
  

  

Abstract—This paper presents a method to represent 
complex shaped obstacles in harmonic potential fields used for 
vehicle path planning. The proposed method involves 
calculating the potential field for a series of circular obstacles 
inserted into the unobstructed potential field. The potential 
field for the total obstacle is a weighted average of the circular 
obstacle potential fields. This method explicitly calculates a 
stream function for the potential field. The need for the stream 
function is explained for situations involving controlling a 
dynamic system such as a high speed ground vehicle. The 
traditional potential field controller is also augmented to take 
the stream function into account. Simulation results are 
presented to show the effectiveness of the potential field 
generation technique and the augmented vehicle controller. 

I. INTRODUCTION 
OTENTIAL fields are one of the more common 
techniques to plan paths to a goal while avoiding 
obstacles. The idea was first suggested by Khatib who 

proposed controlling robotic manipulators and mobile robots 
using a goal with an attractive potential and obstacles with 
repulsive potentials [1]. The control effort was the gradient 
of the combination of these two potentials. A problem with 
Khatib’s potential was the robot being attracted to local 
minima instead of the goal. A solution to this problem is to 
utilize potential fields that are solutions to the Laplace 
equation (harmonic functions) [2]–[4]; these functions do 
not have local minima. Within the realm of harmonic 
potential fields, the effect of the obstacle boundary 
conditions on the field has been studied [5]. Potential field 
control has also been applied to high speed ground vehicles 
[6]–[8], although none of these methods utilize potential 
fields in the traditional goal/obstacle configuration. 

One area of potential field control that has not received 
much attention is arbitrarily shaped obstacles in analytically 
(as opposed to numerically) generated fields. This paper 
discusses the need for analytic potential fields when dealing 
with high speed vehicles and examines possibilities for 
using multiple circular obstacles to create obstacles of 
arbitrary shape. The next section describes methods of 
generating potential field solutions to the Laplace equation. 
Section III investigates the potential field behavior when 
multiple obstacles interfere with each other. Section IV 
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presents an augmented potential field controller which 
allows for a dynamic response in the vehicle. Finally, 
conclusions are drawn and future directions for the research 
are proposed. 

II. POTENTIAL FIELD DEVELOPMENT 
One technique to develop a potential field for use in 

vehicle control is to solve the Laplace equation. Over an 
East, North (E, N) plane the Laplace equation is 
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Solutions to this equation are known as harmonic functions. 
For potential fields, the solution, φ, is known as the velocity 
potential because the gradient of the potential is the velocity 
vector field (u, v). 
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Another function that is useful to examine is the stream 
function, θ. The contours of the stream function are known 
as streamlines and represent the trajectories particles 
following the velocity vector field would take. The stream 
function associated with a given velocity potential also 
satisfies the Laplace equation; the two are represented 
together as a complex potential [9] 
 F iφ θ= +  (3) 
along with a complex position 
 z E iN= + . (4) 
As (2) shows, the velocity vector field can also be computed 
from the stream function. 

Most potential field control deals only with the velocity 
potential, specifically the velocity defined by its gradient. As 
long as the system is able to exactly follow the velocity 
vector field, the path followed will be a streamline. 
However, as is discussed below, for systems with a dynamic 
response (i.e. ones that do not respond instantaneously to 
inputs) it is useful to also explicitly consider the stream 
function and account for the fact that exact tracking of the 
potential gradient is not always possible. 

The Laplace equation can be solved in one of two ways, 
numerically or analytically. Numeric solutions rely on 
setting boundary conditions on the velocity potential at the 
start and goal locations, obstacle boundaries, and solution 
perimeter. Typically the potential would be low at the start 
location and high at the goal location, so that the gradient of 
the field points toward the goal. Obstacle representation is 
discussed below. The solution perimeter is treated as an 
obstacle so that the vehicle does not leave the solved 
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potential. Once the velocity potential is known, the 
streamlines can be determined by choosing starting locations 
and numerically integrating the velocity vector. An explicit 
stream function is never calculated. The main benefit of this 
method is that any shape obstacle can be easily defined. 
However, its disadvantages are there is no explicit stream 
function and the time required to numerically solve the 
Laplace equation can be prohibitively long. 

Analytic solutions involve summing harmonic primitives 
representing the start, goal, and obstacles; analytic solutions 
are typically global so no solution perimeter is present. The 
superposition principle applies to solutions of the Laplace 
equation so that as long as the primitives are harmonic, the 
overall potential field will also be harmonic. Analytic start 
locations are normally represented by a source 
 lnF C z=  (5) 
and goals by a sink (source of negative strength, C). Note 
that the source equation is complex and thus contains 
information about both the velocity potential and the stream 
function. This is true for each of the primitives; they 
explicitly define the stream function. The primitives for 
obstacles are described in the next section. The main 
benefits of analytic solutions are the explicit stream function 
and the fast solution for the potential field (superposition of 
relatively simple primitive functions). The shortcoming is 
the limited numbers of primitives available to represent 
obstacles. 

Regardless of the solution method, there are two types of 
boundary conditions to represent obstacles, Dirichlet and 
Neumann. Dirichlet boundary conditions create electrostatic 
potential fields: obstacles repel the robot directly away from 
them. This condition closely resembles the potential field 
Khatib proposed and is typically the representation used 
when controlling robots. With numeric solutions the 
Dirichlet boundary condition involves setting the velocity 
potential of obstacles to a constant value higher than the 
surrounding potential. For analytic solutions an obstacle is 
represented by one or more sources (the gradient of the 
source points radially outward). 

Neumann boundary conditions represent fluid flow: the 
velocity vector cannot penetrate the obstacle, but can flow 
along it. The paths created by Neumann boundary 
conditions are typically smoother than those with Dirichlet 
boundary conditions because the flow simply goes around 
the obstacle instead of directly away from it [4]. To 
represent a Neumann boundary condition numerically the 
velocity potential at each point on the obstacle boundary is 
set to the potential directly outward from the obstacle 
boundary (the gradient is thus along the obstacle boundary). 
This boundary condition greatly increases the solution time. 
The method to represent circular obstacles with Neumann 
boundary conditions is described in the next section. 

For high speed vehicles, an analytic solution is required. 
As Section IV demonstrates, the stream function is a 
necessary component of the controller. Therefore, a 

technique for representing arbitrarily shaped obstacles (the 
main disadvantage of the analytic technique) is developed in 
the following section. 

III. ANALYTIC OBSTACLE REPRESENTATION 
To represent a single circular obstacle in a generic 

potential flow, the circle theorem is employed [4], [9]. This 
theorem takes the base, undisturbed flow, Fu, and modifies it 
by “mirroring” it about the boundary of the circle [10]. The 
total potential is the sum of the unmodified and mirrored 
potentials. 
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where a is the circle radius and the conjugate analytic 
function is defined as 
 ( ) ( )F z F z= . (7) 
Note that on the circle boundary the stream function is 
identically zero indicating that the boundary is a stream line. 
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The boundary of the obstacle being a streamline implies that 
the velocity field flows around the obstacle without 
penetrating it. Inside the obstacle a feature known as a 
doublet is formed. 

The overall concept for representing arbitrarily shaped 
obstacles is to utilize a combination of circular obstacles to 
form the desired shape. To this end, different methods of 
adding multiple obstacles are examined; specifically, the 
behavior when circular obstacles touch is studied. Ideally, 
the streamlines will pass around the combined obstacle thus 
providing the basis for building complex shaped obstacles. 

A. Unmodified Obstacle Addition 
The first method for combining obstacles is to simply 

apply the Circle Theorem recursively. The first circle is 
added to the undisturbed potential. The “undisturbed” 
potential for the second circle is the resulting potential after 
the first circle is added, and so on. It is apparent for this 
method that the order the circles are added is critical. The 
edge of the last circle added is guaranteed to be a streamline. 
However, the streamlines near any earlier added circles will 
be distorted by the addition of later circles. This distortion is 
apparent in Fig. 1. 

The original potential in this study represents uniform 
flow from South to North. Although this is not a typical path 
planning potential, it does effectively illustrate the flow 
behavior from the obstacle distortions. The left obstacle is 
added first and the right second. Fig. 1(a) shows the 
obstacles moderately spaced (1/2 diameter between them). 
The gray represents the intended obstacle while the black 
lines are the actual streamlines. At this spacing it is apparent 
that the first obstacle is becoming distorted. 

Each circle has a streamline that connects to it at two 
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points. These points are known as stagnation or saddle 
points. The streamline connecting the points defines the 
actual shape of the obstacle. Note that the obstacle formed 
by these streamlines does not match the first intended 
obstacle. This is more apparent in Fig. 1(b) with the 
touching obstacles; the first obstacle is distorted so that 
streamlines still pass between the obstacles. In both cases 
note that the second obstacle is matched exactly by a 
streamline as predicted by (8). The partial streamlines inside 
the obstacle show the doublet. Near the center they become 
dense enough to be indistinguishable and are therefore not 
plotted. For path planning, streamlines inside obstacles have 
no effect. They are simply plotted in order to better see how 
the streamlines are distorted. 
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Fig. 1.  Obstacles added via the circle theorem; (a) shows 
moderately spaced circles and (b) shows touching circles. 

Clearly this method is not satisfactory to represent a 
combined obstacle. Any streamline between the stagnation 
points of the two obstacles will flow between the obstacles 
even if the intended obstacles are touching. 

B. Averaging Velocity 
Waydo and Murray suggested a method to remove the 

distortions created by closely spaced (but not touching) 
obstacles [4]. Their method consists of first calculating the 
potential created by placing each obstacle in the original, 
undisturbed potential (as opposed to placing obstacles in the 
potential resulting from the previously placed obstacle). The 
total velocity vector field is a weighted average of the 
individual obstacle velocity vector fields. The weight for the 
individual velocities, wi, depends on the distance to each of 
the obstacles. 

 j
i

j i i j

d
w

d d≠

=
+∏  (9) 

where di is the distance to the obstacle under consideration 
and dj the distances to the other obstacles. This weight varies 
between zero (at another obstacle’s boundary) and one (at 
the obstacle under consideration’s boundary). At an 

obstacle’s boundary its weight will be one and all others will 
be zero. Therefore, the velocity vector at the obstacle edge 
matches the unmodified flow meaning the obstacle edge is 
still a streamline. This is true of every obstacle as opposed to 
only the last obstacle added. It should be noted that because 
of the weighting factor, the solution is no longer harmonic. 
However, Waydo and Murray prove that there are still no 
local minima in the resulting flow. 

The work in this paper modifies the weighting function 
slightly to allow for the case when two obstacles touch. In 
this case, the weighting for each of the touching obstacles 
becomes the inverse of the number of obstacles touching 
(two, unless obstacles overlap). 

One downside of this method is that it does not calculate a 
stream function analytically. As with the numeric solution 
from Section II, the streamlines must be numerically 
integrated from the velocity vectors. 

Fig. 2 shows two obstacles in vertical flow for both the 
moderately spaced and touching cases. No streamlines are 
visible inside the obstacles because the streamlines are 
generated by integrating the velocity from a sequence of 
initial locations; obviously none of these traces penetrate an 
obstacle to make the doublet visible. Note that for both the 
left and right obstacle the intended obstacle edge is a 
streamline. The slight deviations near the stagnation points 
are due to numerical integration errors. 
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Fig. 2.  Obstacles added via averaging the individual circle’s 
velocities; (a) shows moderately spaced circles and (b) shows 
touching circles. 

Even though streamlines do not penetrate the intended 
obstacles, they do pass between the obstacles even when the 
obstacles are touching, as seen in Fig. 2(b). As with the 
previous method, any streamline between the stagnation 
points will pass between the obstacles. 

As Fig. 2(a) shows, this method works well to preserve 
the exact obstacle edge, but it breaks down when the 
obstacles touch. Additionally, even though the individual 
potential functions are computed analytically, the resulting 
streamlines are generated using numerical integration. 
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Overall, the method does not create an effective combined 
obstacle. 

C. Averaging Stream Function 
The requirement for an explicit stream function motivates 

the following modification to the averaging method: average 
the individual stream functions instead of the velocities. The 
same weighting function, i.e. (9), is used for this purpose. 
Fig. 3 shows the resulting potential when the stream 
functions are averaged. 
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Fig. 3.  Obstacles added via averaging the individual circle’s 
stream functions; (a) shows moderately spaced circles and (b) 
shows touching circles. 

The potential in this case is very different from the 
previous two methods. The obstacle edges are still 
streamlines as would be expected given that the resultant 
potential on an obstacle edge is identical to the potential of 
just that obstacle. However, unlike the other methods the 
obstacle edge streamline extends to connect the two circles 
creating a combined obstacle that the streamlines flow 
around even when the obstacles are not touching. Therefore, 
no paths pass between the two circles when using a 
streamline to define the path. The connecting streamlines are 
due to the averaging. From (8) the stream function on each 
circle is zero. The connecting streamlines are the contours 
where the weighted average of the two potentials cancels 
leaving a net stream function of zero. 

The distorted streamlines near where the obstacles touch 
in Fig. 3(b) is due to a singularity in the weighting function 
that occurs when obstacles touch. Note that this singularity 
only exists in areas internal to the circles and that the weight 
at the point where the circles touch is still defined. When 
using this method for path generation, the area interior to the 
obstacles is not considered so the singularity has no effect 
on the potential field. 

There are other interesting features of this potential. First, 
two additional stagnation points exist on the connecting 
streamlines. The stagnation points do not cause concern. 
They are equilibrium points, but are unstable (saddle points). 

They form the new combined obstacle’s edge; just as with 
the stagnation points in Fig. 1. Additionally, two “vortices” 
exist inside the combined obstacle (the closed contour 
streamlines between the circles). These vortices represent 
local extrema in the potential field (center equilibrium 
points). This reinforces the conclusion that weighted 
averages of harmonic functions are not necessarily 
harmonic. Because the extrema are contained within the 
combined obstacle they do not affect the useful portion of 
the potential function. However, there is no guarantee that 
the extrema will always occur in non-important portions of 
the potential. 

Overall, this method allows circular obstacles to be 
combined to create complex shaped obstacles. It also 
explicitly calculates the stream function. As the next section 
demonstrates, more than two circles can be combined to 
form the shape although to avoid problems with unwanted 
extrema it is better to keep the number of circles low and 
when possible, make the circles touch. 

IV. CONTROLLER DEVELOPMENT 
To validate the potential field generation method 

described above a representative field is created and a 
vehicle simulation is employed to evaluate the use of the 
potential field for controlling a vehicle. To simulate the 
vehicle, the well known bicycle model (Fig. 4) is used [11]. 
The vehicle states (slip angle, β, and yaw rate, r) are 
supplemented by kinematic relationships for heading, ψ, and 
lateral position error yerr. These four states are used in the 
control effort. North and East states are also included to 
complete the vehicle simulation. The equations of motion 
for this system are 
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 (10) 

δ is the steering angle input, V the vehicle speed (held 
constant in the simulation), m the vehicle mass, Iz the 
moment of inertia, a and b the distances from the center of 
gravity to the front and rear axles respectively, and CαF and 
CαR the front and rear axle cornering stiffnesses. 

The controller used is either 
 errkψδ ψ=  (11) 
or 
 err y errk k yψδ ψ= +  (12) 
depending on whether only the gradient of the potential field 
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is tracked or a streamline is also followed. These are not 
necessarily the ideal controllers; however, they serve to 
illustrate the need for following a particular streamline 
instead of the potential field gradient alone. 

Vr

N

E

Desired 
Trajectory

yerr

err

des

 
Fig. 4.  Bicycle model and relationship to desired trajectory. 

A. Traditional Potential Field Controller 
To illustrate the different control methods, a map (Fig. 5) 

is created. The map consists of a start location (source) in 
the southeast corner and a goal location (sink) in the 
northwest corner. Three obstacles exist, a wall, square, and 
circular obstacle. The circular obstacle is created by using 
the Circle Theorem. The square obstacle consists of four 
circles connected by averaging the stream functions. The 
wall obstacle is formed by averaging two small circles, one 
at each end of the line. Note that obstacles consisting of 
multiple circles (e.g. the wall and square) use the averaging 
method from Section III.C to connect the circles and 
generate the desired shape. However, independent obstacles 
are inserted into the potential without averaging them to 
other obstacles. This allows streamlines (and thus vehicle 
paths) to pass between unrelated obstacles but not between 
circles connected to form a combined obstacle. 

The traditional method of using a potential field to control 
a robot is to move the robot in the direction indicated by the 
gradient of the velocity potential at the robot’s location. 
Typically, robots controlled via this method can change 
direction effectively instantaneously and immediately move 
in the direction of the gradient. If the gradient is tracked 
exactly, then the path followed by the robot will be a 
streamline. The equivalent vehicle controller takes the 
direction of the potential gradient as the desired heading and 
bases the steer angle on the heading error. 

However, as the equations of motion described before 
indicate a vehicle cannot instantaneously change its heading; 
there is a lag between the steer angle applied and the 
heading change. This lag means that the vehicle will not 
exactly follow a streamline. Usually this is not a problem 
since the gradient of the potential always points to the goal 
location. Therefore, even if the vehicle leaves its original 
streamline it will still reach the goal. However, if an obstacle 

is present, the lag in the vehicle response may cause the 
vehicle to intersect the obstacle. The vehicle cannot turn to 
avoid the obstacle as tightly as the potential gradient turns 
due to the vehicle dynamic response. 

Fig. 5 illustrates this concept. Initially, the vehicle is 
closely following a streamline that avoids the square 
obstacle. This streamline is followed purely based on the 
vehicle’s initial heading. Approximately half way to the 
obstacle the vehicle leaves the streamline. Because that 
streamline has no particular significance to the controller, 
nothing pulls the vehicle back to the streamline and away 
from the obstacle. By the time the potential gradient points 
far enough away from the obstacle to significantly alter the 
vehicle’s trajectory, it is too late for the vehicle to miss the 
obstacle. 
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Fig. 5.  Traditional potential field controller; vehicle is driving 
from southeast to northwest. 

B.  Augmented Potential Field Controller 
To guarantee that the trajectory remains a safe distance 

from all obstacles a particular streamline needs to be 
followed. The vehicle controller in this case still uses the 
potential field gradient at the vehicle’s location as a desired 
heading but it is augmented to include the lateral distance to 
the desired streamline. This lateral error is calculated by 
performing a search of the stream function along the lateral 
axis of the vehicle to find the desired stream function value 
(recall that a streamline is a contour of the stream function at 
a particular value). For this search to be performed the 
stream function must be explicitly defined. Therefore, 
numerically integrating the velocity vector to generate 
streamline traces is not sufficient. 

Fig. 6 shows the trajectory followed by using the 
augmented potential field controller. The desired streamline 
is chosen manually to safely avoid the obstacles as well as 
comply with the dynamic constraints (e.g. maximum lateral 
acceleration) of the vehicle. Note that following a specific 
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streamline also allows the desired path to be independent of 
the vehicle’s initial heading. For instance, if it were more 
advantageous to move to the south of the wall to avoid it, 
one of those streamlines could be chosen even though the 
vehicle is initially pointing between the obstacles. This 
scenario is not possible using traditional potential field 
control. 
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Fig. 6.  Augmented potential field controller; vehicle is driving 
from southeast to northwest. 

V. CONCLUSION 
This paper has examined various analytical potential 

fields which flow around multiple circular obstacles as those 
obstacles begin to touch. The potential fields are initially 
developed by solving the Laplace equation with boundary 
conditions corresponding to obstacles and start/goal 
locations. Based on these studies a technique which allows 
complex shaped obstacles to be built from circles inserted 
into the potential field is developed. The streamlines of the 
potential field completely avoid the obstacles constructed 
with this method. An important feature of the method is that 
an explicit stream function is calculated. Unless a particular 
streamline is followed, vehicles that have a dynamic (i.e. 
non-instantaneous) response have the possibility of 
intersecting obstacles. The need for an explicit stream 
function also makes numerical solutions of the Laplace 
equation impractical. 

The potential field development technique presented in 
the paper should lend itself to real-time implementation. The 
entire potential field does not have to be recomputed when a 
new obstacle is detected. Instead, the new obstacle is added 
into the existing potential field. The equations for adding an 
obstacle to a potential field are relatively simple analytic 
functions and should not require much computation time. 

A. Future Work 
The obstacle representation and simple controller 

presented in this paper fit into the larger objective of 
adapting harmonic potential field path planning techniques 
to apply to high speed vehicles (i.e. vehicles with dynamic 
limitations). There are several other research areas that build 
on the work in this paper to meet the larger objective. 
Among them are improving the streamline following 
controller to use the stream function error directly instead of 
searching for the lateral distance error; this will require a 
nonlinear controller. Additionally a method to automatically 
determine a streamline to follow while still respecting the 
vehicle’s dynamic constraints and remaining a safe distance 
from all obstacles needs to be developed. Ideally this 
method would not require a global search of all streamlines 
(e.g. searching for minimum instantaneous radius). Finally, 
the control method should be expanded to determine a 
desired speed for the vehicle. The magnitude of the potential 
field gradient is not sufficient for the desired speed. Recall 
that the potential field is based on fluid dynamics concepts. 
As fluid flows around obstacles the streamlines bunch 
together. This implies the speed is increased. Obviously the 
vehicle speed should not increase when it is avoiding an 
obstacle. However, features that are present in the potential 
field (such as the distance to each obstacle used in the 
weighting function) should provide information that can be 
used to determine a desired speed. 
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