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Considering a simple generalization of the (p, q)-deformed boson oscillator algebra, which
leads to a two-parameter deformed bosonic algebra in an infinite dimensional subspace of
the harmonic oscillator Hilbert space without first finite Fock states, we establish a new
harmonic oscillator realization of the deformed boson operators based on the Bogoliubov
(p, q)-transformations. We obtain exact expressions for the transformation coefficients and
show that they depend on arbitrary functions of p and q which can be interpreted as the pa-
rameters of the (p, q)-deformed GL(2,C) group. We also examine the existence and structure
of the corresponding deformed Fock-space representation for our problem.

§1. Introduction

Since the advent of the theory of parastatistics,1),2) there have been many at-
tempts to generalize the canonical commutation relations. Motivations for such work
have come from such diverse areas as resonance theory,3),4) intermediate statistics5)

and quantum dissipative systems.6) However, the real impetus in the recent studies
of deformed commutation relations has been the discovery of quantum groups and
algebras.7),8) These algebras may be viewed as deformations of classical Lie algebras
depending, in general, on one or more parameters. The representation theory of
quantum algebras with a single deformation (or quantization) parameter q, has led
to the development of q-deformed oscillator algebras (q-deformed bosons).9)–11) It
has been found that the q-deformed oscillator is a useful tool for quantum field the-
ory since it constitutes a structure more compatible with interactions. The number
q, viewed as a convergence parameter can be used to regulate divergences appearing
in field theory calculations.

Although one-parameter q-deformations have been mostly studied, the multi-
parameter (mainly two-parameter) ones have aroused much interest because they
become more flexible when we are dealing with applications to concrete physical
models. For example, it has been found that the two-parameter qp-rotor model,12)

having the symmetry afforded by the two-parameter quantum algebra Uqp(u2), is
useful in rotational spectroscopy of some superdeformed as well as rare earth and
actinide deformed nuclei13) and rotational spectroscopy of molecules.14) The intro-
duction of a second parameter (say p) should permit more flexibility: this is especially
appealing for rotational spectroscopy of nuclei that involves two parameters in the
variable moment of inertia (VMI) model.15) Furthermore, it has been shown12),13)
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that the introduction of a second parameter of a “quantum algebra” nature increases
the agreement between theory and experiment in a significant way.

By using the language of q-oscillators in describing the representations of quan-
tum algebras with a single deformation parameter q, a two-parameter (p, q)-analogue
of the q-boson oscillator has been derived from the study of a (p, q)-deformed su(2)
algebra.16) The (p, q)-oscillator algebra is generated by three elements Â, Â+ and N̂
obeying the relations

ÂÂ+ − p−1Â+Â = qN̂ , (1a)

ÂÂ+ − qÂ+Â = p−N̂ , (1b)

[N̂ , Â] = −Â, [N̂ , Â+] = Â+, (1c)

where Â, Â+identify, respectively, as the deformed annihilation and creation op-
erators of a (p, q)–oscillator and N̂ = â+â is the excitation number operator of
conventional (non-deformed) oscillator ([â, â+] = 1). The parameters p and q are
independent deformation parameters which, in general, may be real or a phase fac-
tor. The (p, q)-algebra (1) can be mapped on the one-parameter deformation of the
oscillator algebra. Indeed , if instead of Â, Â+ one takes

α̂ = pN̂/2Â, α̂+ = p(N̂−1)/2Â+ (2)

as generators, the relations (1) become

α̂α̂+ − pqα̂+α̂ = 1, (3a)

α̂α̂+ − α̂+α̂ = (pq)N̂ , (3b)

[N̂ , α̂] = −α̂, [N̂ , α̂+] = α̂+, (3c)

where only the combination pq appears as a parameter. Furthermore, it should be
noted that the relations (1a) and (1b) imply each other and the q ↔ p−1 symmetry
generalizes the q ↔ q−1 symmetry of the q-oscillator.

Analogous to the familiar boson realization of the q-oscillator, the relation of Â
and Â+ to the conventional boson operators â and â+ is given by

Â = âf(N̂) = â

√
[N̂ ]p,q

N̂
, Â+ = f(N̂)â+ =

√
[N̂ ]p,q

N̂
â+, (4)

where the symbol [X]p,q stands for qX−p−X

q−p−1 . As it is seen, the deformation function

f(N̂) has no zeros at positive integer eigenvalues of N̂ (including zero). So the
deformed annihilation operatorÂ has a single vacuum state, i.e., |0〉, like the operator
â. On the other hand for those deformed operators Â’s for which the function f(N̂)
has zeros at positive integer eigenvalues of N̂ there is a set of vacuum states. In
this case if we assume that the operator Â annihilates a set of number states |ni〉,
i = 1, 2, 3, · · · , k then we can construct a sector Si by repeatedly applying Â+ on
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the number state |ni〉. Thus we have k sectors corresponding to the states that
are annihilated by Â. A given sector may turn out to be either finite or infinite
dimensional. In particular, the infinite dimensional sectors are of special interest.
The reason is that in each infinite dimensional sector it is possible to construct an
operator, say B̂+, which is the canonical conjugate of Â, i.e., [Â, B̂+] = 1. However,
in the finite dimensional sectors the construction does not apply. This point plays
an important role in the construction of coherent states associated with deformed
algebras.

In this pair of papers there are two main goals that we have tried to develop.
For the first goal, which corresponds to the present paper, our attempt has been
devoted to establish a new harmonic oscillator realization of a two-parameter de-
formed bosonic oscillator in the form of Bogoliubov (p, q)-transformations in an infi-
nite dimensional subspace of the harmonic oscillator Hilbert space without first finite
Fock states, and construct a deformed Fock-space representation for our problem.
The second goal, corresponding to the subsequent paper,17) has been an effort to
construct the associated deformed coherent states in the deformed Fock space and
analyze their mathematical and quantum statistical properties.

The present paper is organized as follows. In the following section we describe
a simple generalization of the (p, q)-deformed oscillator algebra which by a certain
transformation leads to a new two-parameter deformed bosonic algebra in an infi-
nite dimensional sector of the harmonic oscillator Hilbert space without first finite
Fock states. In §3 we present the Bogoliubov (p, q)-transformations and establish a
new harmonic oscillator realization for our deformed boson operators. The results
obtained in that section is used as a basis for construction of a deformed Fock-space
representation explained in §4. Finally, §5 contains a summary.

§2. Generalized (p, q)-oscillator algebra

We consider the following simple generalization of the relations (1a) and (1b),

ÂÂ+ − p−1Â+Â = qN̂Φ1(p, q), (5a)

ÂÂ+ − qÂ+Â = p−N̂Φ2(p, q), (5b)

in which p, q are taken to be real and positive and Φ1, Φ2 are two arbitrary well-
behaved real and positive-valued functions of deformation parameters assuming to
obey the following inequalities

Φ2(p, q) > Φ1(p, q) ; for Q = pq > 1,
Φ2(p, q) < Φ1(p, q) ; for Q = pq < 1. (6)

Choosing Φ1 = Φ2=1 one recovers relations (1a) and (1b). The harmonic oscillator
realization of the generalized (p,q)-oscillator (5) in the simplest form

Â = âf(N̂ , p, q), Â+ = f(N̂ , p, q)â+ (7)
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is

Â = â

√
qN̂Φ1(p, q) − p−N̂Φ2(p, q)

N̂(q − p−1)
, (8a)

Â+ =

√
qN̂Φ1(p, q) − p−N̂Φ2(p, q)

N̂(q − p−1)
â+. (8b)

As it is clear there are two vacua for the deformed operator Â, namely, the ground
state |0〉 and the number state |k0〉 such that

k0 =
1

lnQ
ln
Φ2(p, q)
Φ1(p, q)

. (9)

It is obvious that according to (9) the conditions (6) guarantee the integer number k0

be nonnegative. In this manner we have two sectors S0 and Sk0 which are constructed
by repeatedly applying Â+ on |0〉 and |k0〉, respectively. The sector S0 is of finite
dimension spanned by the states |0〉 , |1〉 , · · · |k0 − 1〉 and is invariant with respect
to the action of the operators (8a,b). Since, Â+ |k0 − 1〉 = 0 this sector gives a
parafermionic-like representation of the algebra (5a, b) of the order k0. To some
extent, the situation is analogous to that taking place for the deformed Heisenberg
algebra with reflection (for more details see Ref. 18). On the other hand the infinite
dimensional sector Sk0 , which is of special interest in our treatment, is spanned by
the states |k0〉 , |k0 + 1〉 , · · · and gives a bosonic representation of the algebra (5a,b)
without first finite Fock states. Evidently, in this sector the values of the expression
under the square root in (8) are non-negative for both the cases Q <1, Q >1. The
usual situation k0 = 0 corresponds to the cases Φ1 = 1 = Φ2 or Φ1 = Φ2. It is
trivial that these two cases differ in the energy spectrum of the oscillator. This
difference corresponds to different normalization of the commutation relations (5a,
b). Moreover, it should be noted that in the absence of deformation (p, q = 1) the
consistency of the relations (5a) and (5b) requires Φ1 = Φ2 and according to (9) it
implies that in this case k0 = 0 (coincidence of the two subspaces S0 and Sk0).

The Fock-space representation of the generalized (p, q)-oscillator (5) in the sector
Sk0can be easily constructed. With {|n >p,q ≡ |k0 + m >p,q;m = 0, 1, 2, ..} as the
complete orthonormal set of number eigenstates, one finds

Â |n〉p,q =
√
qk0Φ1(p, q)[n− k0]p,q |n− 1〉p,q

=
√
p−k0Φ2(p, q)[n− k0]p,q |n− 1〉p,q , (10a)

Â+ |n〉p,q =
√
qk0Φ1(p, q)[n− k0 + 1]p,q |n+ 1〉p,q

=
√
p−k0Φ2(p, q)[n− k0 + 1]p,q |n+ 1〉p,q , (10b)

ÂÂ+ = qk0Φ1(p, q)[N̂ − k0 + 1]p,q = p−k0Φ2(p, q)[N̂ − k0 + 1]p,q, (10c)

Â+Â = qk0Φ1(p, q)[N̂ − k0]p,q = p−k0Φ2(p, q)[N̂ − k0]p,q, (10d)
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|n〉p,q ≡ |k0 +m〉p,q =
(
qk0Φ1(p, q)

)−m/2 (Â+)m√
[m]p,q!

|k0〉

=
(
p−k0Φ2(p, q)

)−m/2 (Â+)m√
[m]p,q!

|k0〉

=

√
k0!

(k0 +m)!
(â+)m |k0〉 , (10e)

with [m]p,q! = [m]p,q[m−1]p,q[m−2]p,q....1 and [0]p,q! = 1. The corresponding number
operator N̂p,q reads as

N̂p,q =
∞∑

r=1

(1 −Q)r

1 −Qr
p−

r(r+1)
2

+r(N̂−k0)
(
qk0Φ1(p, q)

)−r
(Â+)r(Â)r,

N̂p,q |k0 +m〉p,q = m |k0 +m〉p,q . (10f)

With the choice k0 = 0 (Φ1 = 1 = Φ2) the relations (10) reduce to the corresponding
relations for usual (p, q)-deformed oscillator.16)

Now we consider the following transformation in the sector Sk0

β̂ = p
(N̂−k0)

2 Φ
−1/2
2 (p, q)Â, β̂+ = p

(N̂−k0−1)
2 Φ

−1/2
2 (p, q)Â+, (11)

which can be regarded as a generalization of the transformation (2) . There are other
ways of transforming the operators. The transformation (11) is the version that we
will be using for our purposes. Then according to (5) the two new operators β̂ and
β̂+ should satisfy the following commutation rules

β̂β̂+ −Qβ̂+β̂ = p−k0 , (12a)

β̂β̂+ − β̂+β̂ = p−k0QN̂−k0 , (12b)

and
β̂β̂+ = p−k0

{
N̂ − k0 + 1

}
Q
, β̂+β̂ = p−k0

{
N̂ − k0

}
Q
, (13)

where {X}Q = 1−QX

1−Q with Q = pq. Therefore, the relations (12a,b) define a two-
parameter deformed boson algebra in a subspace of Hilbert space without first finite
Fock states. It is evident that for k0 = 0 (coincidence of the two subspaces S0 and
Sk0) the relations (12a) and (12b) reduce to one-parameter deformed algebras (3a)
and (3b), respectively. By using the relations (8) and (9) the operators β̂ and β̂+

can be expressed in terms of non-deformed boson operators â and â+,

β̂ = âp−
k0
2

√
QN̂Φ1(p, q) − Φ2(p, q)
N̂(Q− 1)Φ2(p, q)

= âp−
k0
2

√
QN̂−k0 − 1
N̂(Q− 1)

, (14a)

β̂+ = p−
k0
2

√
QN̂Φ1(p, q) − Φ2(p, q)
N̂(Q− 1)Φ2(p, q)

â+ = p−
k0
2

√
QN̂−k0 − 1
N̂(Q− 1)

â+. (14b)
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§3. Deformed Bogoliubov (p, q)-transformations in the subspace Sk0

In this section our main objective is to generalize (14) and find a representation
for the deformed oscillator (12) in terms of usual harmonic oscillator in the form

β̂′ = âu(N̂ − k0) + v(N̂ − k0)â+, (15a)

β̂′+ = u∗(N̂ − k0)â+ + âv∗(N̂ − k0), (15b)

where the functions u and v are to be determined. It is easily seen that with this
representation, the commutation relations (12a) and (12b) cannot be satisfied simul-
taneously and so they should be treated separately. Strictly speaking, the represen-
tation (15) for the algebra (12) results in two different types of oscillator realization
(two different forms of u and v).

We first consider the deformed algebra (12a) for the operators β̂′ and β̂′+, i.e.,

β̂′β̂′+ −Q β̂′+β̂′ = p−k0 . (16a)

Using (14a,b) one can write (15) in the form

β̂′ = β̂ũ(N̂ − k0) + ṽ(N̂ − k0)β̂+, (16b)

β̂′+ = ũ∗(N̂ − k0)β̂+ + β̂ṽ∗(N̂ − k0), (16c)

i.e., (
β̂′

β̂′+

)
=
(
ũ(N̂ − k0 + 1) ṽ(N̂ − k0)
ṽ∗(N̂ − k0 + 1) ũ∗(N̂ − k0)

)(
β̂

β̂+

)
, (16d)

with

ũ(N̂ − k0) = p
k0
2

√
N̂(Q− 1)Φ2(p, q)

QN̂Φ1(p, q) − Φ2(p, q)
u(N̂ − k0), (17a)

ṽ(N̂ − k0) = p
k0
2

√
N̂(Q− 1)Φ2(p, q)

QN̂Φ1(p, q) − Φ2(p, q)
v(N̂ − k0). (17b)

The transformation (16d), which can be considered as the Bogoliubov (p, q)-
transformation defined in subspace Sk0 , acts on the two-dimensional quantum space
of vectors (β̂, β̂+) satisfying (12a) and preserve this property for (β̂′, β̂′+) [Eq. (16a)].
So we can interpret (16d) as an element of the (p,q)-deformed GL(2, C) group. How-
ever this (p,q)-deformed group is not related to the quantum group GLp,q(2, C) as
the quantities ũ, ṽ, ũ∗, ṽ∗ are commuting operators while the elements of GLp,q(2, C)
group have non-trivial commutation relations.19)

In order to determine u and v of the representation (15) we proceed in the
following way. By substituting (15a,b) in (16a) we find the following set of equations

F (N̂ − k0 + 1) −QF (N̂ − k0) +G(N̂ − k0) −QG(N̂ − k0 + 1) = p−k0 , (18a)

u(N̂ − k0)v∗(N̂ − k0 + 1) = Qv∗(N̂ − k0)u(N̂ − k0 + 1), (18b)

v(N̂ − k0 + 1)u∗(N̂ − k0) = Qu∗(N̂ − k0 + 1)v(N̂ − k0), (18c)
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where

F (N̂ − k0) = N̂u∗(N̂ − k0)u(N̂ − k0),

G(N̂ − k0) = N̂v∗(N̂ − k0)v(N̂ − k0). (18d)

From (18b,c) we find
G(N̂ − k0)
F (N̂ − k0)

= Q2(N̂−k0)W (p, q), (19)

whereW (p,q) is an arbitrary function of deformation parameters. Therefore equation
(18a) takes the form

F (N̂−k0+1)
(
1 −Q2(N̂−k0+2)W̃ (p, q)

)
−QF (N̂−k0)

(
1 −Q2(N̂−k0)W̃ (p, q)

)
= p−k0 ,

(20)
where W̃ (p, q) = Q−1W (p, q).

To solve Eq. (20) we first determine the solution F0(N̂−k0) to the corresponding
homogeneous equation

F0(N̂ − k0 + 1)
(
1 −Q2(N̂−k0+2)W̃ (p, q)

)
= QF0(N̂ − k0)

(
1 −Q2(N̂−k0)W̃ (p, q)

)
.

(21)
This equation is of the general form

F0(N̂ − k0 + 1)H(N̂ − k0 +m) = g(p, q)F0(N̂ − k0)H(N̂ − k0), (22)

where g(p,q) and H(N̂−k0+m), (m = 1, 2, · · ·) are known functions while F0(N̂−k0)
is the function to be determined. In Eq. (21) we have

m = 2, g(p, q) = Q and H(N̂ − k0) =
(
1 −Q2(N̂−k0)W̃ (p, q)

)
. (23)

If F1 and F2 are solutions of (22) then

F1(N̂ − k0 + 1)
F2(N̂ − k0 + 1)

=
F1(N̂ − k0)
F2(N̂ − k0)

= P (N̂ − k0, p, q) (24)

and thus P (N̂ − k0, p, q) is a periodic function, P (N̂ − k0, p, q) = P (N̂ − k0 +1, p, q).
It means that the general solution of (22) is a product of a special solution and an
arbitrary periodic function. We can search for this general solution in the form

F0(N̂ − k0) =

(
m−1∏
i=0

R(N̂ − k0 + i)

)
P (N̂ − k0, p, q). (25)

Putting (25) in (22) gives

R(N̂ − k0 +m)H(N̂ − k0 +m) = g(p, q)R(N̂ − k0)H(N̂ − k0), (26)

which after simplification yields

R(N̂ − k0) =
g(p, q)

N̂−k0
m

H(N̂ − k0)
P̃ (N̂ − k0, p, q), (27)
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where P̃ (N̂ −k0 +m, p, q) = P̃ (N̂ −k0, p, q) is an arbitrary periodic function and we
can put this function to unity without loss of generality. Using (23), (25) and (27)
we find

F0(N̂ − k0) =
QN̂−k0+1/2P (N̂ − k0, p, q)(

1 −Q2(N̂−k0)W̃ (p, q)
)(

1 −Q2(N̂−k0−1)W̃ (p, q)
) . (28)

Now we seek for the general solution of (20). For this purpose we propose

F (N̂ − k0) = F0(N̂ − k0)Y (N̂ − k0), (29)

where Y (N̂ − k0) is to be determined. Putting (29) in (20) yields

Y (N̂ − k0 + 1, p, q) = Y (N̂ − k0, p, q) +
p−k0

(
1 −Q2(N̂−k0+1)W̃ (p, q)

)
P (N̂ − k0, p, q)QN̂−k0+3/2

. (30)

With the use of standard techniques the solution to (30) is found to be

Y (N̂ − k0, p, q) = Y (0, p, q) +
p−k0

P (N̂ − k0, p, q)Q3/2

(
Q−(N̂−k0−1)

−Q2W̃ (p, q)
){

N̂ − k0

}
Q
. (31)

Using (31), (29) and (18d) we find that the condition u(N̂ − k0)
∣∣∣
N̂=k0

<∞ leads to

Y (0, p, q) = 0. Thus by making use of (31), (29) and (28) we arrive at the following
solution to Eq. (20)

F (N̂ − k0) =
p−k0

(
1 −Q(N̂−k)0W (p, q)

){
N̂ − k0

}
Q(

1 −Q2(N̂−k0)+1W (p, q)
)(

1 −Q2(N̂−k0)−1W (p, q)
) , (32)

and from (19) we have

G(N̂ − k0) = Q2(N̂−k0)W (p, q)F (N̂ − k0). (33)

Finally, by using (18d) we arrive at the following expressions for u and v

u(N̂ − k0) =
∣∣∣u(N̂ − k0)

∣∣∣ eiζ(p,q,N̂−k0), (34a)

v(N̂ − k0) =
∣∣∣u(N̂ − k0)

∣∣∣Q(N̂−k0)
√
W (p, q)eiξ(p,q,N̂−k0), (34b)

where

∣∣∣u(N̂ − k0)
∣∣∣ =

√√√√√√ p−k0

(
1 −Q(N̂−k0)W (p, q)

) {N̂−k0}Q

N̂(
1 −Q2(N̂−k0)+1W (p, q)

)(
1 −Q2(N̂−k0)−1W (p, q)

) (34c)
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and ζ(p, q, N̂ − k0), ξ(p, q, N̂ − k0) are some arbitrary phase factors periodic with
respect to N̂ . The representation (15) may now be written as

β̂′ = â
∣∣∣u(N̂ − k0)

∣∣∣ eiζ(p,q,N̂−k0) +Q(N̂−k0)
√
W (p, q)

∣∣∣u(N̂ − k0)
∣∣∣ eiξ(p,q,N̂−k0)â+,

(35a)

β̂′+ =
∣∣∣u(N̂ − k0)

∣∣∣ e−iζ(p,q,N̂−k0)â+ + âQ(N̂−k0)
√
W (p, q)

∣∣∣u(N̂ − k0)
∣∣∣ e−iξ(p,q,N̂−k0).

(35b)

Using (17a,b) and (34) the Bogoliubov (p, q)-transformations (16d) may be written
as

„
β̂′

β̂′+

«

=

0
@

˛̨̨
ũ(N̂ − k0 + 1)

˛̨̨
eiζ(p,q,N̂−k0) Q(N̂−k0)p

W (p, q)
˛̨̨
ũ(N̂ − k0)

˛̨̨
eiξ(p,q,N̂−k0)

Q(N̂−k0+1)p
W (p, q)

˛̨̨
ũ(N̂ − k0 + 1)

˛̨̨
e−iξ(p,q,N̂−k0)

˛̨̨
ũ(N̂ − k0)

˛̨̨
e−iζ(p,q,N̂−k0)

1
A „

β̂

β̂+

«

(36a)

with

∣∣∣ũ(N̂ − k0)
∣∣∣ =

√√√√ 1 −Q(N̂−k0)W (p, q)(
1 −Q2(N̂−k0)+1W (p, q)

)(
1 −Q2(N̂−k0)−1W (p, q)

) . (36b)

Now we consider the deformed algebra (12b) for β̂′ and β̂′+, i.e.,

β̂′β̂′+ − β̂′+β̂′ = p−k0Q(N̂−k0). (37a)

By employing the same procedure as before we obtain the following expressions for
the transformation coefficients

u(N̂ − k0) =

√
p−k0

1 −W (p, q)
{N̂ − k0}Q

N̂
eiζ(p,q,N̂−k0), (37b)

v(N̂ − k0) =

√
p−k0W (p, q)
1 −W (p, q)

{N̂ − k0}Q

N̂
eiξ(p,q,N̂−k0), (37c)

ũ(N̂ − k0) =

√
1

1 −W (p, q)
eiζ(p,q,N̂−k0), (37d)

ṽ(N̂ − k0) =

√
W (p, q)

1 −W (p, q)
eiξ(p,q,N̂−k0). (37e)

Now we would like to give an interpretation for the functions W , ζ and ξ. To
this end consider the case in which p, q → 1 (k0 = 0) and the phase factors ζ and ξ
be independent of N̂ . From (17), (34), (36b) and (37b,c) we find that the two types
of solutions for u and v, corresponding to the algebras (16a) and (37a) respectively,
become the same and independent of N̂ ,

u =

√
1

1 −W (1, 1)
eiζ(1,1), v =

√
W (1, 1)

1 −W (1, 1)
eiξ(1,1). (38)
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Furthermore, in this case the transformation matrix in (16d) becomes unimodu-
lar, ũũ∗ − ṽṽ∗ = 1. Therefore, in the absence of deformation the transformation
(16d) stands for SL(2, C) canonical transformation for the ordinary oscillator, where
W (1,1), ζ(1,1) and ξ(1,1) are the parameters of the transformation. Thus it is rea-
sonable to interpret W (p, q), ζ(p, q, N̂ − k0) and ξ(p, q, N̂ − k0) as the parameters of
the (p,q)-deformed GL(2, C) transformation in the subspace Sk0 . Furthermore as it
is expected for W = 0 and ζ = ξ = 0, the representation (15) coincides with (14).

Establishing a new type of harmonic oscillator realization of the bosonic (p,q)-
deformed algebra (12) in the form of Bogoliubov (p,q)-transformations we are now
in a position to seek for the corresponding Fock-space representation, which will be
carried out in the next section.

§4. Fock-space representation

According to Ref. 20) the necessary and sufficient conditions for the one-dimen-
sional quantum mechanical problem to allow a Fock-space representation is that
there exists a vacuum state |vac〉 such that

b̂ |vac〉 = 0, 〈vac| b̂b̂+ |vac〉 > 0, (39a)

together with
b̂b̂+ �= b̂+b̂, [b̂b̂+, b̂+b̂] = 0, (39b)

in which b̂ and b̂+ are the corresponding annihilation and creation operators, respec-
tively.

On the basis of the above criteria, we now examine the existence of a Fock-space
representation for each of the deformed oscillators (16a) and (37a). Assuming |ψ0〉(k0)

Q

be the normalized vacuum state for the oscillator (β̂′, β̂′+) obeying (16a) it is easily
found that all conditions (39) are satisfied and thus the Fock-space representation
exists. However, in the case of (37a) if one applies the conditions (39) it is found
that the condition [β̂′β̂′+, β̂′+β̂′] = 0 is satisfied only if p, q = 1 (the absence of
deformation) or W = 0 (no Bogoliubov transformations). Therefore our conclusion
is that for the deformed operators (β̂′, β̂′+) [given by (15a,b) or (16d)] only in the
case of oscillator algebra (16a) one can find a Fock-space representation. Hereafter,
we thus abandon (37a) and try to find a Fock-space representation corresponding to
the deformed algebra (16a).

We first construct the deformed vacuum state |ψ0〉(k0)
Q . For this purpose we

consider the following number state expansion

|ψ0〉(k0)
Q =

∞∑
n=k0

cn |n〉. (40)

Then the condition β̂′ |ψ0〉(k0)
Q = 0 results in

ck0+1 = 0,
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cn+1

√
n+ 1u(n− k0 + 1) + cn−1

√
nv(n− k0) = 0 ; n ≥ k0 + 1, (41)

where u and v are given by (34). Straightforward calculation yields

|ψ0〉(k0)
Q = ck0

∞∑
m=0

(
−√W (p, q) ei(ξ−ζ)(â+)2

)m

2mm! L(m, k0, Q)
|k0〉, (42a)

with

L(m, k0,Q) =
m∏

j=1

√
(1 −Q2jW (p, q))(1 −Q4j−3W (p, q))

(1 −Q2j−1W (p, q))(1 −Q4j+1W (p, q))
(1 +Q−j)(k0 + 2j − 1)

{m}1/Q!√
(2m)!{2m}Q!

(42b)

and the coefficient ck0 is obtained by imposing the normalization condition
(k0)
Q 〈ψ0|ψ0〉(k0)

Q = 1. It is easily seen that if p, q → 1(k0 = 0) and ζ, ξ be inde-
pendent of N̂ (non-deformed case) then

lim
p,q→1

|ψ0〉(k0)
Q ≡ |ψ0〉 = c0

∞∑
m=0

(
−ei(ξ(1,1)−ζ(1,1))

√
W (1, 1)(â+)2

)m

2mm!
|0〉

= c0 exp
(
− v

2u
(â+)2

)
|0〉 . (43)

The state |ψ0〉 is indeed the well-known squeezed vacuum state of the boson field.21)

Therefore it is reasonable to interpret |ψ0〉(k0)
Q as the two-parameter deformed squeezed

vacuum state in the subspace Sk0 .
As usual, the deformed excited states (number states) are generated by repeated

application of the deformed creation operator β̂′+ on the deformed vacuum state
|ψ0〉(k0)

Q ,

β̂′+ |ψ0〉(k0)
Q = t1 |ψ1〉(k0)

Q , β̂′+ |ψ1〉(k0)
Q = t2 |ψ2〉(k0)

Q , · · · , β̂′+ |ψn−1〉(k0)
Q = tn |ψn〉(k0)

Q .
(44)

We may, therefore, write

|ψn〉(k0)
Q = (t1t2 · · · tn)−1(β̂′+)n |ψ0〉(k0)

Q . (45)

The matrix elements of β̂′ and β̂′+ in the deformed orthonormal number states
|ψn〉(k0)

Q are therefore of the form

(k0)
Q 〈ψm| β̂′ |ψn〉(k0)

Q = tnδm,n−1,
(k0)
Q 〈ψm| β̂′+ |ψn〉(k0)

Q = tn+1δm,n+1. (46)

Taking matrix elements of (16a) and using (46) we arrive at the following recursion
relation for the coefficients tn,

t2n+1 −Qt2n = p−k0 , (47)
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which is readily solved to yield

t2n = p−k0
1 −Qn

1 −Q
≡ p−k0 {n}Q . (48)

Therefore we have

|ψn〉(k0)
Q =

p
nk0
2√

{n}Q!

(
β̂′+
)n |ψ0〉(k0)

Q , (49a)

together with

β̂′+ |ψn〉(k0)
Q =

√
p−k0 {n+ 1}Q |ψn+1〉(k0)

Q , (49b)

β̂′ |ψn〉(k0)
Q =

√
p−k0 {n}Q |ψn−1〉(k0)

Q , (49c)

where{n}Q! = {n}Q {n− 1}Q · · · 1. Furthermore, it can be shown that the matrix

elements of (β̂′+)rβ̂′r and β̂′r(β̂′+)r are respectively given by

(k0)
Q 〈ψm| (β̂′+)rβ̂′r |ψn〉(k0)

Q = p−rk0
{m}Q!

{m− r}Q!
δm,n, (50a)

(k0)
Q 〈ψm| β̂′r(β̂′+)r |ψn〉(k0)

Q = p−rk0
{m+ r}Q!
{m}Q!

δm,n. (50b)

Finally, we find an appropriate deformed number operator N̂Q,k0 such that
N̂Q,k0 |ψm〉(k0)

Q = m |ψm〉(k0)
Q . To this end, we can use the following identity22)

m∑
r=1

(1 −Q)r

1 −Qr

{m}Q!
{m− r}Q!

= m. (51)

In view of this identity it follows from (50a) that

∞∑
r=1

(1 −Q)r

1 −Qr

(k0)
Q 〈ψm|prk0(β̂′+)r(β̂′)r |ψn〉(k0)

Q = mδm,n. (52)

Therefore, we can write

N̂Q,k0 =
∞∑

r=1

prk0
(1 −Q)r

1 −Qr
(β̂′+)r(β̂′)r. (53)

One may also check directly, using (16a), that N̂Q,k0 satisfies the following relations

[N̂Q,k0 , β̂
′] = −β̂′, [N̂Q,k0 , β̂

′+] = β̂′+. (54)

It can be easily shown that for p, q → 1(k0 = 0),W = 0 and ζ, ξ = 0, Eq. (53)
reduces to the usual expression for the conventional number operator N̂ = â+â.
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§5. Summary

Introducing a simple generalization of the (p, q)-boson oscillator algebra, we
have constructed a two-parameter deformed bosonic algebra in an infinite dimen-
sional subspace of the harmonic oscillator Hilbert space without first finite Fock
states. We have established a new harmonic oscillator realization of the deformed
boson operators in the form of Bogoliubov (p, q)-transformations. We have also ob-
tained exact expressions for the transformation coefficients and demonstrated the
existence of arbitrary functions of p and q which in the limit p, q → 1, are related
to the parameters of the SL(2,C) group. Finally, we have examined the existence
and structure of the corresponding deformed Fock-space representation for the new
harmonic oscillator realization of our deformed boson operators.
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