two points Po .P^eX can be joined by a path
Y : [0, 1] —> X which is Lipschitz as a map to R^ We can then define the Riemannian
distance function d(Po, P^) by

J(PO, Pi) = inf{ L (y): Y a Lipschitz path from Pg to P^}.

It is immediate that d ( . , . ) is a metric, and that (X, d) is a complete metric space. We
show that the infimum is attained, and describe the associated harmonic map. We

consider paths y:[0,1] -^X with y(0)=Po and Y( l ) = Pl• Fix such a path (p, and let y
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be an energy minimizing path provided by Lemma 1.1. An easy application of the
fundamental theorem of calculus shows that y is Holder continuous with exponent 1/2.
We let d y / d t denote the L^vector valued function on [0, 1] which is the distributional
derivative ofy. We will show that \ d

r
y / d t \ is a constant a.e. on [0, 1]. To see this, let

£,(0 be a smooth real valued function with compact support in (0, 1), and consider

the path of maps Ys(0=Y(^+^(0)• By the minimizing property of y^Yo we have
E(Y)^E(yJ for a11 sufficiently small s, and hence the function ^h^E(Ys) has a mini-
mum at s=0. We examine this function more carefully:

rfy,
dt

djs

dt
ECYj- (l+^^O)-1^ dt=

where T = ^ + s^(t), s being a fixed small number. Now

^(l^TO)^
dt d-c

by the chain rule, and hence

E(Y.)=
d-c

(l+^(0)rfT.

Since the s dependence is explicitly exhibited here, we see that the function s \—> E (y^)
is a differentiable function of s. Thus its derivative vanishes at s=0, and we have

rfy

dt
^(t)dt=0

for every smooth function ^ with compact support in (0, 1). This implies that the L1

function \dy/dt\
2 is equal to a constant almost everywhere on [0, 1]. Thus we have

established the following result for energy minimizing maps of an interval into X. This
will be used later when we develop the theory for n^2.

Lemma 1.2. - A map yeH 1 ([0, I], X) which minimizes energy among maps which

coincide with y at 1=0, 1 is Lipschitz and satisfies \ d y / d t \ = L (y) a.e. on [0, 1]. Moreover,

y is a length minimizing curve among all Lipschitz curves from y(0) to y(l) in X.
We showed above that | d y / d t \ = c a.e. for some constant c. Integrating we find

c=L(y). To see that y is length minimizing, let y^ be any Lipschitz curve with

yi(0)=y(0), yiO-yO). Assume that y i : [ 0 , l ] ^X is parametrized so that
| d y ^ / d t | = L (yi). We then have

L^-ECYKECyO-L^),
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and hence L(y)^L(Yi). To see that any Lipschitz curve may be parametrized propor-
tionate to arc length, we can consider all H1 ([0, I], X) which have image in the closed
set Yi ([0,1]) and which agree with y^ at 1=0, 1. We can then minimize energy in this
class and repeat our previous argument to show that the minimizer is parametrized
with constant speed.

Finally, we make some general remarks about H1 maps which will be needed in
the next section. Let ^eH1 (Q, R^, and let XoeQ. We will say that u is approximately

differentiable at XQ if there is a linear map /(x) of the form l(x)=A(x—Xo)+B with
A an N x n matrix and B e R^^ such that

lim^a-2-^ \u-l\
2
d^+o~

n
( |V^-V /|2 d^\=0.

CT [ 0 I JB^(XO) JB(, J

It is then a general result (see [Z, Theorem 3.4.2]) about H1 maps that u is approxima-
tely differentiable at almost every point x^eQ.. Observe also that / (xo) == ^ (xo) for a.e.
XQ, and hence for a.e. XQ, BeX if ^eH1 (Q,X). We will need the following result.

Lemma 1.3. — Let ueH
1
 (Q..X) be a map whose image lies in a compact subset

ofX, and let x^eSI be a point at which u is approximately differentiable with linear

approximation / (x)=A(x—Xo)+B. IfA^O and BeX, then we have

a \ - i r
lim d

2
(u(x),B)d^) a [V^2^-!.

o ^ O m^(xo) ) JB^(XO)

Proof. — We first observe that there is no loss of generality in assuming the
metric g to be Euclidean near XQ because we can introduce Riemannian normal
coordinates centered at XQ, and compare the integrals in the g metric with the corres-
ponding Euclidean integrals in these coordinates. Note that the balls centered at XQ

are identical in the two metrics, and it is immediate that each of the two integrals
appearing in the statement has ratio with the corresponding Euclidean integral which
tends to 1. Thus it suffices to consider the Euclidean metric.

By the triangle inequality we have

1/2 / r \ i / 2\ i /2 / r \i
|V^|2^ - |V/|2^

/ \JB^(JCO) /
- |v/W

)By(xo) / \JB^(JCO) /

a \ l / 2

^ IV^-V/I2^ ^(a)^2

B^(xo) )

where the second inequality holds because u is approximately differentiable at x. Since
r

A 7^0, we see that |V/|2^ is a nonzero constant times a". Thus it follows that
J^(xo)
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(1.1) l i m ( | IV/ I^Vr IV^2^!.
< ^ O \ J B ^ ( X O ) / JB^(XO)

In order to complete the proof we need to compose the distance function of X
with the Euclidean distance for points near B. We claim that for any e>0, there
is ^o > 0 such that

^P)_, ̂
|B-P|

for P^B, PeX satisfying |B-P|^ro. This follows from the hypothesis that each
simplex containing B is smoothly embedded in R^^ so that there is a curve from B
to P which is arbitrarily close to a straight line when P is close to B. Moreover, since
the image of u lies in a compact subset of X, the function d

2
 (u (x), B) is bounded

and hence

r
d^u^x), B)dZ

J { x : \B-u(x) \>ro} n 8By (XQ)

^cVol{xeaB,(xo): |^(x)-B|^ro}.

For a <^ FQ we then have

r
Vol{xeaBJxo): |M(x)-B|^ro}^cro 2 | u(x)-l(x) \

2
 cK.

JaBo(xo)

By the Sobolev trace inequality (see [Z]) we have

f |^(x)-/(x)|2^
JQB^(XO)

^ca I V M - V / l ^ + c a - 1 | \u-l\
2
^

^a(xo) JBy(xo)

Thus it follows that

r
lima-1-" {u-l^cE^O

(^ -i\
 a [ o ^B^(xo)

r
lima-1"" d

2
(u(x),B)c^L=0.

o [ 0 J { x e 8 B y ( x Q ) : \ u ( x ) - B \ ^ r o ]

From(1.2)wehave(l-e) |P-B|^rf(P,B)^(l+8) |P-B| for PeX with |P-B|^ro,
and therefore we will write
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(1.4) d^{u, B)^E
J { x e 8 B y ( x o ) : \u(x)-B \^ro}

\u-B\2c^:
[ x e 8 B y ( x o ) : \u(x)-B \^ro}

where % means that the ratio of the quantities is arbitrarily close to one. We also
have from the triangle inequality and (1.3)

1^-BPdS
.1/2

| /-BP^£
,1/2

JQBff(xo) J6B^(xo)

^ {u-l^cE.
\J^B^(xo) ^

.1/2

^(a^2).

Since A ̂  0 we see that | /- B |2 dL is a positive constant times a"+
 \ and hence

JaB^(xo)
it follows that

r r
\u-B\

2
dI.w\ |/-B|2^

^B(,(XO) ^B^(XO)
and each term is of the order <J

n+l
. Combining (1.3) and (1.4) we see that

r r
^(^B)^:^ \u-B\

2
dZ,

JffB^(xQ) J8B^(xo)

and hence

(1.5) ^(^B)^^ |/-B|2^:.
^By(xo) JQB^(XO)

Direct calculation shows that for a linear function /(x)=A(x-Xo)+B we have for
all a>0

-i
|/-B|2^ a |V/|2rf^l=l.

\JGB^(XO) / JBy(xQ)

Thus combining this with (1.1) and (1.5) we have established the conclusion of
Lemma 1.3.
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2. Behavior of harmonic maps into nonpositively curved spaces

We showed in section one that minimizing maps of an interval into X are
Lipschitz. In order to obtain Lipschitz bounds on minimizing maps M -> X for
dim M ̂  2 (or even continuity of these maps), it is necessary to require that (X, d)

have nonpositive curvature as a metric space. We now discuss this notion. First
observe that if y , XQ, x^eR^ and x(s) is the unit speed geodesic from XQ to jq
parametrized on [0, /], 1= | XQ - x^ |, then the function Do (s) = \ x (s)-y |2 is a quadratic
polynomial in s of the form Do(s)=s

2
+as-\-b where the constants a, b are uniquely

determined by the boundary conditions Do(0)=|xo-^|2 , Do(/)= |jq -y\
2
. Indeed,

this is another way of saying that the function |x-^|2 satisfies——L^Z^L. =25.. We
Sx.Qxj

 lj

say that a simply connected space X has nonpositive curvature if for any three points
Q, Po, PiCX, the function D(s)=d

2 (P(>), Q) satisfies D(^)^Do(^) where P(s\

se[0, /], /=^(PQ, Pi), is a minimizing unit speed geodesic from Po to P^ and DoO)
is the unique solution of D'Q(s)=2 on [0, l\ with Do(0)=D(0), Do(l)=D(l). Thus
the condition states that points of the side of a geodesic triangle opposite to Q in the
space X are at least as close to Q as they would be in a Euclidean triangle with the
same side lengths. Note that the statement that the Lipschitz function D (s) lies below
the monic quadratic polynomial with the same boundary data for every subinterval
of [0, 1} is equivalent to the distributional inequality D" (s)^2 on [0, l\. Precisely this
means that for any nonnegative function ^ (s) with compact support in (0, /) the
following holds

[^{s^'^ds^l^^ds.
Jo Jo

Thus X having nonpositive curvature is equivalent to the statement that the distance
function is more convex than the Euclidean distance function. For a general space X
we say that X has nonpositive curvature if its universal covering space has nonpositive
curvature.

The following properties can be derived from the definition of nonpositive curva-
ture (see [B, VI. 3 B]). First, any two points in X can be joined by precisely one length
minimizing path. Secondly, if Po, P^ and Qo, Qi are two pairs of points in X, and
we parametrize the geodesic paths from Po to P^ and from Qo to Qi by P(Q, Q(/)
for te[0,1] where / is a constant speed parameter along each of the paths, then the

function ^(0=d(P(Q,Q (Q) is a convex function of t. Note that this second property
implies that geodesies from a point spread more quickly than Euclidean geodesies
since we may take Po = Qo and conclude that
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^(P(0,Q(0)^(P(0,Q(Q)

for O ^ t ' ^ t ^ i . Finally, we observe that for any X-e[0, 1] and QeX we can define a
map R), Q : X -> X by

R^P)-?^),

where P(t), ^e[0,l], denotes the constant speed geodesic from Q to P parametrized
on [0,1]. By our previous discussion we see that R^ Q is a Lipschitz map; in fact

rf(R,,Q(Po),R,,Q(Pi))^^^(Po,Pi).

so the Lipschitz constant is at most X. Moreover, the family of maps R^Q, ^e[0, I],
defines a deformation retraction of X to the point Q, so that X is necessarily
contractible.

We now digress briefly to present a technical result which will be needed to justify
a calculation below. First suppose F: R"11 -> R^ is a Lipschitz map, for a point
PeR^ and a vector V we define the directional derivative DyF(P) by

D,F(P)=li,nF(p+'•V^F(p>
h - ^ o h

assuming the limit exists.

Lemma 2.1. — Assume y: [a, b] -> R^ is absolutely continuous and F: R^1
 —> R^

is Lipschitz. Then F ° Y is absolutely continuous and at any point tQe(a,b) at which

both Y and F°y are differentiable it follows that D^(^)F exists at 7(^0) an(
^

(F-YV^-D^^FCY^o)).

In particular this holds for almost all toe[a, b}.

Proof. — That F ° Y is absolutely continuous is clear. Since y is differentiable at

IQ we have Y (^o ~^)= Y (^o) "̂  Y' (to)h-^-o(h). Since/°y is differentiable at IQ we have
the existence of the limit

^ F(y(to+h))-F(y(t,))

h-^o h

Since F is Lipschitz, we have from above

F (Y (to + h)) = F (Y (^o) + Y (to) h + o (h)) = F (y (to) + / (to) h) + o (h).
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It follows that Dy/ (^Q) F (y (to)) exists and is equal to (F ° y)' (/o) as required. This proves
Lemma 2.1.

Coming back to our situation, let us assume that u e H1 (Q, X) is energy minimizing
and that its image lies in a compact subset K ofX. Observe that the map
R:[0, I j x K - ^ R ^ ^ is Lipschitz with respect to distance measured along X. On the
other hand, on compact subsets of X we have rf(Pi, P^)^ | Pi —P^ |, so R is Lipschitz
in the Euclidean sense. By Kirzbraun's theorem (see [Fl, 2.10.43]) R may be extended
as a Lipschitz map from all of R1^1 into R1^. We now consider the family of maps
^(x)=Ri_^^ Q(^(x)) for xeQ where T^O and ^ is a nonnegative smooth function
with compact support on Q. (We assume that T is so small that l—T^(x)e[0, 1] for
all xeQ.) It is easy to see that ^eH1 (Q, X) since u^ is a composition of a Lipschitz
map with an H1 map. We will justify the following equality of distributional derivatives

(2.1) ^ (x) = D,̂  ̂  R ,̂ „, Q (u (x)) - T ̂  8R1-^ Q (u (x))
dXi dXi ok

for f= 1, . . . ,72. For example we consider the case i= 1, and observe that (2.1) is a
local result near a given XQ^Q.. Consider a neighborhood of XQ of the form I^ x (Q

where I i = ( x ^ — r , x ^ + r ) for some r>0, and (9 is an open subset of
R""1^^,.^2, . . .,x")}. Denote by x the point of (9 whose final (n—1) coordinates
are those of x. It then follows that for J?""1 almost every point x of (9 the map from
I^ ->X given by t\—>u(t, x) is in H^I^, X). For such an x, let y : I^ -^R1^1 be the
map

Y(0=(l-T^,x),^,x)).

It then follows that u^(t, x)=R°y(t). Since an H1 map of an interval is equal a.e. to
an absolutely continuous map, we may assume by redefining u on a set of measure
zero in I^ x 0 that the map y is absolutely continuous for almost every xe(9. We then
apply Lemma 2.1 to conclude that for almost all tel^ we have

|^O,X)=D^R(Y(O).
cbq

Now

Y'(O=(-AU), ̂ (, x))= !"(, x)-A, x )
8

\ dXi dXi ) dXi dXi dA

and hence (2.1) follows.
Next we observe that the function P i—^ d2 (P, Q) is Lipschitz on X, and therefore

its restriction to the compact set K has a global Lipschitz extension to R^ Thus by
Lemma 2.1 the chain rule calculation
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ax;
d2(u(x),Q)=D^d2(u(x\Q)

is justified. We also have for a tangent vector V to X at P

DvR^(P). 8
R,^(P)= ̂ Dv^R^P), Q)

(7A 2

provided the indicated diectional derivatives exist. (Both sides are equal to
rf((R^ o(P), Q) Dy R),, Q (P). Y (R^ Q (P)) where y is the unit speed geodesic from Q
to P.) Thus we square (2.1) and use this result on the cross term to get

8u.
1 W ~ I ̂ 8u(8x (x) ^-1 - T^ (x), Q (u W) |

8Xi

^ ^(RI-^Q^X^Q)

ax; 5x^

^(^(x)^,^y <RÎ (»(,))
1 ^ I <-NA \ V 77\ ax, / ax

Using the contracting property of R^ Q we thus have

E(^ (l-TO^V^I2^
JQ

-T [ V^V^R^^Q^X)), Q)^+0(T2).
J^

Since u is minimizing we therefore have

0^-2r | ^V^^I+T [ (AO^O^x^Q^+OCT2).
JQ Jn

It follows that for every smooth nonnegative function £, with compact support in Q.

f [(AO^^x^Q)^!^!2]^^.
Jn

We restate this as a formal result.

Proposition 2.2. — If ueH
1
 (Q.,X) is energy minimizing and has image lying in a

compact subset o/X, then the function d
2
 (u(x), Q)for any QeX satisfies the differential

inequality Ad
2
 (u (x), Q) — 21 V u |2 ̂  0 in the weak sense.
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As a first application of this result, choose ^ (x) to approximate the characteristic
function of a small geodesic ball BJxo) centered at a point XocQ. We then get for
almost every a

(2.2) 1\ IV^^f ^-(^(x),Q))^.
JB, J^B, 8r

We now derive the usual monotonicity formula for harmonic maps which can be
done for minima of our problem. Note that the nonpositive curvature condition on X
is not needed in this derivation. Let ^ (x) be a smooth function with support in a
small neighborhood of a point XoeQ. For | T | small consider the diffeomorphism of Q
given in normal coordinates by F, (x) = (1 + ̂  (x)) x in a neighborhood of 0 with F, = id
outside this neighborhood. Consider the maps u^=u° F,. These are clearly in H1 (Q, X),
so the function T^E(^) has a minimum at T=O. To analyze this condition we
perform a change of variable as we did in the geodesic case in section 1. We assume
that ^(x) has compact support in B^(0) so that we may work in a single normal
coordinate chart. We then set y=¥^(x) and use the chain rule to compute

iv^2^ E g.8yk-8yl.(8u,.8u\
' i^k,i 9x

1
 8^\9y

k
 8 y

1
)

The volume element / g d x then becomes

^'^(t^)^-

Thus we may write the energy of ^ in the form

f iw 1 2 j f v ^ i i ^ . 8u 8u ,
\Vu,\2d[i=\ 2;^Cy,T) —.—dy,

JB^(O) JB^(O) 8y 8yJ

where ^(y, r) is a smooth function of y and T. Thus it follows that Th->E(^) is a
smooth function of T, and its derivatives may be computed by differentiation under
the integral sign. In particular we have E7 (0) = 0, and this gives us by direct calculation

o = f nv^-^-iv^x1^
JB^(O)L i 9x

1

. ^ v^ .,, 8C , 5i< 8u H ,
+2 ^ g1' —^ X-7 — . — 4i

A ax1 a '̂ a^J

+ Remainder,
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where the remainder term arises from the fact that the metric is not exactly Euclidean.
The remainder term is given precisely by

f r - ?s ^^.^-IV.^SX-^IA.
JB,(O)L i , j , k Sx" Sx1 Sx3 v ' i 8x1 J

Observe in particular that this term is bounded by a constant x a2 Eg ^(u). Taking
^ to be an approximation to the characteristic function of the ball B^ (0) we get

(2.3) o=(2-^+0(a2)) f |V^|2^
JB^(O)

+a Vu ldL-l^ dL.
^B^(O) ^B^(O) Sr

We now introduce the notation E (a), I (a) defined by

r r
E(a)= |V^|2^, I(a)= ^(^(x), Q)rfE(x).

^B^O) JBB,,(O)^B^(O)

Since we are working in normal coordinates observe that if/(x) is a nonnegative
function we have

_d_

da
| fdl.=\ yrf£+Q2-l)a- l f fdL

JBB^(O) ^B^(O) ^ ^B^(O)

+0(a) fdL.
JaB<,(0)

We now compute logarithmic derivatives

Y(a) _n-l

I (a) a
+(I(o))

-1
•' SB,, (0)

-(^(M^^^S+O^).

or

(We should remark that I(o) is an absolutely continuous function for CT>O.) From
(2.3) we have

E'(CT) _n-2

E(o) ^o"
+2(E(a))-1

^aBo(O)

9u

~8r
6E+0(o).

Therefore

^-^4.(.̂ ,̂ -,[,̂ ĵ̂ ,,,̂
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-2I(o)
/SB.,

8u

~8r
dL \+ 0 (o)

which together with (2.2) implies the inequality

(2.4) ^logf1^)^^)^))-
dc \ <7 E (<r) / •'C'BCT(O)

^Q^^Q)^)2

ar /

Since —d(u,Q)\^
8r

8u

Tr

d2(u,q)dI.)(\
\J8By(0) / \J^BCT(O)

, it follows by the Schwarz inequality that

8u

~9r
dL} +0(a).

(2.5)
^ r ^ , 2 a E ( a ) l Q

da[_ I(a) J

for a constant c^ depending on the metric g. Of course (2.5) holds only under the
assumption that I(a)>0 for a>0. Notice however that from Proposition 2.2 it
follows that the function d

2
 (u (x), Q) is subharmonic, so that if I (a) == 0 for some

or>0, then the map u is equal almost everywhere to Q in a neighborhood of 0.
For any xeQ, o->0, QeX we define an order function Ord(x,a,Q) by

a \^u\
2

 d\ji
JB^(X)

Ord(x, a,Q)=^i0 2

f d
2
(u(x),Q)dL(x)

J6By(x)

The reason for this notation is that for a harmonic function

lim Ord (x, a, u (x)) = Order (u — u (x)),
o I 0

that is, the order with which u attains its value u (x) at x. Alternatively, it is the degree
of the dominant homogeneous harmonic polynomial which approximates u—u(x)

near x. In particular, for harmonic functions (or harmonic maps into smooth manifolds
of nonpositive curvature) this limit is a positive integer.

Generally, if x e Q. and a > 0, then the function

Q^ d
2
(u,q)dL

JaB^(x)
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is a convex function on X with compact sublevel sets, and hence has a unique minimum

point Q^eX. The function Qh->0rd(x, a, Q) thus has a unique maximum point at
Qx, a ' We now define Ord (x) by

Ord(x)= lim Ord(x, or, Q^).
o ->• 0

This limit exists because the function a^->0rd(x, a,Q^ J is monotone increasing in a.
Moreover, for a fixed a>0, the function xh^0rd(x, o, Q^J is a continuous function,
and hence it follows that the function x\->0vd(x) is upper semicontinuous since it is
the decreasing limit of a family of continuous functions. We now prove the following
result.

Theorem 2.3. — Suppose ueH
1
 (Q., X) is an energy minimizing map with image in

a compact subset of a nonpositively curved complex X. Then u is (equal a.e. to) a locally
Lipschitz map.

Proof. - Since ^eH^Q, X), it is approximately differentiable in the sense of
Lemma 1.3 at almost every point of Q. Consider a point XQ in the closure of the set
of points at which u has nonzero approximate derivative. By Lemma 1.3, XQ is a limit
of points Xj sit which Ord (̂ .) ̂  1. Therefore by the upper semicontinuity of the Ord (.)

function it follows that Ord(xo)^l. Let a=0rd(xo) and fix Oo>0 so that
fico^o)60- Let aie(0,ao), and note that the monotonicity of the ratio implies

CT |Vi/|2 ̂ i^oc^iCT2 d^(u, QO^E
^(xo) ^B(,(XO)

for all ae[<7i, do) where Qi==Q^,^. Combining this with (2.2) yields

o^-^Ha^cTf ^(^(^.QO^OC)
2 JQB^(XO) cr

^
 l (a F (a) -(^-1)1 (a)) + 0 (a2) I (a).

This implies

^"-^-o^
I(o) a

where a is any radius in [CTI, CT()). Integrating from CTI to Cy and fixing CTQ we obtain

CTI- ("-1) I (aiK c of "I (ao).
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Since the function d
2
(u(x), Qi) is a subharmonic function (Proposition 2.2) on Q,

the mean value inequality implies

sup d
2
(u(x\q,)^c^.

xeB^/20co)

(Note that I (do) is bounded independent of Qi because u(£l) c K.) In particular, by
the triangle inequality,

d(u(x\ u(x^)<^d(u(x\ Q,)+d(u(x^ Qi)^2ca°;

for .xeB^^C^o)- Thus if xeB^^C^o)? we m
^ choose a i = 2 | x — X o | and conclude

d(u(x\ U(XQ))^C\X—XQ\' for xeB ^(^o)- Since oc^l this certainly implies that for

any XQ at which the approximate derivative exists and is nonzero we have — ^ c,
8xi

i= 1, . . . ,n. It follows that u has bounded first derivatives locally in Q, and hence u

is (equal a.e. to) a locally Lipschitz function. This completes the proof of Theorem 2.3.

Remark. — The previous result leaves open the possibility that u might be
constant on an open subset of Q. We will show in the next section that this does not
occur. Thus it will follow that Ord (x) is defined for all x e Q.

We will need the following local estimate in order to apply compactness arguments
to gain more detailed information about harmonic maps.

Theorem 2.4. — Let ueH
1
 (B^(0), X) be a least energy map (with image in a

compact subset of X) for some metric g on B^ (0) = { x e R": | x \ ̂  1 }. There is a constant

c depending only on g (e.g. on the C2
 norm of the matrix valued functions (gij(x)\ (g

13
 (x))

such that

r
sup I V ^ I 2 ^ |V^|2^.

Bi/2(0) J B I ( O )

Proof. — By Theorem 2.3 the map u is locally Lipschitz. We need to estimate
its Lipschitz constant. We first observe that we can replace X by a dilated complex
jiX where we assume by translation of coordinates in R1^ that u(0)=0. The complex
nX still has nonpositive curvature, and we may choose ^ so that the map [JLU has
energy equal to 1 on B^ (0). Thus we may assume without loss of generality that

r
[V^l2^-!.

J B I ( O )

We also observe that it suffices to prove | V u |2 (0) ̂  c where we may assume that x = 0
is a point of approximate differentiability of u. This follows just by changing the
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center of balls. Now we may of course assume V^(0)^0, and hence Ord(0)^l It
follows that Ord (0, a, Qo,,) ̂  1 for a e (0,1), and therefore

f r
d2

^ Qo,l/2)^:^ IV^I^ILI^C

^Bi/2(0) ^Bi /2(0)

for a constant c depending only on g. The fact that d\u{x\ Qo,^) is subharmonic
then implies

sup d
2
(u(x), Qo,i/2)^

xeBi /4 (0 )

for a new constant c. In particular it follows that the distance from Qo ^ to 0=^(0)
is bounded for a e (0,1/4). Taking cTo-1/4 we may then apply the argument of
Theorem 2.3 to show that for xeB^g (0) we have from above

F
^(x), 0)^c\x\

2 sup d
2
^ Qo ,)dL^c\x\

2
.

oe (0,1/4) J^Bi/4

This gives the desired conclusion and completes the proof of Theorem 2.4.

Remark. - For harmonic maps into smooth manifolds of nonpositive curvature
the conclusion of Theorem 2.4 is a well known result of Eells and Sampson [ES].
The usual proof of this is based on the Bochner formula for the calculation of A | V u P.
This proof seems to rely heavily on the smoothness of X whereas the proof we have
given is a "lower order" proof which works in a setting which allows X to be singular.

3. Approximation by homogeneous maps

To begin this section we consider the case when the image complex X is a
geometric cone in R^ that is, if QeX, ?ieR+, then ?iQeX. Under this assumption it
is natural to consider energy minimizing maps u: R" -> X which are homogeneous of
some degree a^O. We make the standing assumption throughout the remainder of

this paper that X has nonpositive curvature. Thus we assume that u (k x) = ̂  u (x) for
xeR", ^0. From the results of section two we know that the map u is locally
Lipschitz on R" and hence if the map u is not identically zero we must have oc^ 1.

There is a special class of homogeneous maps which we call regular homogeneous

maps. To describe these we consider an embedding J^-^X which is isometric
and totally geodesic. This means that d(](x\ J(y))=\x-y\ and the image of a line
under J is a geodesic in X. (Note that the set ^R^ need not be a plane in R^) Now
suppose v: R" -> R'" is a homogeneous harmonic map. This simply means that

v(x)=(v^(x\ . . .,z^(x)) where each v, is a homogeneous harmonic polynomial of a
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given degree a. If the map u = 3 ° v is homogeneous, then we refer to such a map u as
a regular homogeneous map. It is regular in the sense that it can be described in terms
of a smooth (in fact polynomial) map.

A priori it would seem that regular homogeneous maps would be quite rare.
However, the next result implies that they occur in abundance.

Proposition 3.1. — A homogeneous minimizing map u: R" -> X is regular if it is of

degree 1.

Before we give the proof of this result we need to introduce a new concept. We
will say that a minimizing map u:B^(0)->X is intrinsically homogeneous if there is
a^l such that for xeBi(O) we have d(u(x), u(0))=\x\'

l
d(u(x/\x\\ u(0)), and for

each xe8B^ (0) the curve t\—>u(tx) is a geodesic in X. The following result gives us a
simple criterion which guarantees that a map is intrinsically homogeneous.

Lemma 3.2. — If u: B^ (0) -> X is a minimizing map from the unit ball in W with

Euclidean metric such that for each ae(0,l) we have Ord(0, a, Qo, J=a/or some

fixed oc^ 1, then u is intrinsically homogeneous of degree a.

Proof. — Since the domain metric is Euclidean, inequality (2.4) holds without
the 0(a) term. Next observe that since u is Lipschitz we have lim Qo ^=u(0) so that

if we first fix <jo small we have for ae[cjo, 1)
o ->• 0

Ord(0, a, Qo,^KOrd(0, a, Qo,,)

by the maximizing property of Qo,,. Since the right hand side is equal to a, and the
left hand side is equal to oc for a = CTQ and is monotone increasing, it follows that

Ord^.a.Qo^-a for aeho, 1).

Letting OQ tend to zero we see that Ord(0, a, u(0))=a for all ae(0, 1). We now
apply (2.4) with Q=^(0) so that the left hand side vanishes. We have

(f ^(^((w^vf i"2^)
W^B^O) / \JaB^(0) or /

=([ d(u,u(0))
 9

 d(u,u(Q))dS^.
\JBB^(O) or )
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It follows that ( 8 / S r ) d ( u , u(0))= | Su/8i: \ a.e., and that for ae(0,1), there is a constant
A (a) such that (9/8r)d(u, u(0))=h(<j)d(u, u(0)). Integrating the first equality along
the ray y: (a, 1) -> R" given by 7 (r) = r ^ for some £, e 5Bi (0), we find

L(^(Y))=^(^), ̂ (0))-^(ay, u(0))^d(u^\ uW).

In particular it follows that u (y) is a geodesic path in X. We now return to (2.2),
and observe that since equality holds in (2.4), we must also have equality in (2.2).
This then gives us

r ?\
E(a)= d(u, u(0))— d(u, M(0))^£=A(a)I(a).

JBB(,(O) ^r

On the other hand we have E((7)=aa~11 (a), so we conclude that /^(a)=aa - l . We
may then integrate along a ray from x to x / \ x \ to obtain

d{u(x\ u ( 0 ) ) = \ x ^ d ( u ( x \ u(0)\
\ \ M / /

This completes the proof of Lemma 3.2.

Proof of Proposition 3.1. — Suppose u: R" -> X is homogeneous of degree 1. It
follows immediately that Ord (0, a, u (0)) is a constant independent of a, and in fact
that this constant is one. (To see this, observe that equality holds in (2.4) and (2.2)
while (8/8r)d(u, u(0))=r~

1
 d(u, u(0)).) Since Qo ^ approaches u(0) as a approaches

0, we have, for a^cjo,

1^0rd(0, oo, Qo,,,KOrd(0, a, Qo,J.

Letting <Jo -> 0 we then have Ord (0) = 1. The homogeneity of u then implies that
Ord (0, a, Qo ^) is a constant independent of a, and hence this constant is identically
one. Therefore we have Qo y=u(0) for all a. Because xi—>0rd(x) is uppersemiconti-
nuous, at least one for all x, equal to one for x=0, and homogeneous of degree zero,
we have Ord(x)= 1 for all xeR". On the other hand we have, for any ?i>0,

Ord(x, or, u (x)) = Ord (k x, Xa, X-^(x)),

so we may take 'k=<j~
1 and conclude

lim Ord (x, a, u (x)) = 1.
0 -> 00

It now follows that for all x G R" and all a > 0 we have Ord (x, a, u {x)) = 1. From
Lemma 3.2 we conclude that u is intrinsically homogeneous of degree one about every
point. It follows that the restriction of u to any line parametrizes a geodesic in X with
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constant speed. The fact that equality holds in (2.2) for Q=u(xo) on B^(xo) for
arbitrary a implies that for each XQ the function d2

^ u(xo)) is a H^dfc solution of
^^d

2
(u(x), ^(xo))==2|V^| 2 . Since for all XoeR" the function xh-^O^x), u(xo)) is

homogeneous of degree 2 about XQ, it follows that |V^ | 2 is homogeneous of degree
zero about XQ for every XQ. Therefore | V u\

2 is a constant, say ^o. Thus it follows that

x\—>d
2
(u(x),u(0)) has constant Laplacian and quadratic growth. This function is

therefore a quadratic polynomial. Since the function is everywhere positive and
vanishes quadratically at x = 0 we must have

n

d2(u(x),u(0))= ^ g^x3

i. i= 1

for an n x n symmetric G- (̂ .). This matrix is positive semi-definite, and we can find an
orthonormal basis e^ . . ..^ for R" such that ^•G^.=^5^. with ^^0. By reordering
e^ . . .,^, we may assume that ?i,>0 for i=\, . . . ,m and ^.=0 for z = m + l , . . .,n.

By change of coordinates we assume that the x1, . . .,x" are coordinates associated to
the basis e^ . . . ,^ so that

^(^(x)^(0))=^X,(x1)2

1=1

Let v: R" -> ̂  be the linear map given by

v(x\..^x
n
)=(^

2
x

2
^..^

1
J

2
x

m
\

and let J: R'" ̂  X be given by

J(/, . . .,y^=u^^y^ . . .,^1/2^, 0, . . .,0).

We then have u = J ° v, and

^(JQO, j(o))= ^ x,^-^2/)2- E (y)2,
i=l i = l

so that J is an isometric totally geodesic embedding. (Note that J is an embedding
because J (x) = J (y) implies that the image of the segment xy is a geodesic with the
same initial and final point, thus x^y.) This completes the proof of Proposition 3.1.

Now we return to the general situation of a minimizing map u: Q -> X. Given a
point x^eQ, we will attempt to approximate the map u near XQ by a homogeneous

map. We choose coordinates so that XQ=O and u(xo)=0. We next observe that
Ord(0)= lim Ord(0, a, u(0)). To see this, note that Ord(O)^ lim Ord(0, a, u(0)) by

CT -^ 0 CT -^ 0
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the choice of Qo,(y. On the other hand Qo^ approaches u(0) as a tends to zero, so
given s > 0 and GQ > 0 we have for a sufficiently small

Ord(0, a, Qo,,)^0rd(0, ̂  Qo,,)^0rd(0, Oo, ^(0))+e.

Since ao is arbitrary, it follows that Ord (0) ̂  lim Ord (0, a, u (0)) as required. Now
G -̂  0

let oc=0rd(0) and fix a normal coordinate chart on B^(0). For K, |^>0, define the
map u^ ^(x)=[i~

1
 u(kx). This is then a minimizing map from B^-i^(O) with metric

g^(x)=g(kx) to the complex iLi^X^iLi^P.-PeX}. Notice that the complex p^X
again has non-positive curvature since distances are multiplied by a constant factor.
We have, by a change of variable,

f IV^J^^^H-^2-^ |V«|^,
^B^(O) ^B^(O)

f ^-ixO^, o)^^-2^-" f 4(^0)^,
JBB^(O) ^B^(O)

In particular, Ord"^(0, a, 0)=0rd"(0, ?io-, 0) for any ae(0, ^"^o). For any small
?i>0, let [i=(

f
k

l
~

n
I(

f
k))

l/2
, so that we then have

f ^-ix(^,,, 0)^=1.
JaBi (0)

Since Ord^(0, 1, 0) tends to a=0rd"(0) as ^ -> 0, we also have

r
I^J^A^oc

J B i ( O )

for ^ small. Thus u^ ^ has uniformly bounded energy and then by Theorem 2.4, has
uniformly bounded Lipschitz constant on compact subsets of B^ (0). Thus for any
sequence { ^ } tending to zero, the corresponding sequence of maps { u ^ } has a
uniformly convergent subsequence, again denoted {^'}, which has Lipschitz limit
which we denote u^: B^ (0) -> Xo where Xg denotes the tangent cone of X at 0. The
next result shows that u^ is a nonconstant homogeneous minimizing map of degree a.
We will refer to such a map u^ as a homogeneous approximating map for u at the
point 0.

Proposition 3.3. — The map u^ is a nonconstant homogeneous minimizing map of

degree a.
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Proof. - To show that u^ is nonconstant, we will show that P^c^^oO04 for
ae(9, 1) and constants 80, oci. We are using the obvious notation

I"1^)- ^-ix(^O)^,
J^B^(O)

Since u, converges uniformly to u^ it follows that u^ is nonconstant. To derive this
lower bound, let 9e(9, 1) and ^6 (9, 1]. We then have, by an obvious estimate,

P-(ro)-P-(9)=^O^P-(a)rfa
Jo da

^f ^x^O)!^^
JB^(0)-Be(0)

+ c f <-ix(^0)^,
JB... (O)-Bf t (O)^B^(0)-Be(0)

Using the bound 2 f l&^£^ 2 +£ - l
 b

2
, we then have

P- (ro) -1"1 (9) ̂  8 E^ (ro) + c 8 -1 | ° P- (a) da.
Je

Since Ord"l(9, r^ 9) is bounded above, we may fix 8 and obtain

P- (ro) -1"- (9) ^ 11"- (ro) + c [
ro I"- (a) da.

z Je

This implies, since roe(9,1] is arbitrary,

sup r-(r)^2r^(9)+c(l-9) sup I^(r).
» " e ( e , l ] r e (9,1]

Therefore, we may fix 9 close enough to 1 so that c(l -9)= 1/2 and we then obtain
1^(1)^41^(9). This gives a lower bound on 1^(9) since 1^(1) = 1 by choice of ?i,, .̂.
This already implies that u^ is nonconstant. The lower bound P^cO^oO"1 for all
ae(9, 1) follows by iterating the previous argument.

In order to show that u^ is minimizing, we use the fact that there is a bi-Lipschitz
map, for any cjo>9, F,: (|LI,-1 X) U B^ (9)-> Xo 0 B^ (9) with F,(9)=9 and with
Lipschitz constants of both F, and F,~1 approaching 1, and F, converging to the
identity as i—> oo. Let v be a minimizing map from B^(9) into Xg with u —v on

3B^(9) for some ae(9, 1). We must show that E(^)^E(z;), so that u^ is also a
minimizer. To see this, consider the map F^1 °i;:B^(9) -> l^X. Let 046(0, 1), and
observe that for; sufficiently large we have d^-1 x (u, (x), F,"1 ° v (x)) smaller than
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a i-a for all xe3B^(0). We may then extend the map F,"10^ to the annular region
B^ (O)-B^(O) so that it agrees with u, on the outer boundary. We do this by choosing
for each i^eS""1, the constant speed geodesic y^: [a, aj -> JLI^X which satisfies
Y^ (a) = F,-1 (z; (a^)) and y^ (c^) = ̂  (a, 0. We then define v,: B^ (0) ̂  |LI,- 1 X by setting
Vi=¥f~

lo
v on B^(0), and Vi(r^)=y^(r) for re[a, aj. The nonpositive curvature

condition then implies that the Lipschitz constant ofz;, in B^(0)-B^(0) is bounded
by a constant depending only on the Lipschitz constants of u, and u^ Since u, is
minimizing, we have for any e > 0

E^(a^E^(a,KE(z;)+£,

for ; large. By lower semicontinuity of the energy it then follows that E(^)^E(z;) on
B^ (0) as required. This shows that u^ is minimizing.

Finally we show that for each ae(0, 1) we have lim E"1 (a) = E"* (a). Since
I ->• 00

E(z;)^E(i^) on B^(0) in the previous argument, we have for i large
E"1 (a) ̂  E"* (a) + e. This implies lim E"1 (a) ̂  E"* (a) which, combined with lower semi-

i —>• oo

continuity, establishes continuity of the energy. In particular, since we have also shown
that P^a) has a lower bound for ae(0, 1), we can now conclude that

lim Ord^(0, a, 0)= lim Ord^O, a, 0).
I -> 00 I -»• 00

In particular it follows that Ord^O, a, 0)=a for all ae(0, 1). Therefore
u^: BI (0) -> XQ is intrinsically homogeneous of order oc. Since X^ is a geometric cone
in R^ the geodesies from 0 are simply Euclidean rays, and it follows that u^ is
homogeneous of order a. This completes the proof of Proposition 3.3.

Recall that Lipschitz functions are differentiable almost everywhere. We now
generalize the notion of differentiability for minimizing maps into X to exploit the
intrinsic geometry ofX. We have seen that an intrinsically homogeneous map of
degree 1 is essentially a linear map, so it is natural to consider these as derivatives of
maps to X. We make the following definition.

Definition. - We say that u has an intrinsic derivative at a point XocQ. if there is
a minimizing map /: Q^ -> X^ ̂  (Q^ = tangent space) which is intrinsically homoge-
neous of degree 1 such that

lim | V | - 1 1 u (exp,, (V)) - u (^o) - /(V) | - 0.
V ->• 0

veQ^

Note that if XQ is the center of a normal coordinate system x1, . . . .x", then this
condition reads
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lim \x\~
l
\u(x)-u(0)-l(x)\=0.

x -^ 0

It is clear that if u has a derivative at x^ then u has an intrinsic derivative at XQ,
and l=u^ the usual linear approximation to u. While the best one can hope for is
that u is differentiable at almost every xeQ. (true since u is Lipschitz), we will give
general conditions on X in later sections of this paper which imply that u has an
intrinsic derivative at every point xeQ.. It is immediate that / is unique if it exists
since two such maps /, /^ would satisfy

lim \x\~
l
\l(x)-l^x)\=0.

x -^ 0

If we fix a point ^ e S""1 and let y^ (r) = l(r Q and Yi, ^ (r) = l^ (r £,), we then have

l imr-^Yi^M-Y^I-O,
r ^ 0

which implies that y^ coincides with y^(r) for r small, since these are constant speed
geodesies. It follows that 1=1^ in a neighborhood of x=0.

Note that if a=0rd(xo)>l, then u has an intrinsic derivative at XQ because we
saw in the proof of Theorem 2.3 that for x near XQ we have d(u (x), u (^o)) ̂  c \ x - XQ ̂

which implies

lim \x-Xo\~
1
 u(x)-u(xo)\=0,

X -> XQ

so that u^ = 0. If Ord (xo) = 1, we are not able to show that u has an intrinsic derivative
at XQ (although this will be shown under additional assumptions on X in later sections).
In order to show this it would suffice to show that there is a unique homogeneous
approximating map u^ which would then be a nonzero constant times /.

We close this section by establishing the result that a minimizing map which is
constant on an open set is identically constant. This then implies that Ord(x) is
defined for all x e Q provided u: Q -> X is nonconstant.

Proposition 3.4. — If Q is connected, and u: Q -> X is a minimizing map which is

constant on an open subset of£l, then u is identically constant in 0.

Proof. — If u is not constant in Q but is constant on an open subset of Q we
can find a ball B completely contained in Q such that u is constant in the interior
of B, but for some boundary point XQ e 3B, u is not constant in any neighborhood

of XQ. Assuming without loss of generality that u=0 inside B, we may then find a
homogeneous approximating map u^ at XQ which satisfies u^=0 in a half space
of R". In particular by Proposition 3.1 we know that the degree oc = Ord (xo) of u^
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is strictly greater than one. Since u^ is not constant, we may find a ball B^ in R" such
that u^=0 in BI, and there is a point x^e8B^ with l ^ i l ^ l such that u^ is not
constant in a neighborhood ofx^. As above we must have Ord"*(;q)> 1, and so if
we let u\ be a homogeneous approximating map for u^ at x^, we must have u

1

independent of a direction in R". (If we take jq ^(l, 0, . . ., 0), then 5^/3xi=0a.e.).
Thus u\ restricts to R"~1 as a nonconstant minimizing homogeneous map which
vanishes in a half space. Repeating this argument a finite number of times we produce
a nonconstant minimizing homogeneous map of R to Xo which vanishes on a half
line. This contradicts the fact from section 1 that energy minimizing maps of R have
constant speed parametrization. This contradiction then shows that u must have been
constant in Q. This completes the proof of Proposition 3.4.

4. Existence in a homotopy class and uniqueness

In this section we make the transition from the local problem of minimizers from
a domain with given boundary data to the more global problem of existence of
minimizers in a homotopy class. This can be done fairly directly with the help of
convexity properties of the energy functional along geodesic homotopies. The approach
we follow here was developed in [S]. In particular we will generalize the theorems of
Eells-Sampson [ES] and P. Hartman [Har]. A non-simply connected complex X will
be said to have nonpositive curvature if its universal covering space X has nonpositive
curvature in the sense we have discussed. Given two Lipschitz maps UQ, u^: M -> X
which are homotopic, we can construct a unique geodesic homotopy u^: M -> X by
replacing each parameter curve of any given homotopy by the unique constant speed
geodesic with the same endpoints in the same homotopy class. The convexity result
which we need is the following.

Proposition 4 . 1 . — Each map u^: M -> N is locally Lipschitz, and for any compact

domain 0 c, M the function t\—>JL^(u^) is a continuous convex function which is a weak

solution of the differential inequality

d2E^^2f\Vd(u„u,)\2d^
at JQ

Proof. — For simplicity of notation we assume that M is compact with boundary
and Q=M. First consider the one-dimensional case in which we have Lipschitz curves

Yo? V i ' ' ( ~ ^ ^ 5)^X and a geodesic homotopy Yt for O^^l. Assume that s=0 is a
point at which both yo, Yi are differentiable and y^ is differentiable for almost every

te[0, 1]. We are going to do a calculation involving dyjds at s=0 only, so we may

replace Yo? Yi by constant speed geodesies with the same tangent vectors. Observe
that at any / for which the original y^ is differentiable, the new curve is differentiable
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and has the same derivative. Let l(s) be the length of the curve t\-^y,(s), and
observe that l(s)=d(yo(s), YI (s)) is a Lipschitz function of s. Assume that s^l(s) is
differentiable at s = 0, and reparametrize the homotopy by setting y^ (s) = y^ ̂  (s) for
T e [0, /(>)]. Thus T ̂  Y, 0) is now a unit speed geodesic. The fact that X has nonpositive

curvature implies that for any h the function T ̂  d
2 (y, (A), y, (0)) is convex. At any T

for which d / d s y^ (0) exists we have

lim/r^Y^/O.Y^O))-
'i -»• 0/i -» 0

^

^
(0)

Since this derivative exists at T = O and /(O), it follows that there is a sequence h,

tending to zero such that the functions Th-^"2^^^-), YrC0)) converge uniformly
on [0, / (0)] to a convex function which agrees almost everywhere with the function

^^—>\(djjds)(0)\
2
. In particular by redefining it on a set of measure zero we may

assume that this function is convex. Now by the chain rule we have

^(0)= -T/(0)-2^(0)^Y^(0)+ ̂ (o)(0).
as ds 3r ds

This may be rewritten in terms of /:

^(0)=^(0)^(0)-^^(0).
ds ds ds 8t

Now for any TI, T^e(0, /(O)) with T^T^ we have d(y^(s), Y^O))^!-^!- Differen-
tiating with respect to s we then conclude that

dy, 8j, _d^ 8j,

ds 8x 1-^^ ds 3r ^=^

Therefore we have, for almost every te[0, I],

^W^vco+fa+^w-1^^))^^
ds \ ds ) 8t

for a constant a where V (t). (8jJ8t) (0) = 0 for a.e. t. Since
\y(t)\

2
=\Wds)(0)\

2
+a

2
l(0)\ it follows that V(Q|2 is a convex function of t.

Therefore we have

^w^iv^^+f^o+^wY
ds \ ds )

and hence it follows that, in the weak sense,
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^(^W^lf^),^
dt2\ ds ) \ds ) s=0

Now to prove the result in higher dimensions, observe that the map (x, t) \—> u^ (x)

is Lipschitz, and hence for almost every line parallel to the /-axis it is differentiable at
almost every point of the line. At such points of differentiability the previous results
tell us

^(Iv^^iv^o^i)!2

in the weak sense. Thus if ^ (/) is a smooth nonnegative compactly supported function
in (0, 1), we have, for almost every xeM,

[^u^w'^dt^i^\^u,\\x^'\t)dt^l\\^d(u^x\u,(x))\^(t)dt.
JoJo Jo

Integrating and interchanging the order of integration we have

^W\t)dt^(\ IV^o^i)]2^) [\{t)dt.\\W\t)dw(\ IV^o^i)!2^1

lo \JM / Jo\JM / Jo

This completes the proof of Proposition 4.1.

We now derive two easy corollaries of this result. The first tells us that in case
UQ=U^ on a nontrivial boundary and UQ, u^ are nearly minimizing, UQ is close to u^.

Corollary 4.2. - Suppose UO,U^:Q.->X are Lipschitz maps which agree on

80. (30^0) and are homotopic through maps which are fixed on <9Q. Let Eg be given

by

Eo= : inf{E(z;) :^ ; :Q

->X Lipschitz, homotopic to UQ with fixed boundary].

Suppose £o^0 such that E(^o), E(^)^EO+£()- Then it follows that

r
d2^ u^)d[i^cGQ

Jo.

for a constant c depending only on Q.

Corollary 4.3. — Suppose X is simply connected. There is a unique minimizing

map u: Q -> X with given Lipschitz boundary data.
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Proof of Corollary 4 .2 . - Connect UQ to u^ with a geodesic homotopy u^ and
let E(Q=E(^). Define a^O by

f
a= IV^o^i)]2^.

JM

Proposition 4.1 then implies that the function E (t) lies below the appropriate quadratic
polynomial with leading term o^2. This implies

E(0^a^- l )+E(l )^+( l -OE(0) .

Since E(Q^Eo and E(0), E(l)^Eo+£o. it follows that for every t this quadratic
polynomial has value between EQ and EO+£(). Setting t= 1/2 we find

Eo< - ̂ a+ ^EO^- ̂ (0)^ - loc+Eo+£o
4 2 2 4

which implies a^4£o. Combining this with the Poincare inequality we then obtain
the conclusion of Corollary 4.2.

Proof of Corollary 4.3. - This is almost immediate modulo a minor technical
detail; if u^ u^ are both minimizing and equal to a given Lipschitz map (p on 80., we
know that UQ, u^ are locally Lipschitz but not necessarily Lipschitz up to the boundary.
First observe that Proposition 4.1 works for such maps since its proof involved

r
integrating a local expression. Thus we have \Vd(uo, u^\

2
d[

1
i=0, and therefore

JM
d(uQ, u^)= const. Since UQ=U^ on 80. and ^( . , . ) is a Lipschitz function it follows that
UQ=U^ as required. This proves Corollary 4.3.

We are now in a position to solve the homotopy problem for harmonic maps
into nonpositively curved complexes.

Theorem 4 . 4 . — Let M be a compact Riemannian manifold without boundary, and

let X be a compact nonpositively curved complex. Let (p: M -> X be a Lipschitz map.

There exists a Lipschitz map u: M -> X which is freely homotopic to (p and which

minimizes energy in the sense that

E (u) = inf { E (v): v: M -> X, Lipschitz, v homotopic to (p }.

Moreover, on simply connected regions 0 c= M, the lift of u to the universal cover X
minimizes in the sense of the previous sections.

Proof. — Let { ^ } be a sequence of Lipschitz maps homotopic to (p with
E(^.) -> EQ, where Eg is given by
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EQ = inf { E (v): v Lipschitz, homotopic to cp }.

Assume that X is embedded in ^N, and choose a subsequence, again denoted {^.},

which converges weakly in H1 (M, X) to an H1 map u. We claim that u is (equal a.e9

to) a Lipschitz map homotopic to (p. First let x^eM and consider a small ball B. We
may lift the map u, to the universal cover X. Denote this lift by u,: B -> X. Let v. be a
minimizing map from B ̂  X which is equal to u, on 3B. We then define a replaced
map Ui by

- / ^ - f n(vi(x)) for xeB
M^ .̂A"J \

[ u, for xeM-B.

Since E(^.)^E(^), the sequence { ^ } is again a minimizing sequence. In particular,
given any e>0, for i sufficiently large we have Eo^E(^)^E(^)^Eo+e. Applying
Corollary 4.2 in the region B we have

r
d

2
 (u^ Ui) dyi ̂  c s.

JB

On the other hand by Theorem 2.4, the sequence u, is uniformly Lipschitz on

compact subsets interior to B. Thus a subsequence of {u, ] converges uniformly in a
neighborhood of XQ to a Lipschitz map u. Since s above was arbitrary we have u=u

a.e., and hence u is a Lipschitz map. The sequence [u,} is then a minimizing sequence
which converges uniformly near XQ to u. If we consider the geodesic homotopy \ with
^o = (^ lz;! = ^p we see immediately that this homotopy converges in a neighborhood of
XQ to a geodesic homotopy ^ with Vo=(f>, v^=u. If we consider an overlapping ball,
since replaced maps are uniformly close on the intersection, the corresponding geodesic

homotopies agree. Therefore we have a global geodesic homotopy from (p to u. The
fact that the lift of the restriction of u to Q for a simply connected region Q c M
minimizes is a consequence of Corollary 4.3 which shows that the minimizer must
agree with the lift of u. This completes the proof of Theorem 4.4.

5. Some smoothness results for harmonic maps

For the main applications of this work it will be important to show that harmonic
maps are better than Lipschitz in certain cases. First note that if u: Q -> X is mini-
mizing, and for some x^eO., u(xo) is a regular point of X, then the usual regularity
theory for harmonic maps (see e.g. [S]) implies that u is C00 in a neighborhood of x^.

On the other hand, it happens in important cases that even if u(xo) is a singular point
of X, the map u may be differentiable at XQ in a strong sense. Of course differentiability

should mean that u is well approximated by a linear map near XQ. We have seen
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previously that for harmonic maps, a map which is homogeneous of degree 1 is
essentially linear. Thus it is natural to use such maps to approximate a general
harmonic map. In fact, homogeneous maps tend to exist only when the image complex
is a cone, so we generalize the notion as follows. Let x1, . . ., x" be a normal coordinate
system centered at XQ, and let r=\x\, ^=x/\x\ denote polar coordinates in B^(xo).
We will say that a Lipschitz map /: B^ (^o) -> X is essentielly homogeneous of degree 1
if there is a nonnegative function ^S""1 -> R and an assignment 7^ to each E.eS""1

of unit speed geodesic in X with y^(0)=P (where P=/(0)) such that l(r^)=^^(^)r)

for x=r^eB^(xo). In short, a map is essentially homogeneous of degree 1 if the
restriction of u to each ray is a constant speed geodesic. Of course maps of this type
exist in great abundance because they are determined by their restriction to 9By (x^)

and by the assignment of the value at XQ. Thus given any Lipschitz map
/: 3B^ (xo) -> X and any point P e X, there is a unique essentially homogeneous map
of degree 1 which agrees with / on 3B^ (xo) and sends XQ to P.

For a point XoeQ and a radius a>0 such that B^(X()) is compactly contained
in Q we consider the error with which u can be approximated by degree 1 essentially
homogeneous maps. Let /: B^(^o) -> X be such a map, and consider the quantity

d^l)= sup d(u(x\l(x)).
x e B(y (XQ)

We then define R(xo, or) by

R(xo, a)=inf^(^, /),
i

where the inflmum is taken over all essentially homogeneous maps, /: B^ (xo) -> X, of
degree 1. Since the constant map l(x)=u(xo) is a competitor and the map u is Lipschitz
we have R(X(), a)^c<7.

Definition. - A minimizing map u:Q.->X is intrinsically differentiable on a
compact subset K ^ Q provided there exists r^ c>0 and (3e(0, 1] such that

R^.a^ca^R^ro)

for all xeK, ae(0, ^o]. The constants c, P, r^ may depend only on K, Q, X, and the
total energy of the map u.

Definition. — A subset S c X is essentially regular if for any minimizing map
u: Q -> X with u (Q) c S, the restriction of u to any compact subset of 0 is intrinsically

differentiable.

It is not difficult to see that a closed subset of the regular set of X is essentially
regular; this will be explicitly discussed later in the section. More generally, an
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isometrically and totally geodesically embedded submanifold of any dimension in X
has essentially regular image.

The main result of this section will provide a criterion for a map to be intrinsically
differentiable near a point. This criterion will say roughly that the map is well
approximated by an essentially homogeneous map of degree 1 whose image is "effecti-
vely" contained in a totally geodesic subcomplex XQ which is essentially regular. In
order to define what it means for a map to be effectively contained in Xo we need to
introduce some terminology. Given a Lipschitz map /: 8B^ (xo) -> X together with
points x e B^ (xo) and P e X, there is a unique essentially homogeneous map of degree 1

denoted /„ p from B^(xo) into X which satisfies l^ p(x)=P and l^p=l on 3B^(.Xo).
(Note we are assuming that r^ is small so that B^ (xo) is convex.)

Definition. - Let Xo be a totally geodesic subcomplex of X, and let
/: B^ (.Xo) -> X be a map which is essentially homogeneous of degree 1. We say that /
is effectively contained in Xo near the point XQ if for any s>0 there exists 5>0 such
that for all xeQ. sufficiently near XQ and all PeXo sufficiently near Po=/(^o) and all
a e (0, fo/2] we have

Vol { y e B, (x): B^ (/,, p (y)) $ XQ } ̂  ea".

We stress that Bx (.) is used to denote the full ball in X, so that it follows that
for any point yeB^(x) such that B^(/^ p(^)) c XQ, a maximal simplex in Xo which
contains ^ p (y) is also maximal in X. Thus Xo should be thought of as a top-
dimensional (typically of dimension k=dim X) subcomplex ofX. We are now ready
to prove the main result of this section.

Theorem 5 . 1 . — Let u: Q -> X be a minimizing map. Let XQ e Q and r^ > 0 be such

that B^ (xo) is compactly contained in Q. Let Xo c X be a totally geodesic subcomplex,

and let 1: B^ (xo) -> Xo be an essentially homogeneous degree 1 map with PQ ̂  /(^o) e Xo.
Assume that a neighborhood of PQ in XQ is essentially regular. There exists 5o>0
depending only on /, Q, X, XQ such that if I is effectively contained in XQ near XQ and

sup d(u(x\ /(x))^5o,
X 6 B^Q(XQ)

then u is intrinsically differentiable in a neighborhood of XQ. In fact, there exists CTo>0
such thatu(B^(xo))^Xo.

Proof. — The idea of the proof is to compare u at small scales to a minimizing

map having image in Xo. To carry this out, we let IT: X -> Xo denote the nearest point
projection map. The map n is then a distance nonincreasing Lipschitz map. We need
the following lemma.



212 HARMONIC MAPS INTO SINGULAR SPACES

Lemma 5.2. - Ifv e H1 (Q, X), ̂  z^= n ° z; ^ also in H1 (Q, X), and E (z7) ̂  E (zQ.
77^ ^7 (p: 50 -^ Xo is Lipschitz, then the minimizer UQ into X which agrees with (p on
80, has image in Xg.

We also need a second lemma. We postpone the proofs of both of these until we
have completed the proof of the theorem.

Lemma 5.3. — If^, u^ are minimizing maps from a region Q^ into X, then the

function x\—>d(u^ (x), u(x)) is a Lipschitz weakly subharmonic function in Q^.

Let x^ be a point sufficiently close to XQ such that u(x^) lies in Xo and such that
u(x^) is close enough to u(xo) so that we may find for any e>0 a number 5>0 such
that

Vol { x e B, (x,): B^ (I, (x)) $ Xo } ̂  ea"

for ae(0, fo/2] where we have denoted by /i the map l ^ ^ u ( x ^ ' 8y translation of
coordinates in IR^1 we may assume u(x^)=0, and by multiplying the metric on Q by a
fixed constant factor we may for convenience take r^ = 2, and hence both u and /i are
defined on B^ (x^). Also note that we have

(5.1) sup d(u(x\l,(x))^l^
x e B i (xi)

provided x^ is sufficiently close to XQ.

We choose a normal coordinate system x1, . . ..x" centered at x^ and for any
map v:B^(x^)-^X and any ae(0, 1] we let °v denote the dilated map given by
"v (x) = a -1

 v (a x). Thus we have °r: B^ -1 (0) ̂  a ~1 X, and if v is minimizing, then °r
is minimizing as a map from (B^-i(O), ( J ~

l
g ( a x ) ) to a"1 X. Note also that the

metrics cr^^a.x) become Euclidean as o tends to zero, and hence are uniformly
controlled (in any C^ topology) on Bi(0) while the complex ( J ~

1
X has nonpositive

curvature for each a and converges to the tangent cone to X at 0 as a tends to zero.
Now assume that for some ae(0, 1] there exists an essentially homogeneous

degree 1 map /^ : B^ (0) -> a~
1 Xg such that D is defined by

(5.2) sup d(
c
u(x),l^x))=D,

J c e B i ( O )

and for some 81 >0 assume that

(5.3) sup ^(x),^(x))^.
x e B i (0)

We assume D, 5^ are small positive numbers; in fact, for a given s^>0 assume that
81 is so small that
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Vol{xeB,(0) :B^ l x (^(x))$a- lXo}^£l .

In particular from (5.3) we have

Vol {xEB^O^^OO^a^Xo}^!.

We may therefore choose a number Q^ £[3/4, 1] such that

Vol {x6aBe,(0) :^(x)^CJ - l Xo}^4£l .

Now let "TI: <j~1 X -> a~
1 Xo be the nearest point projection map, and let

°(p = "n ° "u. We then have

(5.4) Vol {xe3B^(0):°(p(x)^^(;c)}^4£i.

Let V:BQ (O)->XQ be the least energy map with v=
<5

(p on 3B^ (0). Since a
neighborhood of Po in Xo is essentially regular, it follows that for any 0e(0, 1/4)

there is a homogeneous degree 1 map 4 '' Be(0) "̂  a-l ^o such that for some Pe(0, 1)

sup ^(xUM^ce^R^O, 1/2).
x e B e ( O )

By definition of R^(0, 1/2) this implies

(5. 5) sup d(v (x), 4 (x)) ̂  c 91 + p sup d(y (x\ l^ (x)).
x e B e ( O ) x e B i / 2 ( 0 )

We now show that ^u is very close to v. To see this we note that (5.2) and (5.4)
imply

f
d^u, z;)rf£^4£iD.

J^BQ^(0 )

Since the function jci—^C^.x), z^(^)) is subharmonic by Lemma 5. 3, we have

sup d^u, v)^cs^D.
Bi/2(0)

Combining this with (5.5) then gives us

sup d^u, / ^ ^ c E i D + c G ^ P sup d(z\ l^)
Be(0) B i /2 (0 )

^(cSi+ce^P+ceiG^^D.

This clearly implies

(5.6) sup rf0, 4) ̂  (c£i + c 91 + p) sup d^u, l^).
Be(0) B I ( O )
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On the other hand we have, from (5.2) and (5.3) and the triangle inequality, that
forjceaBi(O)

rfC7i(x),/,(x)KD+8,.

Since % (0) = ̂ u (0) = 0, we have from (5.2)

rfC7i(0),/,(0))^D.

The fact that X has nonpositive curvature then implies that for any xeB^ (0) we have

^(x),/,(x))^D+|x|5i,

so that, in particular,

sup^CVi, /2)^D+5i9.
Be(o)

Combining this again with (5.2), we finally have

(5.7) sup ̂ 0, ^/i) ̂  65i + 2 D.
Be(0)

We now apply the previous argument for varying choices of a. First take a= l
and 1^=1^. Set i /=4 and rewrite (5.6) as

(5.8) sup d(\ lO^cSie^+ce^ sup d(u, I,).
BI (0) BI (0)

On the other hand, (5.7) becomes

(5.9) sup d(\ ̂ ^^e^ sup d(u, I,).
BI (0) BI (0)

Set l8=5 l+26 - l Do where we set D()= sup d(u, l^). Assuming we have defined
B I ( O )

i/, 2/, . . .,,/, we set

D,= sup d^u, ,/).
B I ( O )

Assume by induction that for integers up to i(i^ 1) ,5 has been defined, and that we
have the inequality

(5.10) sup^,91/,)^.
B I ( O )



M. GROMOV AND R. SCHOEN 215

Now apply the previous argument with <J=Q\ lz=il' This can be done provided ^8 is
sufficiently small depending on c^. Set i+ i / ^^ ^d observe that (5.6) then may be
written

(5. i i) D^^s.e^+ce^D,

while (5.7) yields

(5.12) sup^( e l + l^e i + l / l )^§+29 - lD,.
B I ( O )

Therefore we may take ,+^5 to be

(5.13) .^S^e^D,

We now fix 6 so small that cQ^=l/4 in (5.11), and we then fix s^ so small that
c£i Q~

1 = 1/4 in (5.11) so that we obtain D^+ ^ ̂  1/2 D^ provided ,5 is sufficiently small.
Assuming 18, . . .^5 are small enough we then obtain

D,^2- J Doj = L. . .^+l .

Putting this into (5.13) then gives

,^8<,5+29-12-JDoj=L . . .^+1.

In particular we have

k

fc+l8^5+29- l Do ^ 2- J^l8+29 - lDo.

Recalling the definition of i5 we have f e + i 8 ^ 5 i + 4 9 ~ 1 Do, but by (5.1) we have

Do^25o, and hence finally

^s^+se-^o.

Thus if §o, §i are sufficiently small we may apply this argument for any k, and
conclude from (5.12)

sup^^^^s+se-^o
B I ( O )

for all nonnegative integers i. Now if ae(0, I], we choose the nonnegative integer i

so that c^O1^1, 61], and we conclude

(5.14) sup ^/^(Q'^i+se^So)^.
Ba(^l)
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This then implies that most points in B^(xi) are mapped by u into the interior of Xo.
Note that x^ was an arbitrary point near XQ such that u(x^eXo. If for ao>0,

^(B^(xo)) $Xo, then we can find a ball B ^ u~
1 (X\Xo) n B^(xo) such that at

least one point x^ in 8B maps to Xo. By the choice of x^ we have, for every c^ >0, a
substantial fraction (at least 1/2) of B^(xi) mapped into the closure of X-Xo. This
contradiction shows that for some ao>0 we have u(B^(xo)) ̂  Xg, we have completed
the proof of Theorem 5.1.

Proof of Lemma 5.2. — If we have some vector V at a point PeX such that the
directional derivative Dy IT exists, where II is considered as a vector valued function,
then we have | Dy n | ̂  | V | since n is distance decreasing. Therefore we may use
Lemma 2.1 to argue that for almost every point x e Q we have

8Yl°v 9^

8xj
7=1, . . .,n.<

9xj

In particular we have E(n°zQ^E(zO. The last statement of Lemma 5.2 follows
immediately.

Proof of Lemma 5.3. — First observe that if C ^ X is a closed convex set, then
the function x\—>d(u(x), C) is weakly subharmonic . This was shown in
Proposition 2.2 for the case that C is a point. (Note that |V^ | 2 ^ V' d(u, P)|2, so
Proposition 2.2 implies Arf(u, P)^0.) The general case is an easy modification of
this, and we omit the proof. Consider now the function g : X x X -> R given by

g^i^ P2)=:^(Pl. Ri)' We take the product metric on X x X, and we claim that g is a
multiple of the distance function to the convex set C ^ X x X where
C={(P , P):PeX} is the diagonal in X x X . To see this we observe that C is the

fixed point set of the isometry F given by F(P^, P ^ ) " ^ ! ' '
 P!); so ^at if (Q, Q) is

any point of C, then for any path y from (Q, Q) to (P^, P^) the path y U F (y) suitably
oriented is a path from (P^, P^) to (P^, Pi). In particular we have

L(y)^ ^((Pi, P^ (P,, ?,))= ̂ (Pi, P^

and this is achieved when Q is the midpoint of the geodesic from P^ to P^. Therefore
we have shown

^(Pi^-y^apl.p^c).

It then follows that the function x^->d(u^ (x), u^(x)) is weakly subharmonic, as
required. This completes the proof of Lemma 5.3.
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We now present two applications of the previous theorem. We first show that a
minimizing map is strongly differentiable in a neighborhood of a rank k (= dim X)
point provided a mild regularity condition is satisfied for X. First recall that if
Ord (xo) = 1 for some XQ e Q, then there exists a degree 1 homogeneous approximating
map u^: Q^ -> ̂ u(xo)' ^his map, by Proposition 3.1, is a linear map to a flat totally
geodesic subcomplex of Xy^ y The rank of u^ is the dimension of this flat subspace.
If a neighborhood of u (xo) is isometric to a neighborhood of the origin in the tangent
cone Xy ( ), we then have a flat totally geodesic subcomplex of X containing the image
of u^ locally. This happens for example if the simplices in X are standard Euclidean
simplices. In general we say that u^ is a good homogeneous approximating map if
there exists a smooth Riemannian metric g^ given in normal coordinates on the ball
B (0) c [R^ and an isometric totally geodesic embedding ; :B^(0)-^X with
i(0)=u(xo) such that the image ;(B^ (0)) is contained in a totally geodesic subcomplex
Xo whose tangent cone at u(xo) is the image of u^. We now state a theorem.

Theorem 5.4. — If u: 0 —> X is a minimizing map, and XQ e Q is a point at which u

has a good homogeneous approximating map of rank k=dim X, then u is intrinsically

differentiable in a neighborhood of XQ. In fact, the map u in a ball B^(Xo) for some

(Jo>0 is given by u=i°v where v. B^(X()) -> B^ (0) ^ R^ is harmonic with respect to

the metric go described above.

Proof. — Recall that u^ = z'o ° /o where io: ̂  -> X^ ̂  is an isometric totally

geodesic embedding of the Euclidean space 1R\ and /o: Cl^o
 ->

 ̂
k ls a linear map of

rank k. On a small ball B^ (xo) we define /:B^(.Xo)-^X by l=i°lo where
B^ (xo) c 0 is identified with the ball of radius a^ centered at 0 in Q^ via the
exponential map. The map / is then essentially homogeneous of degree 1. We claim
that / is effectively contained in Xo. To see this, let X^ be the subcomplex of Xo
consisting of those simplices which are faces of a simplex ofX which is not in Xo.
Since no ^-simplex can lie in X^, it follows that X^ is a subcomplex of codimension
at least one in Xo. Thus l ~

1 (X^) is a subset of B^ (xo) consisting of a finite number
of compact smooth submanifolds with piecewise smooth boundary, each having codi-
mension at least one. (Note that n^k.) It is then immediate that / is effectively

contained in Xo.
We next observe that a smooth manifold is essentially regular. For suppose we

have a harmonic map v: B^ (xo) -> N^ with bounded energy. We may then assume
that the image lies in a normal coordinate ball with coordinates u1

, . . .,^ centered
at u(xo). We also assume that X1, . . .,x" are normal coordinates centered at XQ. By
Taylor's theorem we have v(x)=l(x)+Q(x), where CQ, given by

Co= sup Ixl-^Q^)! ,
Bao(°)
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is bounded in terms of the second derivatives of v. Since the second derivatives of a
harmonic map are bounded in terms of the energy (and the manifolds), we have

sup \ ' v — l \ ^ C Q ( J
2

a Q
2 sup \v—l\^c^(j

2 sup | ^ — / | ,
Ba(0) B^(0) B^(0)

with Ci depending only on the energy of u, the manifolds, and (JQ. Since we have
chosen normal coordinates in both domain and range, / is essentially homogeneous of
degree 1, so we have

R(X(), <j)^c^<j
2 sup | ^ — / | .

Boo(°)

Now if / i : B^ (xo) -> N is any essentially homogeneous map of degree 1 with image
near the image of v, then we have for Oi < Oo

sup d(l, /iXccji"1 sup d(l, /i),
B<yo(°) B^(0)

because both /, /^ are essentially homogeneous of degree 1 and our metrics are nearly
Euclidean. Now we have

sup d(l, /i)^ sup d(v, /i)+ sup d(v, I )
Boi(O) B^(0) B^^(O)

^ sup d(v, / i )+c<7^ sup d(v, /).
BCTO(°) B^(0)

Therefore we have

sup d(v, /)< sup d(v, /i)+ sup d(l, /i)
Boo(O) B^(0) B^(0)

^(l+ccji"1) sup ^(^, / i)+ccji sup rf(^, /).
BCTO(°) B^(0)

Now, taking CTI so that c<j^ = 1/2, we have

sup d{v, l)^c sup d(v, /i).
Bao(°) B^(0)

Since /i was an arbitrary essentially homogeneous degree 1 approximation to v, we
have finally shown

R(XO, a^co^RfXo, Oo)

as required.
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Since u^ is a homogeneous approximating map for u at XQ, for any given §0 (take
the §o determined in Theorem 5.1), there exists a small radius po>0 such that

sup \[io
l
u(pQx)-u^(x)\^.

x e B i ( O )

This implies

sup d(u(x\ 7(x))^5o
X £ B p Q ( 0 )

where 7=z°(^o/o). By Theorem 5.1 we now conclude that u is intrinsically differen-
tiate near XQ, and the image of a small ball B^ (xo) under u lies in Xo. This completes
the proof of Theorem 5.4.

The final result of this section will deal with the case dim X= 1. We now state it.

Theorem 5.5.- If dim X= 1, then X is essentially regular. Moreover, ifu:Q.->X

is a minimizing map, there exists a constant £>0 depending only on n such that for all

XQ G Q. we have Ord (xo) = 1 or Ord (xo) ̂  1 + s.

Proof. - Since dim X=1, any point XoeQ where Ord(xo)= 1 has a neighborhood
in which u is intrinsically differentiable (in fact, defined by a smooth harmonic function
to a geodesic of X). In particular we note that the set of points x where Ord(x)= 1 is
an open subset, denoted jQ^, ofQ.

In this case one can see explicitly that if Ord(xo)>l, then Ord (xo) ̂  1 + s. To
see this, first observe that if u(xo) is not a vertex ofX, then Ord(xo)^2 since u is a
smooth map near XQ. Let oc=0rd(xo), and assume that u(xo) is a vertex ofX with at
least three edges emanating from P() = u (x^) (there cannot be one edge by the maximum
principle, and if there are only two, then Ord(^o)^2 as above). Consider any homoge-
neous approximating map u^: W -> Xp^. If we choose an edge e emanating from Po
and introduce an arc length parameter s along e which is zero at Po, then on the
open region 0,= [ x e R " : u^(x)ee- {Po}} the function h,=s(u^(x)) is a harmonic
function. Of course Og is the cone over a domain D^ ^ S""1, and h^ is homogeneous
of degree a in Og. It follows that the restriction of h^ to D^ is a first Dirichlet
eigenfunction of the domain D^, and in particular we have ?^ (D^)=a(a+/?-2). Since
D^ is non-empty for at least three distinct edges (otherwise Ord(^o)^2 as above),
there is an edge e for which D^ is nonempty and Vol(DJ^l/3 Vol(S"~1). Standard

results about eigenvalues then imply that there exists a number 8^>0 such that

^i (D^)^^- 1 +8n- n then follows that oc^ 1 +e for a fixed constant s depending only
on n.

To show that X is essentially regular, we must show that for any minimizing map
u: Q -> X and any compact subset K c ̂  there exists r^ c, P such that
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R^aKca^RfXo^o)

for all XQ e K. Let r^ be such that B^ (xo) is compactly contained in Q. It clearly
suffices to show that there exists 6e(0, 1) such that for all ae(0, r^] and all x^eK

we have

(Ga^R^o, eaKO^a^ROco, a).

This can be proved by contradiction. If this were not true there would be for any
6e(0, 1) sequences {xj, { a j both of which converge to limits xeK, ae[0, r^] such
that

(ea^R^, ecT.xi^a^R^ ^).

We then rescale the maps in the usual way by setting u^ equal to

^OO^"1^^)

for xeBi (0) so that sup d(u^ (x\ ^(0))= 1. We then have
B I ( O )

6-^(0, 9)>(1/2)R^(0, 1).

We may assume by taking a subsequence that { ^ } converges uniformly to a mini-
mizing map u:B^(0)->X where the target complex is either a dilation ofX or the
tangent cone Xp, where P=lim^.(^). Now Ord^O)^ 1 or Ord"~(0)^ 1 +8, and in the
first case Theorem 5.1 implies that for ; sufficiently large the map u, is regular in a
fixed neighborhood of 0. This contradicts the previous inequality if 9 is small enough.
In case Ord"(0)=oc^ 1 +c, then we know from the proof of Theorem 2.3 that we
have

sup d(u, u(0))^c^ sup d(u, u(0)).
Ba(0) B i (0 )

This implies, by an easy argument, that for 9 small depending on c we have

9~ lR l^(0, e^l^R^O, 1),

a contradiction. This completes the proof of Theorem 5. 5.

6. Special structure of harmonic maps into building-like complexes

In this section we consider complexes X which satisfy a very special hypothesis
which we describe shortly. In a certain sense these are higher dimensional generaliza-
tions of trees. For us the important property which a tree has is that two adjacent
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edges lie in a geodesic (the union of the two closed edges). We assume that the
simplices of X are Euclidean simplices; that is, images under a linear transformation
of the standard Euclidean simplex. We make the following definition.

Definition. — We say that a nonpositively curved complex X^ is ^-connected if
any two adjacent simplices are contained in a totally geodesic subcomplex Xo which
is isometric to a subset of the Euclidean space R

k
.

The most important F-connected complexes are the locally finite Euclidean
buildings of Bruhat and Tits (see [BT]). We first want to show that F-connected
complexes are essentially regular, thus generalizing Theorem 5.5. We first need two
elementary lemmas.

Lemma 6.1. — 7/'Xi, X^ are essentially regular complexes, then so is X^ x X^.

Proof. — This follows from the fact that a map u=(u^ u^):Q.->X^xX^ has
energy E(^)=E(^)+E(^)- Thus u is minimizing if and only if both u^, u^ are
minimizing. Thus u^ u^ are intrinsically differentiable on any compact subset ofQ,
and hence so is u. This proves Lemma 6.1.

The next result enables us to find essentially regular totally geodesic subcomplexes
which contain any given flat effectively. Since we are interested only in local construc-
tions near a point Po^X, and since a neighborhood of P() in X is isometric to a
neighborhood of the origin in the tangent cone Xp , we may replace X by its tangent
cone Xp^. The fact that X is F-connected then implies that any two simplices (actually
simplicial cones) in Xp^ are contained in a totally geodesic subcomplex isometric to
the Euclidean space [R^. Let J: R^ -> Xp^ be an isometric totally geodesic embedding
for some m with l^m^k. We may assume that J(0)=0. If we choose a point x^O,
xeV such that neither x nor —x lie in the J~ 1 ((m—l)-skeleton of Xp^), then any
^-dimensional flat F which contains both x and —x must contain the full image
.1(1 )̂. This is because J~ 1 (F) contains cones over a neighborhood of both x and — x,

and therefore contains the convex hull of these cones which is [R^. It may happen
that J (IR^) is contained in several distinct ^-dimensional flats. We need the following
result.

Lemma 6.2. — Let Xg be the union of all k-dimensional flats in Xp which contain

J^K^). The subcomplex XQ is totally geodesic and is isometric to f^xX^'"" where X^

is an F'-connected complex of dimension k—m. IfL: R" —> V^ is a linear map of rank m,

then /: R" -> Xp^ given by l = J ° L, is effectively contained in Xo.

Proof. — Let F^, . . . ,F^ denote the ^-dimensional flats in Xp^ which contain
^R""). Let I,: R^ -> Xp^, i= 1, . . ., r, denote isometric embeddings to the F^ normalized
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so that I,(0)=0 and I, (R^ = J (R^, where we denote by IT c R^ the plane spanned
by the first m standard basis vectors; i.e.

R
m
={(x, 0):x=(x1, . . ^x"), x^R forj=l, . . . ,m}.

Similarly we denote by R^^ c R^ the orthogonal complement

Rk~m={(0, ̂ ^(x^1, . . .A x^'eR for7=m+l, . . . , k } .

We may further normalize our isometries so that I i , . . .,1, and J are identical on Rm

since this can be achieved by right composition of each I, with an orthogonal
transformation of R^ Each map I, induces on R^ a cell decomposition by simplicial

cones. We may describe Xo as the disjoint union of r copies of R^ where cells £„ 2^
in the z-thj-th decompositions are identified if I, (S^) = 1̂ . (1 .̂). By taking the intersection
of cells with R^ R f c~m each cell decomposition ofR^ induces a cell decomposition of
both R^ R^"^ by simplicial cones. Since all of the embeddings agree on R^ the cell
decompositions of Rm all coincide, so we may speak of the induced cell decomposition
ofR^

Now suppose_we have two points (x, ^), (y, JQ in Rk such that I,(Jc, ^)=I^(j7, ^).
Since the point (x, 0)0^ is the nearest point of Rm to (x, ^), and (y, 0) is nearest
in Rm to (y, y) and the maps I,, 1̂  coincide on R^ we must have x=y. It also follows
that the image of the closed convex hulls of Rm U {(x, ^)} and Rw U { ( y , J7)} under I,
and lj respectively must coincide in X. In particular we have 1^(0, ^)=I^.(0, ^). We
form a complex X^ of dimension k-m by taking the disjoint union of the r copies of
j^k-m ^^ ^^ educed cell decompositions and identifying points in the ;-th and

7-th copy if their respective images under I, and ly coincide. The previous argument
then shows that XQ is isometric to R"" x X^.

We now show that any two cells in Xg are contained in some F .̂. This implies
that Xo is totally geodesic since the geodesic connecting two points P^ P2^Xo lies in
any F .̂ which contains P^ and P^ and hence lies in XQ. It also obviously implies that
X^ is F-connected. Suppose we have a pair of cells in Xo which we may assume to be
/^-dimensional without loss of generality. We may think of these cells as 2 .̂, £ • in two
of the cell decompositions of R^^ given by I,, 1̂ . respectively. Fix a nonzero point
(XQ, (^eR^1 such that both (xo, 0) and (-XQ,O) are interior to m-cells in the cell
decomposition of R^ Let C,, C .̂ be the closed convex hulls ofRW U 5:̂  R^ IJ Sy respec-
tively. Choose points y,, y ^ in the interior of C^ Cy respectively such that both y ,

and YJ are interior to /r-cells £^ £j respectively. Assume also that y, is close to (xo, 0)
and YJ is close to (-XQ, 0). It follows that the w-cell of Rm containing (xo, 0) is a face
of 2,1, and the m-cell containing (-^o, 0) is a face of £}. Let F be a ^-dimensional

flat totally geodesic subcomplex ofX which contains I,(E,1) and I^(£j). Since F
contains neighborhoods of a pair of antipodal points of ^R"") it follows that F
contains ^R^, and hence F-F^ for some ;o with l^z'o^r. From the choices we
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have made, F^ must contain some interior point of both Ii(Si) and I;(2j), and
therefore F^ contains both cells. This proves the desired statement.

Finally, suppose / = J ° L : R " ^ X p Q where L:^^^ is linear of rank m. We
want to show that / is effectively contained in Xo. To see this, let X^ be the subcomplex
of R^1 (with the above cell decomposition) consisting of those cells of R"" whose image
under J is contained in the closure of some cell of X which is not in Xo. As in the
proof of Theorem 5.4, if we can show that X^ has codimension at least one in Xo
then the result follows. Let 2 be any m-cell ofR^ and let S^ be a cell o fX which is
not in Xo such that J(2) ^ 2i. Without loss of generality we may assume E^ is k-

dimensional. Take an interior point (^o, 0)e£ such that (—XQ, 0) is interior to some
cell £ of W. Let 2^ be a cell of X which contains J (S) in its closure. Then any /r-flat
of XpQ which contains both S^ and £2 automatically contains all of ^R^. This
contradicts the fact that S^ is not in Xo. We have completed the proof of Lemma 6.2.

Observe that if Po e X, then a neighborhood of Po is isometric to a neighborhood
of the origin in the tangent cone Xp^. In fact, if we define St(Po) to be the union of
all simplices which contain Po in their closure, then St(Po) is a totally geodesic
subcomplex of X which is canonically isometric to a neighborhood of the origin in
XpQ. Note that if Po is a vertex, then St(Po) is the star ofPo. Thus if Xo is a totally
geodesic subcomplex of Xp^, then we get a totally geodesic subcomplex, which we will
also refer to as Xo, of St(Po) which is isometric to a neighborhood o fO in XQ.
We now prove an important result concerning minimizing maps into F-connected
complexes.

Theorem 6.3. — Let X be an F'-connected complex. The following three properties

hold:

(i) For any positive integer n and any compact subset KQ o/X, there exists e>0
depending only on KQ and n such that, for any minimizing map u: SY

1
 —> X with

u (Q) c Ko, we have, for all XQ e Q, either Ord (Xo) == 1 or Ord (^o) ̂  1 + £.

(ii) Let u : ^ — ^ X be a minimizing map, and let x^eO, with Ord(xo)=l. There

exists a totally geodesic subcomplex Xo o/Xy^ which is isometric to J!L
m
^^

1
{~

m
 for

some integer m with l ^ m ^ m i n { ^ , k] and some F-connected complex X^ of dimension

k—m such that u (B^ (xo)) c XQ for some <7o>0. Moreover if we write

u=(u^u^)'.}^^(x) -> R^Xi, then u^ is a harmonic map of rank m at each point of

B^^WOrd^Xo^L

(iii) The complex X is essentially regular.

Proof. — To prove (i) we first observe that the tangent cone to X at a point P is

the cone over the link of the open simplex which contains P. Therefore, there are
only a finite number of cones which appear as tangent cones for points P in a compact
subset Ko of X. Thus to prove (i) we may restrict attention to a single cone Xp for
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some fixed PoeKo. Suppose we have a sequence of homogeneous harmonic maps
{^•}, z^:R"->Xp^ such that ^ is homogeneous of degree oc^ with o^>l and
lim o^ = 1. We may normalize u^ so that

i -> oo

sup ^ (x) I == 1.
x e B i (0)

With this normalization a subsequence of { ^ - } again denoted [u,} converges to a
map u'.R" -> XpQ which is homogeneous of degree 1. Thus by Proposition 3.1 there
exists an integer m with l^m^min [n, k] such that u=J°L where LiR"-^^ is a
linear map of rank m and J: W -> Xp^ is an isometric embedding. By Lemma 6.2 the
map u is effectively contained in a totally geodesic subcomplex Xo of Xp^ which is
isometric to Rm x X^. By Theorem 5.1 we have the image of u, contained in Xo for ;'
sufficiently large. It then follows that the projection of u^ to Rm is a harmonic map
which is close to a linear map of rank m. Therefore ^ must be linear (since it is
homogeneous harmonic of degree less than two), and we have a contradiction. This
establishes property (i).

Property (ii) is an easy consequence of Lemma 6.2 and Theorem 5.1. To establish
(iii) we work by induction on k. For k=l the result was established in Theorem 5.5.
Assume that k ̂  2, and that all F-connected complexes of dimension less than k are
essentially regular. We first prove the weaker result that for any x^efl, there exists
FO > 0 such that for a e (0, ro\

RCxo.a^ca^RCxo.ro)

for constants C, r^ (3 depending on the point XQ, the energy of u, and the spaces
Q, X. If we can prove this, then the same compactness argument used in Theorem 5.5
will imply that u is intrinsically differentiable on any compact subset of Q. There
are two cases to consider. First suppose Ord(xo)>l; then from (i) we know that
Ord (xo) ̂ 1+s. This implies, by the proof of Theorem 2.3, that

sup d(u(x\ u(xQ))^ca
l+£ sup d(u(x), u(xo))

x 6 B(y (xo) x e B^ (xo)

for some constant c and r^>Q. This easily implies the desired decay on R(xo, cr). The
other case we must consider is the case Ord (xo) = 1. In this case the result follows
immediately from (ii), Lemma 6.1, and the inductive assumption. This completes the
proof of Theorem 6.3.

It will be important for our application to do smooth differential geometric
calculations for our harmonic maps. To make sense of this we need to refine the
notion of intrinsic differentiability. This we now do.
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Definition. — A point x^eQ. is a regular point ofu if there exists Oo>0 and a
/:-flat F ̂  X,^ such that ^(B,,(xo)) <= F.

We see in particular that the map u is actually a real analytic map to the Euclidean
space R^ in a neighborhood of a regular point. We then let St (u) denote the open
subset of Q. consisting of all regular points of u, and we let y (u) denote the singular
set, y (^)=Q— SS(u). We now prove the following result.

Theorem 6.4. — Let u be a minimizing map from Q to an ¥-connected

complex X. The Hausdorff dimension of y (u) is at most n — 2. For any compact sub-

domain QI of^l there is a sequence of Lipschitz functions {v|^} with v|/i=0 in a

neighborhood of y C\ ̂  i, 0 ̂  v|/^ 1, and \)/, (x) -^ 1 for all x e Q i - ̂  such that

p
lim VV^| V\|/j4i=0.
I -»• 00 JQ

Proof. — We first observe that the singular set y may be written as a union

y
 =

 ̂ Q U • • • U ^feo where ^o=min { ^ ? ^~ 1} and yj consists of those singular
points having rank 7, where the rank of a point XQ is the number m appearing in
Theorem 6.3 if Ord(xo)= 1, and the rank is zero if Ord(xo)> 1. In other words, the
rank of u at XQ is the rank of the linear approximation to u near XQ (which exists
by Theorem 6.3). We will show first that dim ^o^ ^ 2 — 2 , and the result for y

will follow from an easy inductive argument based on Theorem 6.3. Let

^(^{^o6^01^^^1}. so that
 yoW^^oW'

 we deal with the i^g^
set y Q. The proof for ^o is an application of the basic argument of H. Federer [F2].
For any subset E c Q and any real number s e [0, n] define an outer Hausdorff measure
J^(.) by

f °° 1
^

s (E) = inf ^ ^ r f : all coverings { B^ (x,) }^ i of E by open balls ^
l i = i l j

The value of J^5 (E) is not important, and bears little resemblance to the ^-dimensional
measure of a set; however, it is clear that the Hausdorff dimension of a set E is given
by

dimE^inf^jr^E^O}.

We note the following result.

Lemma 6.5. — If [u^] is a sequence of minimizing maps into a compact subset

of \ from BI (0) <= R" equipped with metrics ^g converging in the C2
 norm to a limit g,
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then a subsequence of [u^] converges uniformly on compact subsets of 3^(0) to a

minimizing map u: (B^ (0), g) -> X, and we have

^s (^o (u) U B,(0)) ̂  hm ^f5 (^o (̂ i) 0 B^O))
I -»• 00

for all re(0, 1). In particular, dim(^o(^))^ lim dim(^o(^))-
I ->• 00

Proof. - Since c^o (u) H B^ (0) is compact we may consider finite coverings,
_____ N

§o(^)nB,(0)c ^j B^.(^). For any s>0 we have
j = i

^o(^)nB,(0)^{xeBi(0):Dist(x,^o(^)nB,(0))<£}

for ; sufficiently large. This follows immediately from the fact that if
x, e ̂ o (Ui) r\ B, (0), and x, -> x, then

iim Ord^^^Ord^x)
i —^ co

and hence by part (i) of Theorem 6.3, xe y^(u) U B,(0). The conclusion of
Lemma 6. 5 now follows.

We now show that dim ^o (u)^n- 2. Suppose ^ e [0, n] with J^5 (^o (^)) > 0. Then
by [Fl, 2.10.19] we may find a point XQEQ. such that

lim a-^^o^nB.Oco))^-5.
G ^ 0

Let ^R^Xy^ be a homogeneous approximating map for u at XQ. Let
a=Ord"(X()), so that u^ is homogeneous of degree a, and since XQ^SQ^) we have
a^ 1 + e by Theorem 6.3. We may apply Lemma 6.5 to suitable rescalings {u,} ofu

near XQ, recalling that maps to a neighborhood of u (xo) may be thought of as maps
to the fixed space X^^, to conclude that ^(^oO^))^- Since ^oO^) is a cone
(u^ is homogeneous), it follows that there is a point x^ e S"~1 0 e^o (^) such that

lim a-^^o^nBJ^))^-5.
a -> 0

Let MI be a homogeneous approximating map for u^ at jq. Note that
Ord"i(xi)^l+£, and hence Ord"i (tx^ 1 +e for /e[0, 1]. Therefore the derivative

of u^ is zero along the ray t\—>tx^ and hence u^ (x^)==OeX^^y Therefore u^ is a

homogeneous map to the same cone X^ ̂ y The homogeneity of u^ together with the
fact that Ovd

u
'
F
(x^)>\ translates to the statement that the map u^ is independent of a
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direction. If we choose coordinates in which x^ = (0, . . ., 0,1), then we have B u ^ / S x " = 0.
Therefore the restriction of u^ denoted u^ to the R""1 spanned by the first (n-\)

standard basis vectors is a homogeneous map of degree 04 > 1 +e. We then have

^o^-^oO^R.

and thus J^5"1 (^o(^i))>0- I f ^>^-2 ,we may repeat this argument inductively and
produce finally an 8 > 0 and a minimizing map v: R2

 -> Xy ^ ^ homogeneous

of degree a ^ l + s such that J^S-("-2)G9?o(ZO)>0• In particular, there is a point of
yo(v) different from the origin. If we repeat the argument again we construct a
geodesic. By the 1-dimensional analysis of Section 1 we know that for a geodesic we
have Ord(xo)=l for all XQ. This contradiction shows that s^n—2 for any se[0, n}

with ^s (e^o (^)) > 0- Therefore dim ^o W ̂  n ~ 2 as required.
We now show by induction on / r=dimX that we have dim y(u)^n—2. For

k= 1 we have y=y^ and we have established this case. Assume that k^l, and that
for F-connected complexes X of dimension less than k we know that the singular sets
of minimizing maps of any ^-manifold into X have dimension at most n-2. Let XQ

be any point of c9^ - y^ for a minimizing map u: Q -» X\ We then have Ord (xo) = 1,
and by Theorem 6.3 there is a neighborhood B^ (xo) for some OQ > 0 such that the
map u maps B^ (xo) into a totally geodesic subcomplex Xo of X having the form
W x Xi. Thus we have u= (u^ u^) where u^: B^ (xo) -^ R'", ^ : B^ (^o) -^ X^ are both
minimizing. The set ̂  (u) F\ B^ (xo) is then the same as the set y^ (u^) C\ ̂  (^o)
since u^ has rank m at every point of B^ (x^). By the inductive hypothesis we then
have dim(y^(u)r\B^(xo))^n—2. This shows that for each m, dim y^n—1 and
therefore dim y^n—2 as required.

To prove the final statement of Theorem 6.4, that is, to construct the functions
v|/p let c>0 and d>n—2. Let Q^ be a fixed compact subdomain ofO with Q/c: Q^
and choose a finite covering {B^.(x^): 7= 1, . . . , / } of the compact set ^oH^i

satisfying ^ ^^s- Assume also that B^^.^Xj) ^ ^2 as w1
^ be true i fe is small enough.

j = i
Let (pj be a Lipschitz function which is zero in B^.(x^) and identically one on

Q-B^.Q^) such that IVcp^^r^1 . We assume also that ^.e^o^^i- Let ^ be
defined by

(p=min { ( p , : 7 = l , . . . , /}

and observe that (p vanishes in a neighborhood of ^oOQ^ and (p^l on
i

Q- U B^^.^.). Now let vl/o^2 and observe
j=^



228 HARMONIC MAPS INTO SINGULAR SPACES

r r
( 6 - 1 ) IVV^I IV^o l^ - 2 (p|VV^ |V(p|4i

JQ ^U^lB2^)

a \ l / 2 / r \ 1 / 2

^2 ^ IVV^nv^l-V^ |V^ | |V(p | 2 ^)
Jj-lB2.,(^) / VJU^iB^.Oc,) /

by the Schwarz inequality. On the other hand, an elementary result for harmonic
maps (see [ES]) implies that on the regular set we have

(6.2) ^ A l V ^ P ^ I V V ^ P - d V ^ I 2 .
2 ' ' ' i l l

For 7= 1, . . . , / let p .̂ be a Lipschitz function which is identically one on B^.CX.) and
identically zero on Q - B3 ̂  (Xj) with | V p,|^ 2 r]

 1. Define p by rj j

p = m a x { p j : j = l , . . . , /}

i i
and observe that p = l on U B^.C^.) while p=0 outside U ^3r-^j)' We therefore

have j = l j = l

r r
(6-3) ^ Ivv^lv^ - l(p2^^ Iw^l ' lv^l-1^2?2^.

J U j = l B 2 ^ . ( x i ) JQ

We now state the following result whose proof we give later.

Lemma 6 .6.- The conclusion of Theorem 6.4 implies that inequality (6.2) holds
distributionally on all ofQ..

Now we make the assumption either that k=\, or that Theorem 6.4 holds for
maps into F-connected complexes of dimension less than k. In the first case we have
y ^ y , so (6.2) holds away from y^. In the second case, for any point x^e^-y^

the map is given locally as u=(u^ u^) where u^ is a map to a Euclidean space and u^

is a map to a lower dimensional F-connected complex. Since we have

Iv^l^lv^+lv^l^ Ivv^l^lvv^^+lvv^l2

by our inductive assumption and Lemma 6.6 we have inequality (6.2) distributionally

on ^-^o. A result of [SY] implies that on the regular set we have
(1 - sj | VV u |2 ̂  | V | V u ||2 for some £„ > 0 depending only on n. Therefore we have the
distributional inequality

MVu\^G,\Wu2\Vu\~l-c\Vu\
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on Q—^o. Using p2 (p2 as a test function we find

r r
£j \Wu\2\Vu\~lp2(p2dvi^-2\ p(p<V|Vi4 V(p(p)>4i

JD Jn

r
+c Iv^lp2^2^.

J^

This immediately implies

r \vvu\2\vu\~lp2(f)2d^ljo
p

^c |VM|((p2 |Vp|2+p2 |V(p|2+p2(p2)^.
Jsi

Combining this with (6.1) and (6.3) we have

r r
|vv^| |v^o|4^^ iv^K^lvp^+p^vcp^+p2^2)^

Jo. Jo,

Using the definition of (p and p we have the result

[ |VV^ |V^o|4i^Z Q ' f |V^|4t.
JQ. j = l J B ^ r j ( X j }

On the other hand since Xj e e^o we have Ord (xj) ̂  1 + s, and therefore by Theorem 2.4

sup | V u | ̂  cr^.
B2 ̂  (^-)

Thus we have

i

|VV^| |Vv|/o|^^c ^ r^-2 + £^£
j-iJn

provided r f < ^ — 2 + e and s is small. This gives the result for / r= l since y=y^ in
/ l

 \ _
this case. For k> 1, we cover the compact set ( y — U B^ . ( X j ) ) n ̂ i with balls

V j = i j )

{B^):^=l, . . .^}

such that in each ball B^ ( y p ) the map can be written u=(u^, u^) as in part (ii) of
Theorem 6.3. By the inductive assumption there is a function \|/p vanishing in a
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neighborhood of ^HB^(^) and identically one outside a slightly larger
neighborhood with

r
|vv^| IVvl/J^i^^^.

J^

We finally set \|/=min {\|/o, ^i, . . .,v|^} and conclude

r 9 r
|VV^| |V^|4i^ ^ |VV^ |Vv|^|4i^2£.

J^ p=o JQ

This completes the proof of Theorem 6.4 except for the proof of Lemma 6.6 which
we now give.

Proof of Lemma 6.6. - Let p be any nonnegative function with compact support
in Q. Suppose Q^ is a domain in Q with compact closure which contains the support
of p. Let {8 ,} be a sequence tending to zero and let {\|/,} be the corresponding
sequence of functions coming from Theorem 6.4. We then have

i r r r- (VIV^VC^P))^ ivv^vi/.p^i-c iv^^p^i2^ Jsi Jo

since vj/^p has support in St(u). This implies

i r r r
- (ViV^I^Vp)^^ IW^^P^I-C IV^^P^I
^Jo Jo Jo

r
- sup p | v u 1 1 vv M 1 1 v v|/J 41.

" Jo

Since | V u \ is bounded on compact subsets of Q we conclude that the third term on
the right tends to zero. The dominated convergence theorem then allows us to let
i —> co to conclude

i f r r
-- (viv^vp)^ ivv^p^-c IV^P^I2^ Jo Jo

as required. This completes the proof of Lemma 6.6.
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Part II:
Applications to discrete groups

In this second part of the paper we prove some rigidity theorems for discrete
groups with the help of the theory developed in Part I. In particular, we prove our
^-adic superrigidity results, and discuss fundamental groups of Kahler manifolds.

7. Equivariant harmonic maps to buildings and the Bochner method

We begin this section by extending the homotopy existence result of Section 4 to
a more general setting for certain image complexes X. Suppose X is the Euclidean
building associated to an almost simple ^-adic algebraic group H (see [BT] for the
construction of X). It will be important to know (see [B]) that X has a compactification
X = X U 3X such that any h e H acts continuously on X (of course h is an isometry
ofX). Moreover, if {P^.} is a sequence from X with lim P^=P*e3X, and if { Q i } is
another sequence from X with d(P^ Qi)^C independent o f f , then it follows that
lim Q^=P*. Finally, the isotropy subgroup ofH fixing a point P*e3X is a proper
algebraic subgroup while the isotropy group of an interior point is a bounded sub-
group. For a complete Riemannian manifold M, let M denote the universal covering
manifold, and suppose we have a homomorphism p: F-^H, where F=IIi(M). A

Lipschitz map v:M->X is equivariant if ' u ° y = p ( y ) ° v f01" a!! Y6!^- Note that the
function |Vi?|2 is F invariant on M and hence is well-defined on M=M/F. Thus we
may say that E (v) = total energy of v on M is well-defined even though v is not defined
on M. We now prove the following existence result.

Theorem 7.1. — Suppose p (T) is Zariski dense in H and suppose there exists a

Lipschitz equivariant map v: M -> X with finite energy. Then there is a Lipschitz equiva-

riant map u of least energy and the restriction of u to a small ball about any point is

minimizing.

Proof. — Let Eg denote the infimum of the energy taken over all Lipschitz
equivariant maps. Let { ^ } be a sequence of Lipschitz equivariant maps with E (z^)
tending to Eg. Let B be a ball in M such that y(B)nB=0 for all yeF. We may
then construct a new minimizing sequence v, by setting

_ r Vi on M- U Y(B)
z^

P (y) ° ̂ i ° Y 1 on Y (B) for any y e F

where u^ is a minimizing map in B which agrees with ^ on 5B. We have E(^)^E(z^)

and Vi is equivariant, so { ^ } is again a minimizing sequence. On a compact subset



232 HARMONIC MAPS INTO SINGULAR SPACES

of B, the sequence {v, ] is uniformly Lipschitz by Theorem 2.4. It follows that a
subsequence of { ^ } converges uniformly on compact subsets of B to a map into X
which either maps into X or maps to a single point P*e3X. We use the Zariski
density of p(F) to exclude the second possibility as follows. Let yeF, and let x^eM

be the center of the chosen ball B. Let C be any smooth embedded curve from XQ to
Y.XO. An elementary argument using Fubini's theorem shows that C may be chosen
so that the energy of the restriction of each map ^ to C is uniformly bounded.
Therefore the length of the curve ^-(C) is uniformly bounded, and in particular

{rf(^(xo), p (y) (^ (^o)))} ls bounded. Therefore lim p(y)(^(xo))=P*, and hence
p (y) (P*) = P* for every y e F. This shows that p (F) is contained in a proper algebraic
subgroup of H contradicting the Zariski dense hypothesis.

Therefore we may assume that { ^ } converges uniformly on compact subsets
of B. From Corollary 4.2 we have

r
|Vd(v,, v)\2 d^c

JK

for any compact subset K of M. Since [v^] converges uniformly on compact subsets
of B, the function d(p^ v) is uniformly bounded there. It then follows from Poincare-
type inequalities that

d\^v)d^c
JK

for any compact K c M. In particular, the sequence {z \ -} converges weakly in
H^K, X) for any compact subset K to a map ^eH^K.X). By the same argument
as that given in Theorem 4.4 we conclude that u is a Lipschitz equivariant map of
smallest energy. The local minimizing property of u follows. This completes the proof
of Theorem 7.1.

We now show that the Bochner method can be applied for harmonic maps into
F-connected complexes where by harmonic we mean locally minimizing; i. e. minimizing
on a neighborhood of any point. Since Euclidean buildings are F-connected this will
lead to strong conclusions concerning /?-adic representations. We suppose u is an
equivariant harmonic map from M to X where X is an F-connected complex. We
assume u is equivariant with respect to a homomorphism p: Hi (M) —> Isom (X) from
F=r[i (M) into the isometry group of the complex X. For example, if u is the lift of
the solution of Theorem 4.4 of the homotopy problem, then u is equivariant with

respect to the homomorphism (p^ induced on fundamental groups of the quotients.
Generally equivariant maps need not be lifts from quotients, so this gives a means of

studying more complicated representations.
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If we take a regular point XQ e M, then the image under u of a ball B (xg) is
contained in at least one ^-flat. Choose such a flat F, and let ^* TF denote the
pullback of the tangent bundle of F under u. Let V denote the pulled back connection,
and let d^ denote the corresponding exterior derivative operator on j9-forms with
values in u* TF. Let 8y denote its formal adjoint. The differential du of u then defines
a 1-form with values in y*TF, and the harmonic map equation may be written
8^7 du=0. We now prove the following extension of the Corlette vanishing theorem [C].

Theorem 7.2. — Let w be a parallel p-form on M, and assume that u is a finite

energy equivariant harmonic map into an f-connected complex X. In a neighborhood of

any regular point ofu the form w A du satisfies 8^7 (w A du)=0.

Proof. — Consider any regular point XoeM, and any /c-flat F containing
B (xo) for some <Jo>0. The calculation of [C] then implies rfy8v(w A du)=0 near
XQ. The sets St(u) and y (u) are invariant under F, and we define ^Q=^(u)/r and
yQ=y(u)/r. We then have from Theorem 6.4 that dim^o^"^, and for any
compact subdomain Q^ in M, there is a sequence of nonnegative Lipschitz functions

{ v j / ^ } which vanish in a neighborhood of ^o H^i ^d ten
^

 to 1 on M—^o FWi),
such that

r
lim |VV^| |V\|/j4i=0.

i -" oo JM

To see this we simply observe that we can prove Theorem 6.4 on the quotient by
exactly the same argument. Now let p be a nonnegative Lipschitz function which is
identically one on BR (xo) c M and identically zero outside B^ R (xo) with | V p | ̂  2 R~1 .
Let \|/ be a nonnegative Lipschitz function vanishing in a neighborhood of
^oHB^R^o). We then apply Stokes' Theorem on M using the identity
0 = v|/p2 ( w A du, d^ 8y (w A du) ). Thus we obtain

v|/p2 ||8v(w A ^)||2^
JM

r
= ±\ < ^ (W(\|/p2) A ^ (w A du\ 8y (w A du} ) d[i.

JM

This implies

^I^A^n2^

r
<^c (^p|Vp + |V4 f |p 2 ) |VM| | |8v(^A ^)||d^i

JM
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Using the inequality 2 ab ̂  e a
2 + £~ 1

 b
2 we then have

VJ/P^ISy^A ^)||2^

JM

r r
^c \|/|Vp|2 V^l^ii+c p^Vvl/l |V^ | |VV^|4i

JM JM

where we have used || 5y (w A du) \\^c\ VV ^ |. Therefore we have

r r
^||8v(w A^H^^i^cR-^^+c p^V^I V^| |VV^|4i .

JBR(XO) JM

We choose R so large that the first term is less than s/2, and then we have, since u is
Lipschitz on B^ R,

r r
^\\6^(w ^du)\\2d^i^s/2+c(R)\ |v^||vv^|4i.

JBR(XO) JM

We then choose \|/ so that the second term is less than s/2 and we find that for large R

r
^||§v(w A^n2^^.

JBR (xn)^BR(XO)

It follows that 8y(w A du)^0 on ^?(^) as required. This completes the proof of
Theorem 7.2.

We now derive two useful consequences of this result. First we consider the case
in which M is a Kahler manifold and w is the Kahler two-form. We first make a
definition.

Definition. — A harmonic map into an F-connected complex is pluriharmonic

provided it is pluriharmonic in the usual sense, 98u = 0, on the regular set.

Theorem 7.3. — A finite energy equivariant harmonic map from a Kahler manifold

into an ^-connected complex is pluriharmonic.

Proof. — By the previous result we have 5y (w A du) = 0. If we choose Euclidean
coordinates (u

1
, . . .,^) in a flat F which locally contains the image of u, then as

in [C] this condition implies that the Hessian of each function u
3
' (z) for 7== 1, . . .,k

is a symmetric matrix lying in the Lie algebra of the symplectic group. This implies
that the trace of the restriction of this matrix to any complex line is zero, and hence
each u

3 is a pluriharmonic function.
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Theorem 7.4. — A finite energy equivariant harmonic map from Quaternionic

hyperbolic space or the Cayley plane into an ̂ -connected complex is constant.

Proof. — By Corlette's result [C] the condition 8y (w A du} = 0 where w is either
the Quaternionic Kahler 4-form or the Cayley 8-fbrm implies that the Hessian of u

vanishes at each regular point. This implies that the forms du
3
 j= 1, . . . ,/r are parallel

1-forms, and hence if they are nonzero we get a local isometric splitting of the domain
as the product of R with a lower dimensional manifold. Since such a splitting does
not exist for the Quaternionic hyperbolic space or the Cayley plane we conclude that
V^^O, and hence u is a constant map. This proves Theorem 7.4.

8. /?-adic superrigidity for lattices in Sp (w, 1) and F4

Let M be the Quaternionic hyperbolic space (resp. the Cayley plane), so that the
group Sp(n, 1) (resp. F4) acts on M by isometries. We denote the relevant group by
G. A lattice F in G is a discrete subgroup with finite volume quotient. Let p: F -» H
be a representation of F in an almost simple ^-adic algebraic group. Thus H acts by
isometries on the associated Euclidean building X. By replacing F with a finite index
subgroup we may assume F is a neat lattice (see [GR]), and we then have:

Lemma 8 . 1 . — There exists a finite energy Lipschitz equivariant map.

Proof. — Let M=M/F so that M is a finite volume rank 1 locally symmetric
space. On each cusp M of M there exists a proper function r: M — ^ R + such that r is
smooth with | V r | = l , and r has compact level sets. The metric g on M may then
be written dr

2
-^-^ where ^ is a metric on ^o=r

-1
 (0). If we normalize the curvature

of g to be between — 1 and —1/4, then we have the inequalities on £ for a constant
c>0

(8.1) c^e-^^^^ce-Cg).

Consider first the compact manifold Mo with boundary gotten by removing each of
the finite number of cusps from M. Then Mo is a r-invariant subregion of M, and
we can choose a Lipschitz equivariant map v from Mo to X. To extend v to all of M,
we extend v to the cusps as a function independent of r. This produces a Lipschitz
equivariant map, and we show that it has finite energy. The function Vv\

2

is r-invariant and thus descends to M. From (8.1) we see that on r"1^) we
have \Vv

 l
^ce

la while the volume of ^ - l(^) is bounded above by a constant times
^-((n-D/2) a since n=dim M^8 in the cases we are considering we have
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JV^I2^ |V^|2^: )da<oo.
JM Jo VJr"1^) /

This completes the proof of Lemma 8.1.
We are now in a position to prove the following main theorem.

Theorem 8.2. — If p (F) is Zariski dense in H, then p (T) is contained in a bounded

subgroup ofH.

Proof. — By Lemma 8.1 there is a finite energy equivariant map from M to X.
By Theorem 7.1 there exists a least energy minimizing map u: M —> X. By
Theorem 7.4 the map u is constant, say u (M) = [ P() }. It follows that p (T) ^ Hp , the
stabilizer of the point Po e X. This is a bounded subgroup (see [B]), so we have
completed the proof of Theorem 8.2.

As a corollary we obtain the following result.

Theorem 8.3 Gp-adic superrigidity). — Let F be as above and p be a p-adic

representation of F i.e., a homomorphism p : F —> GL^ Qp for some N=1,2, . . ., and a

prime p . Then the image p (T) is precompact in GL^ Qp.

Proof. — It suffices to prove that the image of a subgroup of finite index of r is
precompact, hence we may assume as above that F is neat. Let H denote the Zariski
closure of p(F). I fH is almost simple, then the claim follows from 8.2. Furthermore,
if H is semi-simple the conclusion is obtained by applying 8.2 to the simple factors
of H. Finally, in the general case, let R denote the radical of H and Ho be the semi-
simple factor-group, Ho = H/R. The factor representation po : F -> Ho has a precompact
image po (F) c: Ho as follows from the above discussion and let Ro <^= H denote the
pull-back of the closure KQ <= Ho of po (F) under the projection H -> Ho. Notice that
RO is a locally compact group containing a solvable normal subgroup, namely R c: Ro,
and the quotient group Ko is compact. Thus R is an amenable group and so p: F -> Ro
has bounded image because F satisfies Kazhdan's property T.

Remarks. — (a) Our super-rigidity complements the Archimedian super-rigidity

theorem of Corlette:

Every representation p: F —> GL^ R has either precompact image or it extends to a

continuous representation of the ambient Lie group (which contains F as a lattice).

(b) One could prove 8.3 directly without an appeal to the (elementary) structure

theory of algebraic groups. First, using the T-property, one observes that p(F) is
contained in SL^ Qp and then there is an action of F on the building X attached to

SL^. Then one applies our minimization process to the corresponding map X -> M
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and if the minimizing sequence z^: X —> M tends to infinity one brings it back using
some isometries o^ of Mp thus achieving a uniform convergence of a, ° z^ on compact
subsets in X. In fact, by our Bochner-Corlette formula, the limit of these maps is
constant. Then one notices that applying oc^ amounts to conjugating p by oc^ and the
above constancy of the limit map says that the representations oc^ poc^1

 converge to a
representation with a bounded image. Hence p itself has a bounded image as easily
follows from the T-property of r.

Now we are in a position to conclude the following.

Theorem 8.4 (Arithmeticity). — A lattice F in G= Sp (n, 1), n^l (i.e., the isometry

group the quaternionic hyperbolic space) or n the isometry group G of the Cayley plane

is arithmetic.

In fact, Margulis has reduced the arithmeticity to the archimedian plus ^-adic
super-rigidity. (This reduction is clearly explained in Chapter 6 of [Zim].)

9. Pluriharmonic maps into trees and buildings

Let M be a Kahler manifold and u a harmonic map of M into a locally
F-connected space X. We know that in certain cases (e.g., if M is a closed manifold)
u is pluriharmonic (see section 7) and now we want to understand the local and global
geometry of these pluriharmonic maps. Our main application of such maps, proven
later on in this section (in the case where X is a tree), is the following

Theorem 9 . 1 . — Let M be a compact Kahler manifold without boundary and suppose

the fundamental group F=n^(M) admits an amalgamated product decomposition

r==r\ ^A^2? ^here the index of A in r\ is at least 2 and the index of A in F^ is at

least 3. Then M admits a surjective holomorphic map onto a Riemann surface.

Let us look at a map u of M into a tree X at a regular point x^eM, such that
(by the definition of regularity) the ^-image of a small ball B^ (xo) c: M is contained
in a geodesic (flat) F <= X. Locally this F is isometric to R and so u near XQ amounts
to a real function u: By (xo) -> R = F c= X. Notice that this F = R carries no natural
orientation and so the differential du is only defined up to ± sign. On the other hand,
if u is pluriharmonic, then the complexified differential, say d^ u, is holomorphic, if we
choose the sign. Therefore, the square (^u)

2 is a holomorphic quadratic differential
(of rank one) defined on the set of regular points of u. Now, since u is Lipschitz, the
differential du is bounded, and since the singular set has codimension ^2 in M, the
differential (d^u)

2 extends to a holomorphic quadratic differential on all ofM. Since

this differential has rank < 1, there is a ramified double covering of M, say M~ -> M
(where M~ may be singular), such that {d^u)

2 lifts to a holomorphic 1-form, denoted
d^ u on M ~. This form is closed and locally the differential of a holomorphic function



238 HARMONIC MAPS INTO SINGULAR SPACES

on M~, say u^ : M^ ->C. The levels of this function can be defined as maximal
complex submanifolds (having complex codimension one in M) contained in the levels
u~

1
 (y) c= M, yeX, of u lifted to M^ (these have real coodimension one). The (Galois)

involution on M~ switches the sign of fiT u and, hence, locally of u^. It follows that
the local partition into connected components of the levels of (u^)

2 descends back to
M and by the (local version of) Stein factorization theorem the map u decomposes in
a small neighborhood Q of each (possibly singular) point of M into a composition of
a holomorphic function 0 -> D c: C followed by a harmonic map UQ : D —> X where D
denotes the unit disk in C. Therefore, the singular locus of u appears as a holomorphic
pull-back of that for the harmonic map UQ : D -> X and the quadratic differential
(D0^)2 comes from (d^u^)

2 on D. Since the singular locus of UQ is contained in the

(discrete) set of zeros of (rf0^)2? it ls discrete and hence, the singularity of u is a
complex analytic subvariety in M locally given by a single function M -> D whose
level lifted to M~ are connected components of levels of u^.

Summing up, we arrive at the following

Corollary 9 . 2 . — Let u: M -> X be a non-constant pluriharmonic map of a connected

complex analytic manifold into a tree. The set £ c: M of singular points ofu is a complex

analytic subvariety in M "whose components have codimension 1 in M. Furthermore, the

lift of^L to M~ equals the union of some leaves of the (holomorphic) foliation defined

by the (closed holomorphic) \-form (d^ u)
2
 on M^.

Remark. — The pull-back u~
1
 (v) c: M of a vertex veX is not, in general, a real

analytic subset in M. For example, the standard harmonic map of the disk into the
tripod (see §0) has the pull-back u~

1
 (v) homeomorphic to the tripod. This cannot be

real analytic as it has an odd number (3 in this case) of branches. Yet this level is
subanalytic. Moreover, all levels of an arbitrary pluriharmonic map u lifted to M^
are real analytic subsets in M^ as follows from 9.2. Every such subset at a singular

point of u is necessarily reducible and the complement has more than two connected
components sent by u to different branches of the tree.

Now we look at a slightly more general situation where we have a r-equivariant
pluriharmonic map u of a connected Kahler manifold M into a tree X. Here we
assume that the group F is infinite and acts discretely, cocompactly, and isometrically
on M, and that the action of r on the tree is also isometric for the given (piecewise
linear) metric on the tree X.

We want to show that u decomposes into a holomorphic r-equivariant map of
M to a Riemann surface D with a discrete holomorphic action of F (typically, D is

the unit disk in C) followed by a r-equivariant harmonic map D -> X. We divide our
analysis of u into two cases depending on whether the map u is everywhere regular or

has a non-empty singular set.
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Decomposition Lemma in the singular case. — If the singular locus £ c: M of u

is non-empty then the map u decomposes into a proper holomorphic Y-equivariant map

M -> D followed by a Y-equivariant harmonic map D —> X.

Proof. — Let us look at the holomorphic foliation defined by the form (d
c
u)

2
.

The singular locus 2 of u is a union of leaves and, obviously, £ c M is F-closed i.e.,
the image of £ in M = M/F is a closed subset. If follows that if £ is non-empty then
all leaves of our foliation are F-closed (see explanations below) and so our foliation
descends to a partition of M==M/r into compact analytic subsets. We apply to
this partition the Stein factorization theorem (see [Ste]) and thus obtain the desired
factorization M -> D.

First explanation. — Let /^ be a holomorphic (and hence closed) 1-form on a
compact Kahler manifold M ̂ . Then there exists a complex torus N of real dimension k

in the interval 2^^ranHi (M~), such that l^ can be induced from some holomor-
phic 1-form / on N by a holomorphic map a: M~ —> N and where each leaf L c N of
the foliation defined by / satisfies the following

Minimality condition. — The leaf L contains no complex subtorus of positive dimension.

To construct N one starts with the Albanese variety No of M ~ with the form /o
corresponding to /^ and then factorizes No by the maximal complex subtori in the
leaves of the corresponding foliation of No.

Notice that the minimality condition implies that no leaf L c: N contains a
complex compact submanifold of positive dimension. (Indeed, each L is of the form
Qk-i ^ f^ gome non-cocompact lattice JS? c= C^"1. We turn L into an Abelian analytic

Lie group by taking some point in L for the origin and observe that the additive span
of a compact complex submanifold in L is a complex torus). It follows that if the
pull-back oc~1 (L) contains a compact component then oc(M^) r\ L is zero-dimensional
and therefore the image oc(M~) c: N is 1-dimensional.

The above provides an explanation needed for the global factorization theorem
in the case where the action of r on M is free: Here one takes the ramified double
covering of M/F for M ̂  and observes that the lift of £/F c M/Y to M consists of a
union of finitely many compact components of the pull-back of some leaves L c= N.

In the general case, where Y is non-free (but yet discrete), one notes that all steps

of the above argument apply in the presence of fixed points if we work r-equivariantly
on M rather than on the quotient space M/Y.

A judicious reader might have noticed that the above explanation, which relies
on the theory of Albanese varieties, needs special care in the case where M~ is
singular. Instead of resolving this singularity we suggest below an elementary (albeit
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less elegant) argument where the singularity of M~ does not enter the discussion at
all.

Second explanation. —Let L(m), meM denote the leaf of our foliation (defined
by ±d

c
u) passing through m, and denote M* c: M the union of the leaves L(m)

whose projections L(w) to M=M/F are compact. First we observe that the subset
M* c M is closed in the following sense.

7/'w(Y)eM, te[0y I], is a continuous path of points^ such that m(^)eM*/or t>0,

then also m(0)eM*.

It is easy to see (e.g. by looking at the function v below) that the homology
class of L(m(t)) stays bounded for te]0, 1]. Therefore the Kahlerian volume of
L (m (t)) c= M = M/F, being a homological invariant, is bounded for t > 0 and so the
limit leaf L(m(0)) is compact. (Notice that Vol. L(m(P))=Vo\ L(m (Q) for small t>0

unless L(w(0)) is multiply covered by nearby leaves in M=M/F.)
Secondly, we show that the subset M7 c: M is open.

Proof. — For each leaf L c= M there obviously exists a function ^ on a small
neighbourhood A = A (L) <= M of L, such that

(i) (d^)
l
=v(du)

l
\ this is equivalent to d /v= ±d

c
u and this makes the foliation

into the connected components of the levels of v equal to that defined by ±d
c
u on A

(ii) ^ L=0.

Now, let the projection L c: M of L be compact. Then ^ descends to a function v

on some neighbourhood A cz M of L, such that the pullback of v to M equals v on
some neighbourhood of L (where both functions are defined). Since L <= M is compact,
the leaves L (w), which equal the connected components of levels of r, stay close to L
for m close to L (i. e. L (m) Hausdorff converge to L for m -> L, compare the proof
of 9.3 below). Therefore, these L(m) are compact (as they do not reach the boundary
of A) and they receive the leaves L(m) from M for m close to L. This yields the
openess of M*.

Finally we notice that every leaf contained in the singular locus £ c: M has
compact projection as £/F is compact and so our M* is non-empty. Thus M*=M,
since M is connected.

Remark. — The above argument applies whenever the zero set of d^ u contains a
leaf L. Notice that the inclusion L c: Zero (d

0
 u) is equivalent to local disconnectedness

of the levels of the above function /v near each point m e L.

Nonsingular case. — If u: M -> X is a nonsingular pluriharmonic map then the
complexified differential d^ u is defined everywhere on M up to ± sign. It follows dc

 u

becomes a honest holomorphic 1-form ^ on a (non-ramified) double cover of M which
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is invariant under a discrete group consisting of lifts of the transformations from F
to this cover. To minimize notation we assume below that this double cover splits,
and thus we have a F-invariant holomorphic form ^ on M itself, such that the map
u'. M -> X is constant on the leaves of the foliations defined by "k on M. Furthermore,
by passing to some Abelian covering of M we can make \ exact as well as equivariant
under a certain discrete cocompact group acting on this covering. Thus we may assume
X is exact to begin with. In this case the leaves, which are the connected components
of the level sets of the holomorphic function z on M with dz = ̂ , are closed analytic
subvarieties in M. Moreover, we claim that the space of these leaves is Hausdorff
(this is explained below) and therefore the Stein factorization theorem applies. Thus
we arrive at the following

Factorization in the nonsingular case. — Suppose u is non-singular and M is simply

connected (This takes care of the intermediate coverings). Then u decomposes into a

holomorphic map M —> D followed by a harmonic map D —> X, where these maps are

equivariant with respect to F or a subgroup V of index two in V (taking care of the

d= sign of d^u).

Here, as earlier, D comes equipped with a holomorphic action of Y (or V) but
we do not claim at this stage that the action of V (or V) on D is discrete. In general
it need not be discrete as the map M -> D may be non-proper.

On the Hausdorff property of holomorphic foliations. — Let M and N be complex
manifolds, z : M —> N a holomorphic map and let N be the space of the leaves that
are the connected components of the fibers z~ 1

 (n) c: M, ^eN. The topology of N is
defined in the usual way: a subset in N is open if the union of the corresponding
leaves is an open subset in M.

There is a simple criterion for N to be Hausdorff where z is a general (not
necessarily holomorphic) smooth map. Namely, N is Hausdorff if z is a submersion
(i.e. rank z=dimN) which is, moreover, infinitesimally enlarging with respect to some
Riemannian metric g^ on N and some complete metric g^ on M, where "infinitesimally
enlarging" means that the pullback of the form g^ to the subbundle in T (M) normal
to the kernel of dz dominates g^, i.e. z*(^) \^er

1
'dz'^g^\Ker

1
 dz (compare [Gro]).

This applies in particular to the case where z is a submersion and the pull-back form
z* C?N) on M is invariant under some proper cocompact group F acting on M.

Now, we return to the holomorphic map z: M -> N, dim^ N = 1, and assume that

there exists a Riemannian metric g^ on N, such that the pull-back z* (g^) is invariant
under some proper cocompact group action on M. (Notice that this condition is

satisfied in the case of interest where we have an exact r-invariant 1-form on M.)
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Lemma 9.3. — The space N is Hausdorff and hence admits a unique complex

structure such that z decomposes into a composition of two holomorphic maps

z : M - ^ N ^ N

Proof. — Since z is holomorphic and dim N=1, the leaf L(m) passing through
meM continuously depends on m with respect to the Hausdorff distance between
compact subsets in the leaves. (Such local continuity is automatic for usual foliations,
where the leaves are non-singular, while the foliation into the connected components
of the levels of the map R2 -> R, (x, y) \—> xy, indicates what might go wrong in the
presence of a singularity). Now we chose a metric on M invariant under our group
which preserves z* (g^), and observe (looking at z* (g^) and/or using Stein factorisation
on compact subsets in M) that the above continuity on compact subsets is uniform
for such subsets. Thus the correspondence m \—> L (m) is continuous for the Hausdorff
metric on the set of leaves, and then the lemma easily follows.

On the discreteness of the action of Y on D. — We return to the factorization in
the non-singular case,

u:M-^D^X,

and give a criterion for the implied action of T (or F7) on D to be discrete.

Lemma 9 . 4 . — The action ofY on D is discrete unless it factors through a virtually

solvable group (i.e. the implied homomorphism Y -> AutD has a virtually solvable image).

Proof. — We may assume here that D is the unit disk and the image T of Y in
AutD=PSL^(R) is Zariski dense (otherwise it would be virtually solvable). Then
either T is discrete in Aut D or it is topologically dense. In the latter case the
commutator subgroup [F, T] is also dense in Aut D and then every exact r-invariant
holomorphic form on D must be zero. But the form ^ we started with obviously
descends to D and thus the dense case is excluded.

Remarks. - (a) Let us indicate an alternative approach similar to that in [Sim].
First we notice that if the map N -> N has a ramification point, then by our "singular
argument" M admits a proper F-equivariant map to a Riemann surface (with no use
of Lemma 9.3). Then if no ramification point is present, our argument similar to that
proving Lemma 9.3, shows that the map N-^N is (non-ramified) and so for N=C

we have N = C as well.

(b) Our original treatment of the "non-singular" case contained an error pointed

out to us by K. Corlette.
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(c) K. Corlette and C. Simpson suggested another approach to the factorization
of the map u: M -> X following the earlier work by Simpson (see [Sim]).

Harmonic maps into Z^-trees. — We want to generalize the above discussion to
the case where X is a Z-tree, i.e., where X may have infinitely many branches at the
vertices. This is needed for the amalgamated product property stated at the beginning
of section 9. First we notice that every singular point of u has a finite multiplicity,
controlled by the total energy and so every harmonic map locally factors through a
map into a finite tree X7 followed by an isometric embedding X' -> X. Hence u is
pluriharmonic (even for R-trees) and so the above holomorphic discussion remains
valid. What is left to do is to extend the existence theorem to the case where X is not

locally compact. We shall state and prove the relevant property where X is a generalized
tree i.e., Z-tree or an R-tree. Here one can not ensure the existence of a F-equivariant
harmonic map M -> X in a given homotopy class but one can obtain a harmonic map
if one modifies the receiving space X by going to an appropriate limit. Namely, let
u^: M —> X be a minimizing sequence. (In fact, we could allow maps with variable

target X^ but this is not needed right now.) All these maps may be assumed uniformly
Lipschitz and of uniform multiplicity. Thus they factor on compact subsets in M
through maps M -> X, -> X where X^ are finite trees. Then we pass to the Hausdorff
(sub)-limit of the spaces X^ as M is being exhausted by compact subsets and ; -> oo
and obtain the desired harmonic map u: M -> X^.

Warning. — The trees X, can be thought of as subsets of X but the limit X^ is
not a part of X. For example, one may imagine X^ equal to a countable joint of the
segments Ii=[0, 1] at zero where X^=I^ . The sequence 1^ c= X diverges inside X but
(identically) converges in the abstract sense to the unit interval.

A more invariant way to look at X^ is by concentrating on the function ^ on
M x M induced by u, from the distance function on X. All properties of the maps ^
relevant for us can be expressed in terms of ^ without ever referring to X and instead
of the limit space X^ one can deal with a (sub)-limit d^ of d,. This works perfectly
well whenever the maps u^ are uniformly Lipschitz. Such an approach is especially
attractive if X is an infinite dimensional symmetric space, e.g., the Hilbert space on
the infinite-dimensional hyperbolic space, where one has a simple criterion for the
existence of an isometric embedding of a given metric space (M, d) into X.

Let us apply the above considerations to the amalgamated product problem. If
the fundamental group F = H^ (M) decomposes as F = r\ ̂  ̂ 2 we have a r-equivariant
map of M to some tree X with a F-action where the degrees of the vertices are
given by ind(Ac:r^), z = l , 2 (see Serre [Ser]). Our assumption ind(Ac=r\ )^2

and ind (A c: F^) ̂  3 ensures that our F is not virtually solvable and neither is the
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corresponding group FcAutD. Hence, we obtain a (non-constant!) r-equivariant
map M -> X^ which factors through a Riemann surface.

Let us briefly explain, without griving proofs, how the above results generalize
to pluriharmonic maps u: M -> X where X is a /^-dimensional Euclidean building.
Every such u gives rise to a holomorphic foliation on M, whose leaves are maximal
connected complex submanifolds in the pull-backs of the points, u~

1
 (x) c= M, xeX.

As earlier, these leaves may have singularities and the complex codimension of a
generic leaf equals the real rank of u at a general regular point in M.

Next we invoke the (finite) Weyl group W associated with the building and we
claim there exists a ramified Galois covering M -^ M with Galois group W, such that
the lift of our foliation to M equals the zero set of a finite system of holomorphic
1-forms on M.

Then, for F-equi variant maps one attempts to show that the leaves project onto
compact submanifolds in M/r. For example, this can be proven if dim^M^k+ 1 and

M/r is compact.
Finally, we notice that there are many instances of non-trivial j^-adic representa-

tions of fundamental groups of algebraic manifolds M. These appear via the p-adic

uniformization theory for arithmetic varieties M of the form

M=V(k)\V(k, 1)/F,

as was pointed out to us by D. Kazhdan. We plan to study the pluriharmonic maps
which appear here in another paper.
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