HARMONIC MEASURES SUPPORTED ON CURVES

C. J. Bishop, L. Carleson, J. B. Garnett and P. W. Jones

Abstract

Let Ω_{1} and Ω_{2} be two disjoint, simply connected domains in the plane, and let ω_{1} and ω_{2} be harmonic measures associated to Ω_{1} and Ω_{2}. We present necessary and sufficient conditions for ω_{1} and ω_{2} to be mutually singular.

1. Introduction. Let Γ be a Jordan curve in C and let Ω_{1} and Ω_{2} be the two simply connected domains complementary to Γ. For each domain Ω_{j} fix a point $z_{j} \in \Omega_{j}$ and let ω_{j} be the harmonic measure for z_{j} relative to Ω_{j}. In this paper we discuss when the two measures are singular, $\omega_{1} \perp \omega_{2}$, i.e. when there are disjoint sets E_{1}, E_{2} such that $\omega_{j}\left(E_{j}\right)=1, j=1,2$. If Γ is a Jordan arc, Γ^{c} consists of only one domain Ω, but since Γ has two sides there are two measures ω_{1}, ω_{2} which give the harmonic measure of sets on each of the two sides of Γ. Again it makes sense to ask whether $\omega_{1} \perp \omega_{2}$.

If Γ is a Jordan curve or arc and $z_{0} \in \Gamma$ we say that Γ has a tangent at z_{0} if there is θ_{0} with the property that for all $\varepsilon>0$ there is $r>0$ such that whenever $z \in \Gamma$ and $\left|z-z_{0}\right|<r$, either $\left|\theta_{0}-\arg \left(z-z_{0}\right)\right|<\varepsilon$ or $\left|\theta_{0}+\pi-\arg \left(z-z_{0}\right)\right|<\varepsilon$. We denote by T the collection of all tangent points on Γ. When Γ is a Jordan curve we also say that $z_{0} \in T_{1}$ if there is a unique $\theta_{0}(\bmod 2 \pi)$ with the property that for all $\varepsilon>0$ there is $r>0$ such that

$$
\left\{z: 0<\left|z-z_{0}\right|<r,\left|\theta_{0}-\arg \left(z-z_{0}\right)\right|<\pi / 2-\varepsilon\right\} \subset \Omega_{1} .
$$

T_{1} is called the set of inner tangent points with respect to Ω_{1}. With T_{2} similarly defined one sees that $T=T_{1} \cap T_{2}$. If Γ is a Jordan arc T_{1} and T_{2} are similarly defined. Finally, we denote one dimensional Hausdorff measure by Λ_{1}.

Theorem. Suppose Γ is a Jordan curve or arc. Then $\omega_{1} \perp \omega_{2}$ if and only if $\Lambda_{1}(T)=0$.

Let $A(\Gamma)$ denote the class of all bounded continuous functions on the Riemann sphere which are holomorphic off Γ. In [4] Browder and Wermer proved that $A(\Gamma)$ is a Dirichlet algebra if and only if $\omega_{1} \perp \omega_{2}$.

Corollary. $A(\Gamma)$ is a Dirichlet algebra if and only if $\Lambda_{1}(T)=0$.
We prove the theorem in $\S 2$ and make some remarks in $\S 3$.
2. Proof of the theorem. We prove the theorem in the case where Γ is a Jordan curve; the modifications needed when Γ is an arc are outlined in $\S 3$. First suppose that $\Lambda_{1}(T)>0$. It is then an easy matter to find two curves Γ_{1}, Γ_{2} such that each Γ_{j} is rectifiable, $\Gamma_{j} \subset \bar{\Omega}_{j}$, and $\Lambda_{1}\left(\Gamma_{1} \cap \Gamma_{2} \cap T\right)>0$. Denoting by $\tilde{\Omega}_{j}$ the component of Γ_{j}^{c} contained in Ω_{j}, we may also assume that $z_{j} \in \tilde{\Omega}_{j}, j=1,2$. Let $\tilde{\omega}_{1}, \tilde{\omega}_{2}$ be the obvious associated harmonic measures, and let $E=\Gamma_{1} \cap \Gamma_{2} \cap T$. Since Γ_{j} is rectifiable, $\tilde{\omega}_{j}$ is mutually absolutely continuous with respect to $\Lambda_{1}, \tilde{\omega}_{j} \ll \Lambda_{1} \ll \tilde{\omega}_{j}$, and consequently $\tilde{\omega}_{1}(E), \tilde{\omega}_{2}(E)>0$. But by the maximum principle, $\tilde{\omega}_{j}(E) \leq \omega_{j}(E), j=1,2$. We have thus proven that if $\Lambda_{1}(T)>0$, it cannot be that $\omega_{1} \perp \omega_{2}$.

We now assume that $\Lambda_{1}(T)=0$ and make the normalizing assumption distance $\left(z_{j}, \Gamma\right) \geq 1, j=1,2$.

Lemma 1. Suppose $z_{0} \in \Gamma$ and $D=\left\{z:\left|z-z_{0}\right| \leq r\right\}$ where $r<1$. Then

$$
\omega_{1}(D \cap \Gamma) \cdot \omega_{2}(D \cap \Gamma) \leq A r^{2}
$$

where A is independent of z_{0}, Γ and r.
Proof. This lemma should be credited to Beurling; it is contained in the last section of his thesis [2]. For completeness we include a proof. Without loss of generality the component Ω_{1} is bounded. The set $\Gamma \backslash D$ can be written as a disjoint collection of open arcs γ_{k}. For exactly one of these arcs γ_{k}, call it γ, it is true that $C \backslash\{\gamma \cup D\}$ has a bounded component, call it $\hat{\Omega}_{1}$, containing z_{1}. Let $\hat{\Omega}_{2}$ denote the component of $\mathbf{C} \backslash\{\gamma \cup D\}$ containing z_{2}, and let $\hat{\omega}_{j}$ be the harmonic measures associated to $\hat{\Omega}_{j}$ and $z_{j}, j=1,2$. Then by the maximum principle,

$$
\begin{equation*}
\omega_{j}(D \cap \Gamma) \leq \hat{\omega}_{j}\left(D \cap \partial \hat{\Omega}_{j}\right), \quad j=1,2 . \tag{1}
\end{equation*}
$$

Fix $t, r<t<1$, and let $\gamma_{1}(t)$ be the unique subarc of $\left\{z \in \hat{\Omega}_{1}:\left|z-z_{0}\right|=\right.$ $t\}$ which separates D from z_{1} in $\hat{\Omega}_{1}$. Let $\theta_{1}(t)=\Lambda_{1}\left(\gamma_{1}(t)\right)$. Define in a similar fashion $\gamma_{2}(t)$ and $\theta_{2}(t)$ with respect to the domain $\hat{\Omega}_{2}$. The distortion theorem (see e.g. pp. 76-78 of [1]) asserts that

$$
\hat{\omega}_{j}\left(D \cap \partial \hat{\Omega}_{j}\right) \leq A \exp \left\{-\pi \int_{r}^{1} \frac{d t}{\theta_{j}(t)}\right\}, \quad j=1,2
$$

Since $\theta_{1}(t)+\theta_{2}(t) \leq 2 \pi t$, inequality (1) yields

$$
\begin{aligned}
\omega_{1}(D \cap \Gamma) & \cdot \omega_{2}(D \cap \Gamma) \\
& \leq A^{2} \exp \left\{-\pi \int_{r}^{1} \frac{2 d t}{\pi t}\right\} \leq A^{2} r^{2}
\end{aligned}
$$

In [6] Makarov developed an ingenious and simple method using Plessner's theorem to show that whenever Ω is simply connected there is a set E of full harmonic measure and Hausdorff dimension one. We shall use a slightly sharper version of that result which has been obtained by Pommerenke [8]. Let Ω be a Jordan domain and let ω be harmonic measure with respect to Ω. Let E be the collection of all inner tangents with respect to Ω and let $F=\partial \Omega \backslash E$. Then Pommerenke shows that with $\left.\omega^{a} \equiv \omega\right|_{E}$ and $\left.\omega^{s} \equiv \omega\right|_{F}$ one has

$$
\begin{equation*}
\omega^{a} \ll \Lambda_{1} \ll \omega^{a} \quad \text { on } E \tag{2}
\end{equation*}
$$

and
(3) For all $M, r_{0}>0$ there are disks $D_{k}=D\left(\zeta_{k}, r_{k}\right)$ where $r_{k}<r_{0}$,

$$
\omega^{s}\left(\bigcup_{k} D_{k}\right)=\omega^{s}(F), \text { and } \omega^{s}\left(D_{k}\right) \geq M r_{k}
$$

Let $\omega_{j}^{a}=\left.\omega_{j}\right|_{T_{j}}$ and let $\omega_{j}^{s}=\omega_{j}-\omega_{j}^{a}, j=1,2$. Then since $\Lambda_{1}(T)=$ $\Lambda_{1}\left(T_{1} \cap T_{2}\right)=0$, condition (2) shows that $\omega_{1}^{a} \perp \omega_{2}^{a}$. On the other hand, taking M large and applying (3) yields $\omega_{1}^{a} \perp \omega_{2}^{s}$ and $\omega_{1}^{s} \perp \omega_{2}^{a}$. It is therefore only necessary to prove $\omega_{1}^{s} \perp \omega_{2}^{s}$. To this end notice by (3) that there is a set \tilde{F} such that $\omega_{1}^{s}(\tilde{F})=\left\|\omega_{1}^{s}\right\|$ and such that for all $z \in \tilde{F}$ there are disks $D_{n} \downarrow z$ such that $z \in D_{n}$ and

$$
\begin{equation*}
\omega_{1}^{s}\left(D_{n}\right) \geq M r_{n}, \tag{4}
\end{equation*}
$$

where r_{n} is the radius of D_{n}. But by Lemma 1 ,

$$
\begin{equation*}
\omega_{1}^{s}\left(D_{n}\right) \cdot \omega_{2}^{s}\left(D_{n}\right) \leq A r_{n}^{2} \tag{5}
\end{equation*}
$$

Taking M larger, we see that (4) and (5) imply $\omega_{1}^{s} \perp \omega_{2}^{s}$.
3. Remarks. When Γ is not a curve but an arc, the only point that needs modification in the preceding proof is that in Lemma 1 the conclusion must be weakened to $\omega_{1}(D \cap \Gamma) \cdot \omega_{2}(D \cap \Gamma) \leq A_{z_{0}} r^{2}$, where $A_{z_{0}}$ depends on z_{0}, and one also requires that $r \leq r_{z_{0}}=$ $\min \left\{\left|z_{0}-\zeta_{1}\right|,\left|z_{0}-\zeta_{2}\right|\right\}$, where ζ_{1} and ζ_{2} are the two endpoints of Γ. That is because the distortion theorem can only be used to conclude

$$
\hat{\omega}_{J}(D \cap \partial \hat{\Omega}) \leq A \exp \left\{-\pi \int_{r}^{r_{F_{0}}} \frac{d t}{\theta_{j}(t)}\right\} .
$$

Here $\hat{\Omega}$ is the appropriate domain formed out of Γ and D.
The theorem can be generalized to the case where Γ is not a Jordan curve. Let Ω_{1} and Ω_{2} be two disjoint, simply connected domains and denote by T_{1} and T_{2} the respective sets of inner tangent points. Then $\omega_{1} \perp \omega_{2}$ if and only if $\Lambda_{1}\left(T_{1} \cap T_{2}\right)=0$. The proof of Lemma 1 is then most easily accomplished by the previous argument together with Beurling's theorem: $\omega(E) \leq C \exp \{-\pi \lambda\}$ where λ is the extremal length associated to all paths in a domain Ω joining some disk $K \Subset \Omega$ to $E \subset \partial \Omega$. (See [7] for an alternative proof.) A minor modification of the theorem can also be used to prove $\omega_{1} \ll \omega_{2} \ll \omega_{1}$ if and only if for all $\varepsilon>0$ there are rectifiable curves $\Gamma_{j} \subset \bar{\Omega}_{j}$ such that $\omega_{j}\left(\Gamma_{1} \cap \Gamma_{2}\right)>1-\varepsilon, j=1,2$.

It is worth noting that previous authors (see e.g. [5]) have used the Browder-Werner theorem to conclude in certain cases $\omega_{1} \perp \omega_{2}$. An interesting problem that remains open is to construct one non constant function in $A(\Gamma)$ for a general arc Γ where $\omega_{1} \perp \omega_{2}$.

Added in Proof. See [3] for a construction of non constant functions in $A(\Gamma)$.

References

[1] L. V. Ahlfors, Conformal Invariants, McGraw-Hill, Inc., 1973.
[2] A. Beurling, Études sur un problème de majoration, thesis, Upsal (Uppsala), 1933.
[3] C. J. Bishop, Constructing continuous functions holomorphic off a curve, J. Funct. Anal., 82 (1989), 113-137.
[4] A. Browder and J. Wermer, Some algebras of functions on an arc, J. Math. Mech., 12 (1963), 119-130.
[5] T. W. Gamelin and J. B. Garnett, Pointwise bounded approximation and Dirichlet algebras, J. Funct. Anal., 8 (1971), 360-404.
[6] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3), 51 (1985), 369-384.
[7] A. Pfluger, Extremallängen und Kapazität, Comm. Math. Helv., 29 (1955), 120-131.
[8] Ch. Pommerenke, On conformal mapping and linear measure, preprint.
Received September 1, 1987.

University of California
Los Angeles, CA 90024-1555-05

AND

Yale University
New Haven, CT 06520

