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Abstract

Strongly periodic series occur frequently in many disciplines. This
paper reviews one specific approach to analyzing such series viz. the
harmonic regression approach.In this paper the five major methods
suggested under this approach are critically reviewed and compared,
and their empirical potential highlighted via two applications. The
out-of-sample forecast comparisons are made using the Superior Pre-

dictive Ability test, which specifically guards against the perils of data

snooping. Certain tentative conclusions are drawn regarding the rela-
tive forecasting ability of the different methods.
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1 INTRODUCTION

Many series occurring in fields as diverse as seismology, astronomy, oceano-
graphy, acoustics, medicine and economics, exhibit strongly periodic beha-
viour. The early attempts to model such behaviour were undertaken by
statisticians such as Schuster (1898), Slutsky (1937) and Yule (1927), who
termed the problem as that of “detection of hidden periodicities”. The
formal analytical treatment of this problem however, may be said to begin
only in the 1950s, with the seminal contributions of Whittle (1952), Bartlett
(1954), Moran (1953) and Grenader and Rosenblatt (1957). Several practi-
cal solution methods evolved in the wake of these contributions. In a broad
taxonomy, approaches to studying periodic behaviour may be divided into
two distinct groups.

i. Time Domain Methods such as

(a) the well-known Census X-11 method and its several extensions
(Findley, Monsell, Bell, Otto and Chen (1996))

(b) ARIMA Decomposition methods (Hillmer, Bell and Tiao (1983),
Gomez and Maravall (1996) etc.)

(c) Optimal Regularization methods (Akaike (1980), Young (1991)
etc.)

(d) Stochastic State Space Methods (Harvey (1989), Koopmans (1993)
etc.)

ii. Frequency Domain Methods comprising

(a) Spectral Analysis (Priestley (1981), Marple (1987) etc.)

(b) Wavelet Analysis (Percival and Walden (2000), Gençay, Selçuz
and Whitcher (2002) etc.)
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(c) Harmonic Regression or Fixed Frequency Effects Models (Kay
and Marple (1981), Hannan (1973), Chiu (1989) etc.)

In this paper, our focus is on the last category of the frequency domain
methods viz. harmonic regression. In such models, an observed series X(t),
t = 1, . . . , N is viewed as being composed of a signal (consisting of a sum of
periodic terms) with a superimposed coloured noise.

X(t) =
k∑

p=1

(Ap cosωpt + Bp sinωpt) + u(t); t = 1, 2, . . . , N (1)

where u(t), the coloured noise is a stationary process (i.e. capable of ARMA
representation) and the Ai, Bi and ωi are constant (but unknown) parame-
ters to be estimated. The number of “harmonics” k may either be assumed
known or unknown (though most of the methods that we discuss allow for
it to be unknown). Additionally, we need to estimate the underlying pa-
rameters of the coloured noise process u(t). The problem thus is fairly
complicated. It needs to be noted that once k and the frequencies ωi are
determined, 1 becomes a regression and the remaining parameters are easily
obtainable via linear regression methods. Estimating the parameters of u(t)
is usually undertaken after the sinusoidal signal is estimated. Thus, our
discussion is focused on the estimation of k and the frequencies ωi.

Our motivation towards concentrating on this group of models is three-
fold. Firstly, many real world phenomena are dominated by a few strong
periodic tendencies (the signal term in 1) contaminated by coloured noise.
This happens for example, in oceanography (tidal phenomena),climatology
(seasonal weather variations, rainfall cycles etc.), seismology (earthquakes
and volcanic activity), and economics (seasonal and business cycle varia-
tions in series like industrial production, wholesale prices, money supply
etc.). Such phenomena may thus be appropriately described by models of
type (1). Secondly, the full potential of these models has yet to be reali-
zed in many disciplines. For example in economics, such models have seen
little use (of the few exceptional applications, we may mention Hannan, Te-
rell and Tuckell (1970) and more recently Ghysels and Osborn (2001), and
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Young and Pedregal (1999)). Finally, there has been virtually no evidence
on the comparative forecasting ability of the several variants of the harmonic
regression methodology which have been suggested in the literature.

The plan of our paper is as follows. Section 2 to 5 describes the salient
features of four important categories of harmonic regression models. The
out of sample forecast comparisons of the various methods are described
in Section 6, with special attention to the recent emerging issue of data

snooping. Finally, conclusions are gathered in Section 8.
The major methods suggested in the literature to deal with the problem

(1), may be grouped under five headings:

1. Methods based on the periodogram or the DFT (discrete Fourier trans-
form) (Whittle (1952), Walker (1973), Hannan (1973), Campbell and
Walker (1977) etc.).

2. Mixed Spectrum methods (Priestley (1964, 1981), Bhansali(1979)).

3. Autoregressive methods including (i) the Prony method (Marple (1987),
Candy (1988)) and (ii) Truong Van’s (1990) Amplified Harmonics met-
hod.

4. Eigenvalue methods of which Pisarenko’s Harmonic Decomposition
method (Pisarenko (1973), Kay and Marple(1981)) may be taken as
representative.

5. Dynamic Harmonic Regression method of Young, Pedregal and Tych
(1999).

Of these, the first two are essentially frequency domain methods, the
next two may be regarded as largely in the time domain, while the last uses
results from both the time and frequency domains.

Thanks to the works of Hannan (1971,1973) and Walker (1973), the
asymptotic properties of periodogram (and DFT) methods are well unders-
tood. Briefly, these methods yield fairly accurate estimates of the frequencies
ωi in (1) (with standard errors of order N−3/2 for the periodogram method
and N−1 for the DFT respectively), if the u(t) are Gaussian. Their main
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drawbacks (as noted in Bloomfield (1976), Rice and Rosenblatt (1988)) are
two viz. their inability to distinguish frequencies separated by less than the
reciprocal of the data length and the fact that the criterion function is likely
to have several local minima, so that the final estimates are likely to have
large biases, unless the iterations happen to commence at values close to the
true frequencies.

Their main limitation is however theoretical in the sense that they fail
to take cognizance of the distinction between the discrete and continuous

spectrum for periodic processes such as those described by (1) —a distinction
introduced into the literature by Priestley (1964). We therefore do not
consider these methods here and pass on directly to the mixed spectrum
methods.

2 MIXED SPECTRUM METHODS

2.1 Priestley’s P (λ) Test

Priestley (1964, 1981) showed that the spectrum F (ω) of processes such as
(1) could be decomposed as

F (ω) = F1(ω) + F2(ω)

where F1(ω) is a discrete spectrum (corresponding to the trigonometric sum)
and F2(ω) is the continuous spectrum corresponding to the ARMA process
u(t). F (ω) is then called a mixed spectrum.

Reformulating (1) as

X(t) =
k∑

p=1

Dp sin(λpt + φp) + u(t) (2)

(where Dp, λp, and k are unknown parameters, the φp, are independent and
rectangularly distributed on (−π, π) and u(t) is a stationary linear process
with a continuous spectrum). The following null hypothesis is tested

H0 : Dp = 0, p = 1, 2, . . . , k
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against the alternative

H1 : Dp 6= 0, for some p, 1 ≤ p ≤ k,

Non-rejection of the null implies that X(t) is a stationary ARMA process
with a purely continuous spectrum. To test H0, Priestley (1981) proposes
the P (λ) test.

Let f̂m and f̂n denote two “window” estimates of the spectrum of X(t),
obtained using truncation points m and n respectively where n > 2m (the
window used for forming these estimates may be the same or different). We
next put

P (λ) = f̂n(λ)− f̂m(λ) (3)

at the Fourier frequencies λj =
(

2πj
N

)
; j = 0, 1, . . . , [N/2].

If the Dp
′s are not all zero, P (λ) will have several well-defined peaks say

ω1 < ω2 < . . . < ωk These peaks are tested for significance (successively in
order of occurrence) using the so-called J̃q statistic (see Priestley (1981), p.
640). A notable feature of the test is that in the event of rejection of H0,
it also suggests estimates of Dp, λp and k. Bhansali (1979) has suggested
an important amendment to the P (λ) test, which improves its performance
significantly. We therefore proceed by using the test, with the Bhansali
“correction” incorporated.

2.2 Model Estimation

Suppose by following the above procedure, we identify k harmonics at the
frequencies ωj (j = 1, 2, . . . , k). We then estimate the following model by
OLS

X(t) =
k∑

p=1

{Ap cos(ω̂pt) + Bp sin(ω̂pt)}+ u(t); t = 1, 2, . . . , N (4)

The fact that u(t) may be correlated is not much of a cause for concern,
since Durbin (1960) has shown that for harmonic regressions of the type
(4), OLS estimates of Ap and Bp are asymptotically efficient.
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We have already seen that the residual term u(t) will have a continuous

spectrum, with an ARMA representation. However, for forecasting purpo-
ses, an AR model is more convenient, and Bhansali (1979) shows how an
autoregressive model may be fitted to u(t) by a suitable lag selection crite-
rion. His preference is for the FPEα criterion developed in Bhansali and
Downham (1977), according to which, the AR order of u(t) is taken as the
value of p (say p∗) which minimizes FPEα(m), where

FPEα(p) = σ̂2
p[1 + (

αp

N
)] p = 0, 1, 2, . . . , L (5)

where α is a positive constant, with suggested values (see Bhansali and
Downham (1977)) in the range (2,4], and L is a suitably large positive inte-
ger.

Thus the Priestley-Bhansali method may be viewed as comprising the
following three stages in fitting a harmonic regression or fixed frequency

effects model to the data.

1. We first estimate the number of harmonics k using Priestley’s P (λ)
test.

2. Next, we estimate the coefficients in the model (3) (using the value of
r obtained in Stage 1) by the method suggested originally by Priestley
(1981), with the Bhansali (1979) correction incorporated.

3. Finally, we fit an AR model to the residuals from the model estimated
in Stage 2.

3 AUTOREGRESSIVE METHODS

The autoregressive methods derive their name from the fact that the si-
nusoidal part of (1) may be studied in terms of a homogenous AR equa-
tion, with coefficients uniquely related to the sinusoidal frequencies. The
frequency estimation problem is thus transformed into the simpler AR esti-
mation problem, which is amenable to solution by linear methods.
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3.1 Prony Method

The Prony method was proposed in a now classic article by Gaspard Ri-
che, Baron de Prony in 1795 (Prony, 1795). It is based on the observation
that the deterministic trigonometric component of (1) satisfies a homoge-
neous autoregressive equation of order 2k. Let Y (t) denote the sinusoidal
component of (1), so that (1) or (2) can be written as

X(t) = Y (t) + u(t) (6)

with

Y (t) =
k∑

p=1

Dp cos(λpt + φp) (7)

Let B denote the backward shift operator defined by BY (t) = Y (t−1), and
define the polynomial

A(B) =
k∑

p=1

(1− zpB)(1− zpB =
2k∑

p=0

apB
p (8)

where
zp = exp(iωp) and zp = exp(−iωp) (9)

It is easy to see (e.g. Candy (1988), p. 210–211) that (i) the ap are uniquely
determined by ωp, and vice versa and (ii) the (2k + 1) coefficients ap of the
polynomial A(B) are symmetric in the sense

a0 = 1 and a2k−p = ap; p = 1, 2, . . . , k − 1 (10)

It can be shown further that that the sinusoidal signal Y (t) satisfies the
following homogeneous AR equation of order 2k

2k∑

p=0

apY (t− p) = 0 (11)

The Prony method assumes that the number of harmonics k is known in
advance and concentrates on estimation of the frequencies. By the above
discussion, the frequencies can be determined from the zeros of the poly-
nomial A(B) once the coefficients ap in (11) are known. The latter can be
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obtained as the ordinary least squares estimate of the following regression
which makes use of the fact of the symmetry of these coefficients noted in
(10), (see Kay and Marple (1981), Li and Kedem (1992) )

x = −ΓQa + e (12)

where e(t) = A(B)u(t) and

x =




X(2k + 1) + X(1)
. . .

X(N) + X(N − 2k)


 ; e =




e(2k + 1)
. . .

e(N)


 ;

Γ =




X(2k) . . . X(2)
. . . . . . . . .

X(N − 1) . . . X(N − 2k + 1)


 ; Q =




I O

OT I

Ī O




where I is (k− 1)× (k− 1) identity matrix, I is (k− 1)× (k− 1) reverse
permutation matrix with 1′s on the anti-diagonal and 0′s elsewhere, and 0
is the zero vector of dimension (k − 1).

From (12), the Prony estimator may be written as

â = −(QT ΓT ΓQ)−1QT ΓT x (13)

While the Prony method is computationally convenient, the resultant es-
timates can be biased. Several methods have been suggested in the literature
to overcome this bias including using higher order AR models in (11) (see
Lang and McClellan (1980)), contraction mapping methods (He and Kedem
(1989), Yakowitz (1991)) and parametric filtering (Li and Kedem(1992)).
However, most of these methods are computationally intensive, and hence
the scope of their applications is, at the moment, somewhat restrictive.
Hence we do not consider these extensions here. The other limitation of the
Prony method refers to the fact that it presumes knowledge of k (the number
of harmonics in the data). This limitation is usually overcome via resort to
a two-stage procedure-estimating k in the first stage by using methods such
as those suggested by Chiu (1989), Quinn and Thomson (1991) etc., and
then applying the Prony method for this fixed k. The method suggested by
Chiu (1989) is particularly simple to apply, and we consider this below.
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3.2 Estimating the Number of Harmonics (Chiu’s Method)

Chiu (1989) suggests two alternate statistics to test the null of
H0: zero harmonics in X(t)

against the alternative
H1: r harmonics in X(t)

The statistics are defined as follows

U(r) =
In−r+1∑n

i=1 Ii
(14)

V (r) =
In−r+1∑n−r

i=1 Ii
(15)

Where Im denotes the periodogram of X(t), (t = 1, 2, . . . , N) ordinate at
the m− th Fourier frequency ωm = (2πm

N ).
Chiu (1989) derives the asymptotic distribution of U(.) and V (.) for

testing H0 as follows:
Define

Z1(r) = nU(r)− ln(n− r + 1) (16)

Z2(r) = c(n− r)V (r)− ln(n− r + 1) (17)

where
c = 1 +

r[ln(r/n)]
(n− r)

(18)

Also let

Pi(r) = exp{− exp[−Zi(r)]}
r−1∑

j=0

exp{−jZi(r)/j!}; i = 1, 2 (19)

If the selected level of significance is α, we reject H0 in favour of H1 whenever

Pi(r) Â (1− α); i = 1, 2 (20)
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3.3 Method of Amplified Harmonics

This method was introduced into the literature by Truong-Van (1990). The
underlying model is taken to be (2) with u(t) having a stationary ARMA
representation. The number of data points is taken to be N as before. The
logic of the method relies on the notion of amplification of harmonics at
various frequencies. Truong-Van (op. cit.) defines for each frequency ωj , a
process ξt(ω∗j ) by the the following recursion where ω∗j is near to ωj

ξt(ω∗j ) = 2 cos(ω∗j )ξt−1(ω∗j ) + ξt−2(ω∗j ) + X(t); t = 1, 2, . . . , N (21)

with ξ0 = ξ−1 = 0
It is then shown that the process ξt(ω∗j ) amplifies the harmonic of fre-

quency ωj , selectively relative to the others.
Truong-Van (1990, Theorem 3) is then led to demonstrate that among

the harmonic amplifiers ξt(ω∗j ) of ωj , there exists an amplifier ξt(ω̂j) s.t.

N∑

t=2

ξt−1(ω̂j)X(t) = 0 (22)

i.e. ξt−1(ω̂j) is orthogonal to X(t).
A suggested estimate of ωj is then ω̂j . These estimates are strongly

consistent and asymptotically normal (see Hannan(1973) and Truong-Van
(1990, Theorem 4)). From the computational point of view, the following
result is important (Truong-Van, op. cit. Equation (9)).

Proposition

Consider the problem of estimating α in the following regression by OLS,

ξt(ω∗j ) + ξt−2(ω∗j ) = 2αξt−1(ω∗j ) + εt (23)

where ω∗j is near to ωj .
Let et(ω∗j ) denote the OLS residuals of (23). Then ω̂j is the solution to

the following minimisation problem:

min
ω∗j∈V (ωj)

N∑

t=1

{et(ω∗j )−X(t)}2 (24)
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Note: The neighbourhood V (ωj) of ωj is defined as follows. Let u(t) in (2)
have the ARMA representation

Φ(B)u(t) = Θ(B)a(t) (25)

where a(t) are i.i.d. with mean 0 and variance σ2. Let (2π/σ2)f(ω) be the
spectrum of u(t), then V (ωj) is defined as

V (ωj) =
24(ωj)σ2

D2
j

(26)

where D2
j are as defined in (2).

The solution of this somewhat intricate problem can proceed along either
of the two lines suggested by Truong-Van (1990)

1. signal orthogonal amplifiers by double amplification of harmonics (SO-
DAH)

2. recursive least squares on amplified harmonics (RLSOAH)

The SODAH algorithm requires starting values of ω∗j fairly close to the
true values ωj , while RLSOAH is more robust to the choice of initial values.
We therefore resort to the RLSOAH algorithm. This algorithm will lead to
estimates ω1, ω2, . . . , ωk, of the harmonics— the algorithm also identifying
k, the number of harmonics. This latter fact constitutes a major advantage
over the Prony method discussed above. The estimation of model (2) is now
straightforward. We estimate the following equation by OLS

X(t) =
k∑

p=1

{Ap cos(tω̂p) + Bp sin(tω̂p)}+ u(t) (27)

The residuals u(t) from this model can then be used to identify an ARMA(p,q)
model for u(t) in the standard fashion (one should possibly test u(t) for sta-
tionarity to establish the reliability of the estimates ω̂1, ω̂2, . . . , ω̂k).

4 EIGENVALUE METHODS

Eigenvalue methods are so called because they obtain the frequencies ωp in
(1) or (2) as the roots of a polynomial of degree k, whose coefficients are
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derived from the eigenvector of a particular matrix B. The Prony method
discussed above may also be regarded as an eigenvalue method (see e.g.
Smyth (2000)), though it is now conventionally viewed as an autoregressive
method. Among the eigenvalue methods, possibly the best known is Pisa-
renko’s harmonic decomposition method, the essential features of which we
sketch below.

4.1 Pisarenko’s Harmonic Decomposition Method

Pisarenko’s (1973) method proceeds by considering the sinusoidal model
(2). As originally suggested, it suffers from two major limitations viz. the
assumption that u(t) is a white noise (rather than a general covariance
stationary) process and the assumption that k, the number of sinusoids is
known. As we shall see below, both these restrictions have been removed
in later refinements of the method. But for illustrative purposes, and to
keep the analytics simple, we will proceed within the original Pisarenko
formulation. Consider then the model (2), with k known and u(t) a white
noise. Let RXX(p) denote the autocovariance of the process X(t) at lag k.
Then a straightforward application of the Wiener-Khintchine theorem (see
Cadzow (1982)) shows that

RXX(m) =
k∑

p=1

(
D2

p

2

)
cos(kωp) + σ2

uδ(m); m = 0, 1, . . . , k − 1 (28)

where σ2
u = var(u(t)) and δ(m) is the Kronecker δ.

Using a well known result from linear systems theory (see Kailath (1980)),
the sinusoidal term in (2), which we have earlier denoted as Y (t), satisfied
the following difference equation of order 2k

Y (t) = −
2k∑

p=1

αpY (t− p) (29)

where the constants alphap are uniquely related to the frequencies ωp in (2).
Using (29) in (2) (or (6)) we get

X(t) = −
2k∑

p=1

αpX(t− p) +
2k∑

p=0

αpu(t− p) (30)
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with α0 = 1.
Define

X(t) =




X(t)
. . .

X(t− 2K)


 ; Y (t) =




Y (t)
. . .

Y (t− 2k)


 ;

U(t) =




u(t)
. . .

u(t− 2k)


 ; α(t) =




α0

. . .

α2k




Then (6) may be written as

X(t) = Y (t) + U(t) (31)

and (30) assumes the form
XT α = UT α (32)

From the above two equations, the following relation can be easily derived
[
RXX − σ2

uI
]
α = 0 (33)

with RXX a Toeplitz matrix (see Brillinger (1975), p.72 for a definition).
Thus, in view of (33), the parameter vector (of the autoregressive coefficients
in (30)) is the eigenvector associated with the eigenvalue σ2

u normalized
on α0 = 1. This result of itself is of little use, since the value σ2

u is not
known. However, Pisarenko (1973) shows that if u(t) is white noise, then
σ2

u corresponds to the minimum eigenvalue of RXX . The algorithm for
calculation of the minimum eigenvalue of RXX is based on the classical
power method of matrix algebra (see Stewart (1973)), based on the iteration

RXXα(k) = α(k−1) (34)

where α(k) is the estimate of α at the k−th iteration, starting with an initial
guess α(0). Once the iterations have converged and an estimate α(∗) of α

obtained, the minimum eigenvalue λmin of RXX is given by the Rayleigh
quotient (see Magnus and Neudecker (1991), p. 203)

λmin =
αT RXXα

αT α
(35)
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Define the same matrix polynomial A(B) as in (8) with the autoregressive
coefficients corresponding to the elements of the vector α∗ (and with α0 = 1).
The symmetry condition (10) also applies, since the matrix RXX is Toeplitz.
The frequencies ωp can now be obtained from the zeros of the polynomial
A(B) exactly as in the Prony case. Thus the essential difference between
the Prony and Pisarenko estimates lies in the way the coefficients of A(B)
are estimated (by Least Squares in the Prony case and by eigenanalysis
in the Pisarenko case). However as shown by Smyth (2000) the Pisarenko
estimates are also biased.

As mentioned earlier, the Pisarenko method suffers from two major res-
trictions, viz. that the number of harmonics k is assumed known, and the
noise u(t) is assumed to be white. The first of these restrictions can be remo-
ved by adopting a two-stage procedure as suggested in Subsection 3.2. The
second restriction is more difficult to deal with, and several methods have
been suggested to generalize the method to situations where the variance
covariance matrix of u(t) need not be an identity matrix (see in particular
Sakai (1984), Stoica and Nehorai (1988), Kundu and Kannan (1997) etc.).

5 DYNAMIC HARMONIC REGRESSION (DHR)

METHOD

The dynamic harmonic regression method (DHR) attempts to take the mo-
del (1) (or its equivalent formulation (2)), further in the direction of reality
by allowing for the possibility that the amplitudes and the phases of the un-
derlying sinusoids (i.e. Dp and φp in (2)) may vary over time. The method
as developed by Young and Pedregal (1999), Young et al (1999) etc. pro-
ceeds within the framework of the Unobserved Components (UC) model,
frequently used in the analysis of economic time series, viz.

X(t) = T (t) + C(t) + S(t) + e(t) (36)

Where T (t), C(t) and S(t) are the tend, cyclical and seasonal components
respectively, and e(t) the irregular component is assumed to be a Gaussian
white noise with constant variance σ2

ε .

15



Suppose that the number of cyclical sinusoids is k1, and the number of
seasonal sinusoids is k2, then (36) can be written analogously to (1) as

X(t) =
k∑

p=o

(Ap(t) cos ωpt + Bp(t) sinωpt) + e(t); (37)

(k = 1 + k1 + k2); (t = 1, 2, . . . , N)

There are three major differences between (1) and (37):

1. (37) includes a zero frequency term ω0 = 0 corresponding to the trend
T (t)

2. The disturbance term e(t) in (37) is restricted to be white noise.

3. The parameters and are allowed to vary with time in (37) whereas they
are constant in (1). This of course, means that both the amplitude
and phase of the cyclical and seasonal components (as well as the level
and slope of the trend) are allowed to change over time.

In view of item n. 3, the model (37) may be viewed as a generalization
of (1). The evolution of each of the 2k parameters in (37) is characterized
by two stochastic variables -the level l(t) and the slope d(t). For the i− th

parameter we denote these by a two-dimensional stochastic vector

θi(t) =

[
li(t)
di(t)

]
; i = 1, . . . , 2k (38)

which is assumed to evolve as a Generalized Random Walk (GRW) pro-
cess (see Jakeman and Young (1984) for a definition and discussion of the
properties of a GRW process) evolving as follows:

θi(t) = Fiθi(t− 1) + Giηi(t); i = 1, 2, . . . , 2k (39)

with

Fi =

[
α β

0 γ

]
; Gi =

[
γ 0
0 1

]

We now aggregate all the subsystem matrices described by (39) into a stan-
dard state space (SS) format (see Harvey (1989), or Koopmans, Harvey,
Doornik and Shephard (1995))
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Observation Equation:

X(t) = H(t)Θ(t) + e(t); (40)

State Equation:
θ(t) = FΘ(t− 1) + Gη(t) (41)

Where F is a (4k × 4k) block diagonal matrix with each block defined by
a matrix Fi from the subsystem (39); G is also (4k × 4k) and obtained
similarly from the matrices Gi in (39); H(t) is an appropriately defined
(1×4k) vector which relates the scalar observation X(t) to the state variables
defined by (39), so that it represents the UC model (37); Θ(t), η(t) are
(4k×1) vectors obtained by stacking up the θi, ηi vectors from (39). Finally
the ηi(t) are assumed to be individually white noise and uncorrelated with
the observation noise e(t) in (40). We denote the covariance matrix of η(t)
by Θ.

As is well known, the system (40)–(41) admits of a recursive solution,
either using the forward pass filtering algorithm as originally suggested by
Kalman (1960), or the backward pass smoothing algorithm of Bryson and
Ho (1960). However, the solution requires knowledge of the matrix Θ (the
covariance matrix of the system disturbances) as well as of the variance of the
observation noise σ2

e . Obtaining estimates of these parameters constitutes
the major innovation of the DHR method.

The DHR method is applicable for a variety of GRW processes such as

1. the integrated random walk (IRW) with α = β = γ = 1; δ = 0.

2. the scalar random walk (RW) with α = β = δ = 0; γ = 1

3. the smoothed random walk (SRW) with 0 ≺ α ≺ 1; β = γ = 1 and
δ = 0

4. local linear trend (LLT) with α = β = γ = 1; δ = 1 and

5. damped trend (DT) with α = β = δ = 1; 0 ≺ γ ≺ 1.
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For the sake of specificity, we illustrate the DHR method when the un-
derlying GRW process in (39) is an integrated random walk (IRW) process.
The pseudo-spectrum fωj (ω) of a sinusoid

ξ(t) = a(t) sin(wjt) + b(t) cos(wjt) (42)

in which both a(t) and b(t) follow IRW processes with a common variance
σ2

ωj
is derivable as (see Young et al (1999))

fωj (ω) = σ2
ωj

S(ω, ωj) (43)

where

S(ω, ωj) =
1
2π

[
1

4{1− cos(ω − ωj)}2
+

1
4{1− cos(ω + ωj)}2

]
(44)

With this notation established, the pseudo-spectrum of the full DHR model
(37) can be written as

fx(ω, σ2) =
k∑

p=0

σ2
ωp

S(ω, ωp) +
σ2

e

2π
(45)

where
σ2 = [σ2

e , σ
2
ω0

, σ2
ω1

, . . . , σ2
ωk

]

The DHR estimation now proceeds as follows. Given the observed process
X(t), t = 1, 2, . . . , N , we estimate an autoregressive spectrum AR(m) for
X(t) where the order m is identified by a lag selection procedure such as the
AIC (the AR spectrum is explained, for example, in Gardner (1988), p. 266).
The significant peaks in this spectrum gives us an estimate of k (the number

of sinusoids) as well as the corresponding frequencies ωp, p = 1, 2, . . . , k.
In the next stage, we evaluate the quantity fx(ω, σ2) at select frequencies
ω = ωj , j = 1, 2, . . . , T − 1 in the interval (0,0.5) as the empirical spectrum
of X(t), while the expression

∑k
p=0 S(ω, ωp) is also evaluated via (44) (with

ω = ωj , j = 1, 2, . . . , T − 1 and ωp, p = 1, 2, . . . , k from the first stage).
The parameter vector σ2 can now be obtained as the coefficients of a linear
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regression of fX(ω, σ2) on the term
∑k

p=0 S(ω, ωp) and an intercept. This,
of course, corresponds to minimizing

J(fX , f̂X) =
T−1∑

j=0

[
fX(ωj , σ

2)− f̂X(ωj , σ̂
2)

]2
(46)

where

f̂X(ω, σ̂2) =
k∑

p=0

σ̂2
ωp

S(ω, ωp) +
σ̂2

e

2π
(47)

In practical applications, better results can be obtained by minimizing a
slightly different criterion

(fX , f̂X) =
T−1∑

j=0

[
log{fX(ωj , σ

2)} − log{f̂X(ωj , σ̂
2)}

]2
(48)

Once the parameter vector σ̂
2 is obtained, the system (40)–(41) is completely

solved via standard recursive state space methods.
The above derivation applies for the specific case where the parameters

of the various sinusoids follow IRW processes. Appropriate modifications
are in order when other patterns of behaviour (such as SRW, LLT or DT )
are assumed.

6 MULTIPLE FORECAST COMPARISONS AND

DATA SNOOPING

We have in effect discussed five different methods for estimating models with
strong periodic components viz.

1. Mixed spectrum method of Priestley (Method I)

2. Prony’s autoregressive method (Method II)

3. Truong-Van’s method of amplified harmonics (Method III)

4. Pisarenko’s harmonic decomposition method (Method IV)

5. Dynamic harmonic regression method (Method V)
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It is our intention to attempt an assessment of the comparative forecas-
ting abilities of the various models discussed above via standard empirical
illustrations. The issue of devising formal procedures for comparing and
evaluating forecasts made by competing methods has, of late, been recei-
ving considerable attention. Following the pioneering work of Diebold and
Mariano (1995) and West (1996), multiple forecast comparisons are now re-
cognized as constituting a non-standard inference problem. White (2000)
in particular, cautions against data snooping, which refers to the possibi-
lity of any given forecasting method performing well by mere chance, than
through any intrinsic merit, in a situation where the same data set is used
more than once for purposes of inference or prediction. He also proposes a
so-called reality check test TRC to test the hypothesis that the best model
encountered in a specification search has no predictive superiority over any
given benchmark model. In a later contribution, however, Hansen (2001)
puts forth an alternative test statistic TSPA (superior predictive ability sta-
tistic), which while not uniformly more powerful than TRC , performs better
in most empirically relevant situations, and is less sensitive to the inclusion
of irrelevant or poor alternatives in the specification set. We therefore pro-
pose to use Hansen’s statistic in the evaluation of the forecasting abilities of
the seven alternative methods constituting our specification set.

6.1 Superior Predictive Ability Test (Hansen)

Let the specification set comprise m models indexed by k = 1, 2, . . . , m,
with k = 0 denoting the benchmark model. We denote the 1-period ahead
forecast for period t (made at period (t − 1)) using the k − th method
as F

(k)
X (t) and let L(X(t), F (k)

X (t)) denote a suitable loss function. The
performance of k − th method relative to the benchmark (over our forecast
sample) may now be defined as

δ(k)(t) = L
(
X(t), F (0)

X (t)
)
− L

(
X(t), F (k)

X (t))
)

; t = n + 1, . . . , N (49)

Let the performance vector of the m methods considered (relative to the
benchmark) at time t be denoted as

Ψ(t) =
(
δ(1)(t), δ(2)(t), . . . , δ(m)(t)

)
; t = n + 1, . . . , N (50)
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If µ = E(Ψ(t)) exists, then the null hypothesis may be set up as

H0 : µ ≤ 0 (51)

i.e. the benchmark model is not inferior to any of the models in the specifi-
cation set.

Under certain fairly general assumptions, the expectation vector µ in
(51) is well defined and

√
(N − n)(Ψ − µ) converges in distribution to the

multivariate normal density N(0, Ω), where

Ψ =
(
Ψ(1)

, Ψ(2)
, . . . ,Ψ(m)

)
= (N − n)−1

N∑

t=n+1

Ψ(t) (52)

and Ω is the covariance matrix defined by

Ω = lim
n→∞E

[
(N − n)(Ψ− µ)(Ψ− µ)T

]
(53)

Hansen (2001) defines the studentized statistic

TSPA = max


 max

k=1,2,...,m

√
nΨ(k)

ω̂(k)
, 0


 (54)

where ω̂(k) is a consistent estimator of

ω̂(k) =
[
var

(√
(N − n)Ψ(k)

)]0.5

(55)

and µ̂(k) is a consistent estimate of

µ(k) = E
[
Ψ(k)

]
(56)

Since a precise distribution of Ω is unavailable, operationalizing the test
procedure has to proceed via bootstrapping methods. In our paper, we pro-
pose to follow earlier empirical studies (Sullivan, Timmerman and White
(1999), Hansen and Lunde (2005)) in resorting to the stationary bootstrap
of Politis and Romano (1994). In the present context, the application of this
method requires bootstrap sampling from the vector (Ψ(n + 1), . . . ,Ψ(N))
where Ψ(t), (t = n+1, . . . , N) is as given by (50). Let the typical bootstrap
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vector be denoted by Ψ∗b(t) and denote by ω̂∗(k) the bootstrap estimate of
(55), with µ̂∗(k) the corresponding bootstrap estimate of (56). The distribu-
tion of TSPA in (54) may be approximated by the empirical distribution of
the bootstrap estimate

T ∗b,SPA = max
k=1,...,m

√
n

(
Ψ∗b,(k) − µ̂∗(k)

)
; b = 1, 2, . . . , B (57)

where B is the total number of bootstrapping samples and Ψ∗b,(k) is the
k − th component of the vector Ψ∗b defined as

Ψ∗b =
(
Ψ∗b,(1)

, . . . ,Ψ∗b,(m)
)

= (N − n)−1
N∑

t=n+1

Ψ∗b(t); b = 1, 2, . . . , B

(58)
Let TO,SPA denote the observed value of TSPA (computed from (54) using
the bootstrap estimate ω̂∗,(k) ), then the null hypothesis (51) is rejected if
the p− value of the statistic

p̂SPA = B−1
B∑

b=1

I
[
T ∗b,SPA Â TO,SPA

]
(59)

is small (i.e. less than 0.01 or 0.05, depending on the chosen level of signifi-
cance), and where I[.] is once again the indicator function.

6.2 Statistical Loss Functions

A number of loss functions for forecast evaluation have been suggested in
the literature. As, a priori, there seems to be little ground for choosing
any particular loss function, we select the following two which have seen
extensive use by earlier researchers in the field.

1. RMSE (Root Mean Square Error) =

=

√√√√ 1
N − n

N∑

t=n+1

e2(t/t− 1)
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2. MAPE (Mean Absolute Percentage Error) =

=
(

1
N − n

) N∑

t=n+1

[
1

|X(t)|
]
|e(t/t− 1)|

3. MAXAE (Maximum Absolute Error) =

= max{e(t/t− 1)}N
t=n+1

In the above e(t/t−1) is the one-period ahead forecast error associated
with the model being tested, X(t) is the actual observation at time
t, where n is the number of observations in the training sample, and
(N − n) the number of observations in the forecasting sample.

Additionally, very often, especially for economic time series, forecas-
ting the direction of change becomes an important consideration. We
therefore introduce an additional accuracy measure viz. D (the pro-

portion of times the model correctly forecasts the sign of the series).
The loss function in this case may be defined (following Pesaran and
Timmerman (1992)) as

4. LS (Loss Function for Sign Checking) =

= 1−
(

1
N − n

) N∑

t=n+1

Z(k)(t); k = 1, 2, . . . , m

Z(k)(t) = 1, if X(t)F (k)
X (t) Â 0; Z(k)(t) = 0, otherwise;

t = n + 1, . . . , N

with, as before, X(t) denoting the actual value of the series at time t

and F
(k)
X (t) the one-period ahead forecast made by the k− th method.

Our loss function LS thus measures the proportion of times a given
method makes an incorrect sign prediction.
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7 EMPIRICAL ILLUSTRATION

7.1 Sunspot Data

The first pertains to the standard sunspot data set, Wolfer’s Annual Suns-
pot Series (1701–1955) (see Waldheimer (1961)), often used in time series
research. Since the series indicates presence of a unit root (on the basis of
the Dickey-Fuller and Phillips-Perron tests), we apply our five methods dis-
cussed above, to the first differences of the series. Of the 254 observations
at our disposal, we use 230 as the training sample (i.e. to obtain model
parameter estimates), while the 24 observations at the end are used as the
forecasting sample (i.e. to test the out-of-sample forecasting performance
of each method). For the latter, only one period ahead forecasts are consi-
dered , which are made on the basis of all the information available at the
time of making the forecast, except that the model parameters are fixed at
the values obtained over the training sample. In terms of the terminology
introduced above, N = 254 while n = 230.

In this case, the number of harmonics identified for the different methods
were as follows:

Method I (Priestley-Bhansali Method): 5
Method II (based on Chiu’s Method ): 6

Method III (Truong-Van Method): 4
Method IV (based on Chiu’s Method): 6

Method V (DHR Method): 5

The relevant results are summarised in Table A.1.
Methods I and V both suggest 5 cycles in the data, with periods ran-

ging between 10.05 years to 91.39 years (for Method I) and 9.21 years to
72.77 years (for Method V); Chiu’s method identifies 6 cycles and using this
estimate for Method II we located cycles ranging from 2.69 years to 85.37
years, (with the corresponding range for Method IV being 3.12 to about
62.8 years), while Method III yields cycles in the range 2.02 years to 52.58
years. Thus all five methods indicate that the sunspot data is characterized
by about 4 to 6 cycles, ranging in frequency from 2 to 91 years. Using the
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frequency estimates, obtained for each Method, we proceeded ahead to esti-
mate the various other parameters (amplitudes and phases of the sinusoids
as well as the variance of noise terms) as per the procedures outlined above
for each of the five methods. After computing the out-of-sample forecasts,
we are in a position to evaluate our five alternative forecasting. For this pur-
pose, we resort to Hansen’s Superior Predictive Ability test discussed above.
Following standard practice, we use the Random Walk model (denoted as
Method VI) as an additional benchmark.

Application of Hansen’s superior predictive ability test necessitates much
care in view of the specialized nature of the null hypothesis, in which a set of
models is compared to a given benchmark. Since our interest centers around
getting an idea about the relative forecasting ability of the models, we follow
the strategy adopted by Hansen and Lunde (2005) of calculating the statistic
p̂SPA successively using each of our five models as benchmarks and denote
as p̂SPA; i = I, II, . . . , V I, the value of Hansen’s statistic when the i− th

model is being used as the benchmark. We take the size of the bootstrapping
sample as 10,000 in each case (i.e. B = 10,000). The bootstrapping is done
via the stationary bootstrap of Politis and Romano (1994) (the implemen-
tation procedure is described in detail in Nachane (2001)). This statistic is
calculated for each of each of our four chosen loss functions (viz. RMSE,
MAPE, MAXAE and LS) and for Methods I to VI. The relevant results for
the Sunspots example are presented in Table A.2.

Examination of Table A.2. reveals that the null hypothesis (51) is rejec-
ted only for the random walk forecasts for three loss functions (viz. RMSE,
MAPE and LS). Even for the remaining loss function MAXAE, there is only
acceptance of the null at the margin. Thus we may confidently assert that
all the harmonic regression models considered here comfortably outperform
the näıve forecaster (the only exception is for the Prony method II, which
works out to be the worst on one criterion viz. MAXAE). Only slightly bet-
ter than the random walk is the Prony method (II). Of the other methods,
Methods I and III are at the top followed by Methods V and IV respectively.
That the performance of the DHR method (Method V), explicitly allowing
for time variation in the coefficients, is somewhat inferior to the Priestley-
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Bhansali and Truong-Van methods (Methods I and III) calls for comment.
There could be two possible reasons for this. One relates to the fact that in
the frequency estimation, the DHR method proceeds as if the spectrum were
continuous rather than mixed, as is being done in Method I. This amounts
to ignoring an important distinction feature of deterministic sinusoidal va-
riation. Secondly, Method III only needs to assume the underlying series to
be locally stationary and by making this simplifying assumption this met-
hod may be able to capture features of the data which are evolving slowly
over time, as is likely to be the case with many series in natural sciences.
The DHR method by assuming that the amplitudes and phases of the sinu-
soids are moving as per a GRW (generalized random walk) may be failing
to account for some of the systematic but slowly evolving features of the
sunspot series.

7.2 Index of Industrial Production (Spain)

Our next illustration pertains to an economic time series viz. the monthly
IIP (Index of Industrial Production) in Spain from Jan 1985 to March 2006,
a total of 255 observations. Once again the data were taken in first difference
form, as both the Dickey-Fuller and Phillips-Perron tests indicated presence
of unit roots.

For Spanish IIP , the number of harmonics identified by each method is
presented below:

Method I (Priestley-Bhansali Method): 6
Method II (based on Chiu’s Method): 6

Method III (Truong-Van Method): 3
Method IV (based on Chiu’s Method): 6

Method V (DHR Method): 4

We summarise the results in Table A.3. The longest cycle in the data
seems to be 10.5 years as identified by Method III, whereas the shortest
cycle (detected by Method II) is about 2.4 months, very close to the Nyquist
frequency. Table A.3. presents the sinusoidal frequencies estimated by each
of our five models. Once again, we compute the Hansen p̂SPA statistic for
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each of each of our four chosen loss functions (viz. RMSE, MAPE, MAXAE
and LS) and for our five harmonic regression methods as well as for Method
VI (random walk). The relevant results for the Spanish IIP data set are
presented in Table A.4.

Here too, all the methods consistently out- perform the random walk
(though Method II (Prony) is once again an exception). Method IV (Pisa-
renko) performs somewhat unremarkably, being only better than the Prony
method and the random walk. Here the DHR method (Method V) shows its
strength in forecasting economic time series, over the other methods. This,
of course, is hardly surprising, since the DHR method is being suggested spe-
cifically in the context of the UC (Unobserved Components) model, which is
usually postulated for economic series, its applicability in other fields being
open to question.

8 CONCLUSIONS

The occurrence of periodicities is a characteristic feature of time series in
both natural and social sciences. However, unraveling such periodic features
from observed records is a difficult task, which has attracted a great deal of
attention over the years. There have emerged in the statistical literature va-
rious approaches to deal with this problem, both in the time and frequency
domains. One important group of methods viz. those based on harmonic
regression, are the focus of our paper. We consider five specific methods in
this class (see Section 1 for a detailed description). It should be noted that a
common feature of four of the methods (Methods I to IV) considered in the
paper, is an attempt to preserve as far as possible the stationarity assump-
tion, and focus on the nonlinear aspects via a trigonometric approximating
function in the standard spirit of Fourier analysis. Hence these approaches
typically adopt a two-stage procedure in which firstly any non-stationarity,
apparent in the original data, is sought to be removed, and the transformed
series is modeled by alternative nonlinear trigonometric models. In prac-
tice, it would be extremely difficult to disentangle the separate effects of
nonstationarity and nonlinearity, given that most of the tests for nonlinea-

27



rity are crucially dependent on the assumption of stationarity. The typical
null being that the series under consideration is both linear and stationary,
a rejection could be either in the direction of nonlinearity, nonstationarity
or both. Recent attempts to separate nonlinearity and nonstationarity via
so-called phase scrambled bootstrap methods (Aparicio (1998), Kugimutzis
(2001) and Barnett and Wolff (2005)) have not been very successful. Method
V attempts to meet this challenging task by attempting to model both the
nonlinear and possibly nonstationary features of the data simultaneously,
by making the coefficients time varying in a deterministic fashion. It is as
well to remember that none of the five methods can claim to deal with all
types of nonstationarity likely to be encountered in practice. In particular,
the important type of nonstationarity arising from the presence of unit roots
cannot be accommodated directly. A pragmatic approach would then be to
remove any unit roots indicated by statistical tests, and then apply these
methods to the residual component of the series. This approach may not be
fully satisfying, but none other seems at the moment, available.

After a concise review of the alternative methods, we consider their ap-
plication to two empirical illustrations, one from astronomy (sunspots data),
the other from economics (Spanish IIP). These two empirical examples seem
to indicate that the methods yield reasonable results in real-world situations.
Our approach is slightly different from the standard practice of confronting
each method with observed data, and then ranking the methods on the
basis of various data congruence tests. As is well known, high in-sample
forecasting ability does not guarantee success in making out of sample fo-
recasts. However in making multiple forecast comparisons, the problem of
data snooping has to be guarded against as pointed out recently (White
(2000) and Hansen (2001)). We therefore compute Hansen’s p̂SPA statistics
with a view to assess the forecasting ability of the alternative methods that
we have examined in this paper. The search for superior forecasting methods
is an endless one. This article has tried to project the potentiality of a group
of procedures for forecasting series with strong periodic tendencies. Of the
five new methodologies presented here, Methods I, III and V seem to hold
interesting promise for future applications, the first two mainly in natural
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sciences applications, and the last for economic data. Needless to say, our
conclusions are circumscribed by the specific data sets that we consider here,
and at the moment can only be regarded as highly tentative. Only greater
experience over more data sets can indicate the relative superior forecasting
ability, or otherwise, of these methods vis-à-vis each other, as well as over
other established methods.
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Table A. 1: Harmonic Frequencies for Sunspot Data.

Method I Method II Method III Method IV Method V

0.0687 0.0736 0.1195 0.1083 0.0863
0.1164 0.3682 0.5375 0.2874 0.1079

Frequencies 0.2258 0.4172 0.6280 0.4561 0.2840
0.5653 0.5645 3.1082 0.8926 0.3759
0.6251 2.2089 — 1.4571 0.6819

— 2.3317 — 2.0153

Note:

In Methods II and IV, the number of harmonics is estimated via Chiu’s method

Table A. 2: Forecasting Comparisons using Hansen’s Superior Predictive
Ability (SPA) Test for Sunspot Data

Benchmark p̂SPA(i) p̂SPA(i) p̂SPA(i) p̂SPA(i)
Method RMSE MAPE MAXAE LS

Method I 0.7219 0.6632 0.6203 0.4821
Method II 0.0738 0.05380 0.0019** 0.0669

Method III 0.6854 0.7302 0.8138 0.3408
Method IV 0.1348 0.2146 0.1453 0.3778
Method V 0.5768 0.4193 0.4704 0.3576

Method VI 0.0473* 0.0135* 0.0918 0.0082**

Notes:

(i) For definitions of various methods see Section 1. Method VI is the random walk

model.

(ii) (*) and (**) denote significance at 5% and 1% respectively

(iii) p̂SPA(i); i = I, II, . . . , V I denote the values of Hansen’s test statistic for the SPA

test , when the i− th method is considered as the benchmark method.
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Table A. 3: Harmonic frequencies for Spanish IIP Data

Method I Methods II Method III Methods IV Method V

0.0843 0.1852 0.0533 0.2359 0.1211
0.2849 0.3435 0.3946 0.4462 0.2653

Frequencies 0.4712 0.5106 0.8514 0.5352 0.4366
0.6538 0.7680 — 0.9111 1.5714
1.0288 1.9059 — 1.4803 —
2.51 2.6837 — 2.1562 —

Note:

In Methods II and IV, the number of harmonics is estimated via Chiu’s method

Table A. 4: Forecasting Comparisons using Hansen’s Superior Predictive
Ability (SPA) Test for Spanish IIP Data

Benchmark p̂SPA(i) p̂SPA(i) p̂SPA(i) p̂SPA(i)
Method RMSE MAPE MAXAE LS

Method I 0.6181 0.5605 0.4922 0.3218
Method II 0.0613 0.1945 0.0026** 0.0436*

Method III 0.4710 0.5394 0.7026 0.3153
Method IV 0.2493 0.2801 0.1857 0.4126
Method V 0.8026 0.8492 0.6471 0.4936

Method VI 0.0460* 0.0389* 0.0826 0.0067**

Notes:

(i) For definitions of various methods see Section 1. Method VI is the random walk

model.

(ii) (*) and (**) denote significance at 5% and 1% respectively

(iii) p̂SPA(i); i = I, II, . . . , V I denote the values of Hansen’s test statistic for the SPA

test , when the i− th method is considered as the benchmark method.
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