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Harmonic Stability in Power Electronic-Based

Power Systems: Concept, Modeling, and Analysis
Xiongfei Wang , Senior Member, IEEE, and Frede Blaabjerg , Fellow, IEEE

Abstract—The large-scale integration of power electronic-
based systems poses new challenges to the stability and power
quality of modern power grids. The wide timescale and
frequency-coupling dynamics of electronic power converters tend
to bring in harmonic instability in the form of resonances or
abnormal harmonics in a wide frequency range. This paper pro-
vides a systematic analysis of harmonic stability in the future
power-electronic-based power systems. The basic concept and
phenomena of harmonic stability are elaborated first. It is pointed
out that the harmonic stability is a breed of small-signal stability
problems, featuring the waveform distortions at the frequencies
above and below the fundamental frequency of the system. The
linearized models of converters and system analysis methods are
then discussed. It reveals that the linearized models of ac–dc
converters can be generalized to the harmonic transfer func-
tion, which is mathematically derived from linear time-periodic
system theory. Lastly, future challenges on the system modeling
and analysis of harmonic stability in large-scale power electronic
based power grids are summarized.

Index Terms—Harmonic stability, damping, power electronics,
power systems, resonance.

I. INTRODUCTION

T
HE LEGACY power grids that are dynamically dom-

inated by electrical machines are evolving as power

electronic based power systems, driven by the large-scale

adoption of electronic power converters for renewable gen-

erations and energy-saving applications [1], [2]. This radical

transformation paves the way towards modern power grids

with high flexibility, sustainability and improved efficiency,

yet it also poses new challenges to the stability and power

quality of the power system [3].

Power converters are commonly equipped with a multiple-

timescale control system for regulating the current and power

exchanged with the power grid [4]. The wide timescale con-

trol dynamics of converters can result in cross couplings with

both the electromechanical dynamics of electrical machines

and the electromagnetic transients of power networks, which
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may lead to oscillations across a wide frequency range [5], [6].

This issue becomes severe with the ever-increasing penetration

of power electronic based systems. A number of incidents

have been reported with the grid integration of renewables

and high-speed trains [7]–[9], where the undesired harmonics,

inter-harmonics, or resonances caused disruption to the power

supply.

There have been growing interests in identifying the causes

of abnormal harmonics and resonances in the power elec-

tronic based power systems. It is found that the small-signal

dynamics of converters tend to introduce a negative damp-

ing in the power system, which can be in different frequency

ranges, depending on both the specific controllers of convert-

ers and power system conditions [10]–[15]. For instance, the

time delay of the digital control system used with convert-

ers adds a negative damping in the high frequency range [10],

while the Phase-Locked Loop (PLL) of inverters [11], [12],

or the constant power control of rectifiers [13], brings a neg-

ative damping in the low frequency range. Furthermore, the

frequency-coupling mechanism of the switching modulation

and the sampling process can also lead to a negative damping

in the high frequency range [14], [15]. The negative damp-

ing tends to destabilize the natural frequencies of the power

system, e.g., the LC resonance frequencies of power fil-

ters and cables, provoking the so-called harmonic instability

problem, which is also named as the resonance instability [16].

Moreover, the harmonic instability phenomena will further

turn into the critically damped resonances or under-damped

(inter-) harmonics, if the net damping of the electrical system

is non-negative [17], [18].

A wide variety of linearized models of power converters can

be used for the harmonic stability analysis [19]–[24]. These

models fall into two categories, depending on the considered

operating points (or trajectories) of the converter. The first

category is the averaged model based on the moving aver-

age operator, where only the dc operating point is considered,

and the switching modulation process is implicitly neglected

by averaging system variables over one switching period.

Thus, the moving averaged model can only predict the con-

verter dynamics below half the switching frequency [19], [20].

The second category is the multiple-frequency model in

different forms, e.g., the describing function model [21],

the multiple-frequency averaging model [22], [23], and the

Harmonic State-Space (HSS) model [24]. All the multiple-

frequency dynamic models are developed based on the princi-

ples of harmonic balance and describing function [23], and

the Linear Time-Periodic (LTP) system theory [24]. Those
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models capture the frequency coupling dynamics of multiple

time-periodic operating trajectories, and thus provide accurate

assessments on the harmonic stability, yet their Multiple-

Input Multiple-Output (MIMO) nature tends to complicate the

system stability analysis with the high computational power

as a demand.

There are two approaches for the system-level analysis of

harmonic stability. The first method is the eigenvalue analy-

sis based on the state-space model in the time-domain [25],

which is commonly used to analyze electromechanical oscil-

lations in the legacy power grids. The superior features of this

method are the identifications of the oscillation modes and the

participation factors of system variables [26]. Yet, due to the

wide timescale dynamics of converters, the electromagnetic

dynamics of power networks have to be included in the state-

space model, which significantly increases the system order

and thus requires high computational power [27]. The sec-

ond type is in the frequency-domain, which is also named

as the impedance-based analysis. In the method, the dynam-

ics of converters are extracted at their terminals by using

frequency-domain transfer functions, which are then translated

to electrical impedances, and thus the system stability can be

analyzed by means of the electric circuit theory [28]. The

impedance-based approach was earlier developed to analyze

the interactions of converters in dc power systems [29]. Its

main advantage lies in the black-box modeling of converters,

which enables to predict the system dynamics without the prior

knowledge of system parameters. Moreover, the impedance-

based method predicts the system stability at the terminals of

converters and thus the contribution of each converter to the

system stability can be identified. However, it may also lead to

an inaccurate stability prediction when there are Right Half-

Plane (RHP) poles hidden in the measured or the estimated

impedances [30], [31].

This paper elaborates first the harmonic stability concept

and phenomena based on the converter-grid interaction. The

unique features of the harmonic stability problem in com-

parison to the conventional small-signal stability issues are

pointed out. Then, linearized modeling methods of convert-

ers and system analysis tools for the harmonic stability

of converter-based systems are discussed. Lastly, challenges

on the system-level modeling and analysis of the harmonic

stability conclude this paper.

II. HARMONIC STABILITY CONCEPT AND PHENOMENA

This section presents first a historical review of the harmonic

stability in traditional ac-dc power systems, and then elabo-

rates the basic concept and phenomena of harmonic stability

in future power electronic based power grids.

A. Historical Review

The harmonic stability problem is not new, and it was ear-

lier reported in the commissioning stage of the High Voltage

Direct Current (HVDC) Cross-Channel link in 1961 [32].

That HVDC system was based on the Line-Commutated

Converters (LCCs), where the voltage distortion caused by

a high grid impedance, i.e., a low Short-Circuit Ratio (SCR)

Fig. 1. General diagram of a grid-connected VSC and its equivalent circuit.
(a) Grid-connected VSC. (b) Ideal current source equivalent. (c) Equivalent
circuit with control output admittance.

grid, leads to asymmetric firing angles for the LCC,

which consequently distorts the grid current with the unex-

pected harmonics, and forms a positive feedback loop with

the grid impedance [33], [34]. The harmonic instability of

LCC-HVDC system can be exaggerated by the core saturation

of the converter transformer [35]. A second-order harmonic

instability resulting from the transformer core saturation has

been well discussed in [36].

It is worth mentioning that the characteristic of the ac

system impedance is important for the harmonic stability of

the LCC-HVDC systems [34]. The system is more prone to

the harmonic instability in the high-impedance (the low SCR)

grid, where the high voltage harmonics are introduced at the

input of the firing-angle control system, and the frequency-

coupling nature of the firing angle control distinguishes the

harmonic instability from the instability of low-frequency con-

trol loops [33]. Moreover, the frequency transformation of

ac-dc converters translates the oscillation component (fdc) at

the dc-side into two components of the frequencies f1 ± fdc at

the ac-side, where f1 is the grid fundamental frequency. These

two components can be seen as the sideband components of

the fundamental frequency, which can also cause the harmonic

instability when interacting with the ac system impedance.

B. Harmonic Stability Concept

Unlike traditional ac-dc power systems, the self-

commutated Voltage-Source Converters (VSCs) are

dominantly found in the present power electronic based

power systems, e.g., renewable power plants, traction power

networks, and microgrids. In these systems, the harmonic

stability have more different forms than the LCC-HVDC

systems, due to the multiple-timescale control dynamics of

VSCs [3]–[5].

Fig. 1 illustrates a general diagram of a grid-connected VSC

and the equivalent circuits. Ideally, the VSC can be equivalent

as a current source, as shown in Fig. 1(b), where the passive

LC resonance can be triggered by either the current source

(parallel resonance) or the grid voltage (series resonance).

However, due to the finite bandwidth of the control system

of the VSC, there is a control output admittance added in par-

allel with the current source, as shown in Fig. 1(c). Depending
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Fig. 2. A mapping between the forms of harmonic instability and the specific control loops of VSCs.

on the used controller, the control output admittance may

have a positive, zero, or even negative real part in different

frequency ranges, which leads to the damped/under-damped,

critically damped, or exponentially amplified resonances in the

VSC system. Hence, the harmonic instability differs from the

passive harmonic resonance in its dependence on the control

dynamics of the converters.

Fig. 2 establishes a mapping between the forms of har-

monic instability to the cascaded control system of the

VSC, including the outer loops for the Direct Voltage

Control (DVC) and the Alternating Voltage Control (AVC),

the PLL for synchronizing the VSC to the grid, and the

inner Alternating Current Control (ACC) loop. These control

loops are designed with different bandwidths, which interact

with the grid impedance, leading to the harmonic instability

phenomena from the sub-synchronous frequencies to multiple

kilohertz (kHz).

Differing from the LCC, there are two sidebands (frequency-

coupling dynamics) generated from VSCs. The first sideband

is of the fundamental frequency, which is caused by the

frequency transformation mechanism of the dc-ac conversion

and of the used Park (dq-) transformation [5]. The second

sideband is of the switching frequency of the VSC or of

the Nyquist frequency of the digital control system, result-

ing from the Pulse-Width Modulator (PWM) or the sampling

process [14]. Consequently, two forms of sideband-harmonic

instability can be provoked in the VSC-based power system:

1) Sideband oscillations (f1) of the fundamental frequency,

which are due to the asymmetrical dynamics of the PLL

and outer control loops in the dq-frame [5]. For VSCs

operating as inverters, the PLL introduces a negative

damping that only affects the q-axis dynamics, since

only the q-axis voltage is controlled within the PLL for

the phase detection [11], [12]. In contrast, the DVC adds

a negative damping on the d-axis dynamic when the

VSCs operate as rectifiers owing to the constant power

load characteristic at the dc-side [13]. The asymmetri-

cal oscillations at the frequency fdq, either on the q-axis

or on the d-axis, can thus be brought in the dq-frame,

which causes the sideband oscillations at the frequencies

f1 ± fdq in the stationary phase domain [11]. The occur-

rence of this asymmetrical oscillation is dependent on

the strength of the ac system. The power grid with a low

SCR is more prone to the asymmetrical oscillation [12].

It is worth noting that the frequency component, f1 − fdq,

becomes a sub-synchronous oscillation, when the oscil-

lation frequency fdq is below 2f1, and it is in the positive

sequence for f1 − fdq > 0, and in the negative sequence

for f1 − fdq < 0. In the case that the sideband oscil-

lations f1 ± fdq are both in the positive-sequence, they

cannot be captured by the sequence-domain model [50].

The sub-synchronous oscillation component can further

excite the natural frequencies of the shaft of the electri-

cal machines, leading to the torsional oscillations [37].

When fdq < 2f1, the frequency component, f1+fdq, leads

to a near-synchronous oscillation around 2f1 [5].

2) Sideband oscillations (fs) of the switching frequency,

which are caused by the frequency-coupling dynam-

ics of the PWM and the sampling process. It has been

recently shown that the small-signal (sinusoidal) pertur-

bation component introduces an additional sideband in

the low frequency range [14], [38]. The lower frequency

component of the small-perturbation-induced sideband

may interact with the inner ACC loop, resulting in the

sideband-harmonic instability, which has been found in

the paralleled VSCs with the asynchronous carriers [14].

A similar harmonic instability phenomenon has also

been seen in the dc systems, where the interconnected

dc-dc converters with different switching frequencies

can interact with each other, resulting in beat frequency

oscillations [39]. The other case is the negative damp-

ing added above the Nyquist frequency by the ACC

loop with the reduced time delay [15], and the negative

damping may destabilize the LC resonance frequency

above the Nyquist frequency. This sideband oscillation is

due to the frequency coupling dynamics of the sampling

process.

In addition, the harmonic instability may also result from

the wideband inner ACC loop, where the time delay can also

add a negative damping below the Nyquist frequency, which
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Fig. 3. A power-electronic-based power system with three paralleled inverters and a grid power supply. (a) Hardware picture. (b) Circuit schematic.

can then destabilize the system with the harmonic-frequency

oscillations [10], [17]. Differing from the sideband-harmonic

instability, no frequency-coupling small-signal dynamics are

involved in this case. Yet, the inherent nonlinearities of

the ACC loop, such as the anti-windup of the controller

and the over-modulation of the PWM tend to dampen the

exponentially amplified oscillation as (inter-) harmonics and

resonances.

Hence, the harmonic stability is basically a breed of small-

signal stability, yet it features the waveform distortions at the

frequencies above and below the grid fundamental frequency,

which can come from the interactions of the wideband control

loops [17], or result from the frequency-coupling dynamics

of the fundamental frequency [11], of and the switching and

Nyquist frequencies [14], [15].

C. Harmonic Instability Phenomena

To see the phenomena of harmonic instability in the power-

electronic-based power system, a test setup has been built with

three paralleled VSCs and a Chroma grid simulator, as shown

in Fig. 3. Fig. 3(b) depicts the circuit schematic of the system.

The paralleled VSCs are equipped with identical controller and

circuit parameters, and their carrier waves within the PWM

are intentionally synchronized, except in the case shown in

Fig. 6. The constant dc-link voltages powered by the separate

dc power supplies are configured with three paralleled VSCs

in order to avoid the common mode circulating current.

Fig. 4 shows the measured waveforms for the dynamic effect

of the PLL on three paralleled VSCs. Two operating scenarios

with the different SCRs are tested, yet the same PLL is used

in both cases. The per-phase output voltage of the grid simu-

lator and per-phase VSC currents with the Fourier spectra are

shown. It is evident that the VSC currents are distorted with

two inter-harmonic components even under the sinusoidal grid

condition. The two abnormal harmonics are at the frequencies

above and below the fundamental frequency, which indicate

the sideband oscillations of the fundamental frequency: f1±fdq,

where fdq is the PLL-induced oscillation frequency in the

dq-frame [12]. As the near-synchronous oscillation frequency,

f1 + fdq, is above 2f1, the sub-synchronous oscillation is in the

negative sequence, i.e., f1 − fdq < 0. By comparing Fig. 4(b)

with Fig. 4(a), it is also noted that given a PLL bandwidth,

the reduced SCR shifts the resulting sideband oscillations to

the lower frequency range.

Fig. 5 presents the harmonic instability phenomenon caused

by the interactions between the inner ACC loops of the three

paralleled VSCs. In the test, the PLLs used with VSCs are

tuned with a sufficiently low bandwidth in order to avoid the

sideband harmonics shown in Fig. 4. The bandwidth of the

ACC loop is increased from fs/20 to fs/15 at the time instant

of Ti. The control bandwidth of fs/15 was designed for a sta-

ble ACC loop with the single grid-connected VSC. However,

it is clear that the three paralleled VSCs become unstable with

the bandwidth of fs/15. This ACC-induced harmonic instabil-

ity problem has been well studied recently. In this case, the

equivalent grid impedance for each single VSC is increased

with the number of the paralleled VSCs, which tends to shift

the passive LC resonance frequency to the frequency range

where the negative damping is added by the time delay of the

ACC loop [40].

Fig. 6 shows the measured result for the sideband-harmonic

instability of the switching frequency, which occurs in the

two paralleled VSCs with asynchronous carries [14]. Differing

from Figs. 4 and 5, both the VSC output currents and the cur-

rent injected from the Point of Common Coupling (PCC) to

the grid are shown. From Fig. 6(a), it is interesting to see that

the current injected in the grid, i.e., the sum of the VSC output

currents, is kept sinusoidal, whereas the VSC output cur-

rents are distorted with a high frequency (2.75 kHz) harmonic

component. Yet, when the carriers of VSCs are intentionally

synchronized, the VSC output currents become sinusoidal, as

shown in Fig. 6(b). This sideband oscillation is induced by the

additional sideband of the PWM [38], when accounting the

perturbation frequency component into the modulating refer-

ence. Therefore, unlike the harmonic instability demonstrated

in Figs. 4 and 5, this PWM-induced sideband oscillation

cannot be predicted by means of conventional state-space
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Fig. 4. Measured waveforms for the sideband (f1) harmonic instability
induced by the PLL dynamic with the different Short-Circuit Ratios (SCRs).
(a) SCR = 8.4. (b) SCR = 4.2.

Fig. 5. Measured waveforms for the harmonic instability resulted from the
current control interactions of the paralleled VSCs, where the bandwidth of
the Alternating Current Control (ACC) loop is increased at the time Ti.

averaging models of VSCs. Instead, the multiple-frequency

small-signal models need to be used.

III. LINEARIZED MODELING OF CONVERTERS

The linearized modeling of electronic power converters is

critical for revealing the causes of harmonic instability in

power electronic based power systems. This section elaborates

first the dynamic properties of power converters, and then dis-

cusses the basic procedure and adequacy of typical modeling

methods.

Fig. 6. Measured waveforms of the sideband (fs) harmonic instability
caused by the asynchronous carriers of the PWM. (a) Asynchronous carriers.
(b) Synchronous carriers [14].

A. Dynamic Properties of Converters

Power converters are nonlinear and time-varying dynamical

systems, where the nonlinearity is due to the dynamically vary-

ing duty cycle (control input of the modulator) with the closed-

loop control system, and the time variance results from the

switching modulation process and the time-periodic operating

trajectories of ac systems [41], [42]. As for a power converter

operating with a predefined switching function, the system is

linear but time varying. However, if the switching modulation

process can be neglected and the ac operating trajectory can be

transformed as dc operating point in the dq-frame, the ac-dc

converter will be nonlinear but time-invariant.

On the other hand, power converters are also hybrid systems

of continuous dynamics of passive power components and

discrete events of switching power semiconductor devices.

Thus, there are two general ways to characterize the dynam-

ics of power converters [43], i.e., the sampled-data model

for extracting discrete-time dynamics of converters [44], and

the continuous dynamic model based on the averaging

techniques [19], [22].

Fig. 7 outlines the commonly used modeling methods

for ac-dc converters, e.g., VSCs, and their basic modeling

procedures and dynamic properties. First, the converter is

represented by a switching model by assuming the ideal

switching behaviors of power semiconductor devices. Then,
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Fig. 7. Linearized modeling methods for ac-dc converters and their modeling procedure. fs: switching frequency; LTI: Linear Time-Invariant.

three different approaches can be adopted for obtaining the

continuous dynamic models of converters: 1) the state-space

averaging approach based on the moving average operator,

2) the generalized averaging method, and 3) the HSS model.

The modeling adequacy and constraints of these three methods

are discussed as follows, and it is revealed that the lin-

earized models obtained from these methods can be unified

by the Harmonic Transfer Function (HTF) concept [9], [45].

The HTF is a MIMO transfer function matrix, which is Linear

Time-Invariant (LTI) yet extracts the cross coupling dynamics

between the input and output vectors (with multiple frequency

components) of an LTP system [9]. It also shows that the

dq-frame LTI model of balanced three-phase converters is

mathematically equivalent to a 2nd-order HTF model [11].

B. State-Space Averaging (Moving Average)

The state-space averaging approach was first developed for

dc-dc power converters, where the switching ripples are fil-

tered out by applying the below moving average operator to

the state variables of the converter [19].

x̄(t) =
1

T

∫ t

t−T

x(τ )dτ (1)

where T = 2π/ωs, ωs is the switching frequency of the con-

verter. The averaged models of dc-dc converters are nonlinear

but time invariant with the defined dc operating points. The

Taylor series expansion can then be applied to obtain the LTI

model.

In contrast, the averaged models of ac-dc converters are

still nonlinear and time varying, due to the time-periodic

operating trajectory of the ac system [42]. Moreover, the

averaged models based on the moving average operator are

merely adequate for the frequencies below half the switching

frequency [19]. Three modeling approaches have been devel-

oped for linearizing the state-space averaging models of ac-dc

converters.

1) DQ-Frame Model for Balanced Three-Phase Systems: In

balanced three-phase systems, the time-periodic operating tra-

jectory can be transformed as the dc operating point by using

the Park transformation [46]. Thus, the averaged models for

the balanced three-phase converter systems can be transformed

into nonlinear but time-invariant models in the dq-frame [47],

which can then be, similarly to dc-dc converters, linearized

around the defined dc operating point. Yet, it is worth noting

that the Park transformation not only enables to obtain time-

invariant models for balanced three-phase ac-dc converters,

but also accounts for the frequency coupling dynamics (i.e.,

the sideband oscillations) of the fundamental frequency by

using real space vectors. The frequency coupling dynamics are

caused by either the inherent frequency transformation mech-

anism of ac-dc converters [42], or the asymmetrical dq-frame

control dynamics of the PLL (q-axis), the DVC (d-axis) and

AVC (q-axis) loops [48], [49], as shown in Fig. 2.

2) Harmonic Linearization Method: Alternatively, the LTI

model of ac-dc converters can also be obtained by using

the harmonic linearization method [27], [50]. The approach is

based on the principle of harmonic balance and the describing

function method [51]. As illustrated in Fig. 7, the phase-

domain state-space averaging model, which is nonlinear and

time varying, is linearized directly by superimposing with two

sinusoidal perturbations: one perturbation is in the positive

sequence and the other is in the negative sequence [27]. Then,

the Fourier analysis is applied to the output and the compo-

nents at the perturbation frequency are extracted in order to

formulate the LTI transfer function model in the frequency

domain.

Unlike the dq-frame LTI model, the model developed by

the harmonic linearization approach is in the sequence domain,

and there is no need to transform the model into a nonlinear but

time-invariant system. However, the cross-coupling dynam-

ics between the sequence components are overlooked [50],

which fails to characterize the frequency-coupling dynam-

ics of ac-dc converters and leads to the inaccurate stability
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prediction [11], [52]. Moreover, in the balanced three-phase

systems, the frequency-coupling nature of ac-dc converters

may not necessarily cause the negative-sequence component,

which will be elaborated in details in the following.

3) Alpha-Beta-Frame Model for Balanced Three-Phase

System: Capturing the frequency-coupling (sideband) oscil-

lations of the fundamental frequency is thus critical for lin-

earized models of ac-dc converters. The dq-frame LTI model

accounts for the frequency-coupling dynamics using a 2nd-

order tensor (a 2×2 matrix) in an orthogonal coordinate [53].

Yet, it does not reveal the coupled component and their cross-

coupling dynamics for a given input vector. Thus, a frequency-

coupling model in the phase domain (the αβ-frame) is recently

proposed in [11]. The model is derived from the dq-frame

model based on complex space vectors and complex transfer

functions [54]. Yet, it shows the frequency-coupling rela-

tionship between the asymmetrical dq-frame model and its

equivalent in the αβ-frame.

Considering a general dq-frame model for a balanced three-

phase converter, which is given by the transfer function matrix:
[

yd

yq

]

= Gdq(s)

[

ud

uq

]

=

[

gdd(s) gdq(s)

gqd(s) gqq(s)

][

ud

uq

]

(2)

where [ud uq]T and [yd yq]T denote the real space vectors for

the input and output of the dq-frame model, respectively.

By the help of complex space vectors and complex transfer

functions [54], the dq-frame model can be represented by [11]
[

ydq

y∗
dq

]

=

[

G+(s) G−(s)

G∗
−(s) G∗

+(s)

][

udq

u∗
dq

]

(3)

where udq and ydq are complex forms of the real space vec-

tors [ud uq]T and [yd yq]T, respectively, i.e., udq = ud + juq,

ydq = yd + jyq. u∗
dq and y∗

dq are the complex conjugates of udq

and ydq. G+(s) and G−(s) are the complex transfer functions

derived from (2):

G+(s) =
gdd(s) + gqq(s)

2
+ j

gqd(s) − gdq(s)

2

G−(s) =
gdd(s) − gqq(s)

2
+ j

gqd(s) + gdq(s)

2
(4)

G∗
+(s) and G∗

−(s) are the complex conjugates of G+(s) and

G−(s), respectively.

As for the symmetrical dq-frame model, where

gd(s) = gdd(s) = gqq(s), gq(s) = −gdq(s) = gqd(s) (5)

The complex equivalent of (3) is then simplified as [50]

ydq = G(s)udq, G(s) = gd(s) + jgq(s) (6)

where the complex transfer function G(s) facilitates the anal-

ysis with the Single-Input Single-Output (SISO) system tools,

and it also reveals the frequency translation relationship

between the symmetrical dq-frame model and its αβ-frame

equivalent, i.e.,

yαβ = G(s − jω1)uαβ (7)

Hence, there is no frequency-coupling dynamics involved with

the symmetrical dq-frame model.

Following the frequency translation relationship given

in (7), the αβ-frame equivalent for the asymmetrical dq-frame

model can be derived as [11]
[

yαβ

ej2ω1ty∗
αβ

]

=

[

G+(s − jω1) G−(s − jω1)

G∗
−(s − jω1) G∗

+(s − jω1)

][

uαβ

ej2ω1tu∗
αβ

]

(8)

Compared to (7), it is evident in (8) that a frequency-coupling

term at the frequency 2ω1 − ω is generated by the asym-

metrical dq-frame model, given an input at the frequency ω.

Hence, even in balanced three-phase converter systems, there

is a frequency-coupling mechanism introduced by the asym-

metrical dynamics in the dq-frame. The input component of (8)

at the frequency ω may be external disturbances at the dc-

or ac-side [55], or may result from the internal oscillations

of the PLL and the outer control loops [11]–[13], [48]–[50].

Moreover, for the balanced three-phase ac-dc converters, the

negative-sequence component can only be introduced when

ω > 2ω1. The sequence-domain model cannot predict the

frequency coupling term when ω < 2ω1. Yet, this fact is

overlooked in the conventional sequence-domain model. In

addition, the transfer function matrix given in (8) is a 2nd-order

HTF, which is itself LTI yet captures the frequency-coupling

dynamics of an LTP system [9], [45].

C. Multiple-Frequency Model

From the above discussions, it can be seen that the balanced

three-phase converter systems can be accurately modeled

either by a 2nd-order transfer function matrix in the dq-frame,

or by a 2nd-order HTF in the αβ-frame. However, for the

unbalanced three-phase converter systems, more frequency-

coupling terms need to be considered, which are corresponding

to the positive-sequence and negative-sequence components

of the ac system. Instead of the dual-frequency model given

in (8), the multiple-frequency modeling approach is required

to capture the cross-coupling dynamics between those compo-

nents.

There have been two general multiple-frequency modeling

methods developed for unbalanced three-phase systems,

which are the generalized averaging method [22], [23], also

known as the dynamic phasor [56]–[58], and the HSS

model [9], [24], [45], [59]. Both methods are based on the

truncated Fourier series and the multiple-input describing

function [51], [60], and their difference lies in how to

transform the discrete switching events into a continuous

dynamic model.

1) Generalized Averaging and Dynamic Phasor: The gen-

eralized averaging method was earlier introduced to capture

the dynamic of the switching-frequency component for dc-

dc converters [22]. In the approach, a time-varying Fourier

coefficient is defined as given below:

〈x〉k(t) =
1

T

∫ t

t−T

x(τ )e−jkωsTdτ (9)

Based on this operator, two Fourier coefficients can be derived

for dc-dc converters, i.e., k = 0 representing the dc com-

ponent, which is the same as the moving average operator



WANG AND BLAABJERG: HARMONIC STABILITY IN POWER ELECTRONIC-BASED POWER SYSTEMS: CONCEPT, MODELING, AND ANALYSIS 2865

given in (1), and k = 1 that denotes the Fourier coefficient of

the switching-frequency ac component [23]. The latter Fourier

coefficient (i.e., k = 1) is a complex vector expressed in

the dq-frame rotating at the switching frequency. Thus, the

obtained multiple-frequency averaged model is nonlinear but

time-invariant, due to the well-defined operating point for the

dq-frame complex vector. Two equations are formulated to

characterize the multiple-frequency dynamics [22]:

d〈x〉k(t)

dt
=

〈

dx

dt

〉

k

(t) − jkωs〈x〉k(t) (10)

〈xy〉k =
∑

i

〈x〉k−i〈y〉i (11)

The generalized averaging operator has also been extended

to model the single-phase and unbalanced three-phase elec-

trical systems [56]–[58], where the time-varying Fourier

coefficients of the positive-sequence and negative-sequence

components are extracted, which are also named as dynamic

phasors [57]. The cross couplings between the sequence com-

ponents can be captured by (11). Unlike the state-space

averaging model [46], which is nonlinear and time varying, the

dynamic phasor model is time invariant in multiple reference

(dq-) frames. On the other hand, the dynamic phasor model

is different from the multiple-reference-frame model [61],

where the cross couplings between different quantities are

overlooked [56].

For linearization, the small-signal perturbations are imposed

on the equilibrium points of dynamic phasors [60], where the

frequency-coupling dynamics among the variables in different

dq-frames can then be modeled by following the transfor-

mation from (2) to (8). Consequently, a higher-order HTF is

established for the unbalanced three-phase ac-dc converters.

Besides the dynamic phasors for the sequence components,

the higher-order harmonic interactions of ac-dc converters

can also be accounted by the generalized averaging oper-

ator, which are known as the extended harmonic domain

model [62], [63]. However, in those methods, the converter

control dynamics are overlooked, i.e., only the converter with

a predefined modulator, which is essentially an LTP system,

is modeled [64].

2) HSS Method: The HSS method was originally developed

for analyzing the dynamics of helicopter blades [45], and was

later applied to deal with the harmonic stability of locomotive

inverter systems [9]. The core idea of the HSS is to establish

an analogy to the LTI state-space model for LTP dynamic

systems, which is achieved by introducing an Exponentially

Modulated Periodic (EMP) signal representation [45], which

is given by

x(t) =
∑

k

xk(t)e
jkωst =

∑

k

Xk(s)e
stejkωst (12)

ẋ(t) =
∑

k

(s + jkωs)Xk(s)e
(s+jkωs)t (13)

where the term ‘est’, s = σ + jω is used to modulate the

Fourier coefficients for extracting the transient responses of

harmonic components. Hence, similarly to (9), the EMP rep-

resentation also defines the time-varying coefficients of the

Fourier series expansion of the system variables. However,

instead of directly defining the coefficients for the LTP system,

the coefficients of dynamic phasors are derived by integrating

the system variables over a moving time window.

Besides the representation of system variables, the modeling

procedure of the HSS approach is different from the gen-

eralized averaging models. As illustrated in Fig. 7, the

switching model of converters is first decomposed into the

harmonic domain with the steady-state time-periodic operat-

ing trajectories [9]. Then, the resulting nonlinear time periodic

model is linearized directly in the neighborhood of the time-

periodic operating trajectories, leading to an LTP model, which

is given by

�ẋ(t) = A(t)�x(t) + B(t)�u(t)

�y(t) = C(t)�x(t) + D(t)�u(t) (14)

where A(t), B(t), C(t), D(t) are time-periodic matrices, �x(t)

is the state vector of the system, �u(t) and �y(t) are the

input and output variables, respectively. Next replacing these

matrices by their Fourier series [64], e.g.,

A(t) =
∑

k

Akejkωst (15)

and substituting �x(t),�u(t) and �y(t) by their respective

EMP forms in (12), (13), the HSS model is obtained as

(s + jkωs)Xk(s) =
∑

n

Ak−nXn(s) +
∑

n

Bk−nUn(s)

Yk(s) =
∑

n

Ck−nXn(s) +
∑

n

Dk−nUn(s) (16)

Thus, the LTP system is represented by an MIMO state-

space model, similar to the LTI state-space model. Based

on (16), the HTF can then be derived as [59]

Y(s) = H(s)U(s) ⇒

H(s) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. . .
... . .

.

H0(s − jωs) H−1(s) H−2(s + jωs)

· · · H1(s − jωs) H0(s) H−1(s + jωs) · · ·

H2(s − jωs) H1(s) H0(s + jωs)

. .
. ...

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

Y(s) =
[

· · · Y−1(s) Y0(s) Y1(s) · · ·
]T

U(s) =
[

· · · U−1(s) U0(s) U1(s) · · ·
]T

(18)

Hence, the HTF derived from the HSS model provides

a unified multiple-frequency model for ac-dc converters. Yet,

instead of linearizing the system on the operating point in the

generalized averaging model, the HSS method linearizes the

system around the time-periodic operating trajectories [64].

Table I summarizes the adequacies of the different modeling

methods for analyzing the harmonic instability issues under

the different system conditions. All the models are adequate

for the analysis of harmonic instability induced by the interac-

tions of current control loops. While the harmonic linearization

method considers the negative-sequence component, it does

not extract the cross-coupling dynamics.
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TABLE I
MODELING ADEQUACIES OF DIFFERENT MODELING METHODS FOR HARMONIC STABILITY ANALYSIS

IV. SYSTEM STABILITY ANALYSIS

Two analytical methods have been developed for the system-

level stability analysis, which are the eigenvalue analysis based

on the state-space model of the system in the time domain, and

the impedance-based analysis based on the transfer functions

of components in the frequency domain.

A. Eigenvalue Analysis

The eigenvalue analysis has become a common practice for

analyzing the small-signal stability of legacy power grids. The

method is developed based on the state-space representation of

the power system, which is, after the small-signal linearization,

given by [25]

�ẋ = A�x + B�u

�y = C�x + D�u (19)

where A, B, C, D are the time-invariant matrices for the

LTI system, and the eigenvalues of the state matrix A are

derived by

det(sI − A) = 0 (20)

which is also the characteristic equation of the LTI system. The

eigenvalues indicate the dynamic modes of the power system.

In addition, the eigenvectors also have important implications

on the power system dynamics. The right eigenvectors reveal

the distribution of dynamic modes through state variables, and

the left eigenvector identifies the relative effects of the differ-

ent initial conditions of state variables on dynamic modes [65].

The combination of these two eigenvectors leads to the par-

ticipation factor [66], which weighs the participation of state

variables in the dynamic modes. Hence, the dynamic analysis

based on the eigenvalues and eigenvectors not only captures

the input-output dynamics of the system, but provides also

a global view on the modes of responses and relative effects

of state variables.

The small-signal stability of conventional power systems are

dominated by the electromechanical dynamics of synchronous

generators. The electromagnetic transients of electric networks

are often overlooked in the state-space model, except the study

of sub-synchronous resonances [66]. The well-decoupled time

constants of generator- and network-dynamics facilitates using

the closed-form eigenvalue analysis for large-scale power

grids. Nevertheless, the harmonic stability of power electronic

based power systems feature multi-timescale and frequency-

coupling dynamics, which lead to oscillations in a wide

frequency range, as shown in Fig. 2. The wide frequency

range of oscillations are tightly coupled with the electric

Fig. 8. Comparison between the modeling procedures of the general state-
space representation and Component Connection Method (CCM). (a) General
state-space model. (b) CCM-based model.

network dynamics, leading to a very high-order system state

matrix [67], which consequently imposes a high computa-

tional burden for the stability analysis. Moreover, in order to

capture the frequency-coupling dynamics of unbalanced three-

phase power systems, the HSS models of ac-dc converters are

required, which also complicates the model derivation process

with the increased system order [68].

To address the high computational demand for deriving the

state-space model, the Component Connection Method (CCM)

was reported for converter-based power grids in [69]. The

CCM presents a computationally efficient procedure for deriv-

ing the LTI state-space model given in (19). Fig. 8 shows

a comparison between the modeling procedures of the gen-

eral state-space representation and the CCM. In the CCM,

the power system is decomposed into multiple components,

e.g., power converters, generators, and the electric network,

which are interconnected by linear algebraic relationships

defined by their interfaces [70]. Then, the components are

linearized locally, and their LTI state-space models constitute

a composite component model, which is given by

�ẋ = F�x + H�a

�b = J�x + K�a (21)
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where the state matrix F is a diagonal matrix of state matrices

of components, i.e., F = diag{F1, F2, . . . Fn}, and H, J, K

follows the similar form. a and b are the vectors of the input

and output variables of components.

The interconnections of the components are defined by [69]

a = L11b + L12u

y = L21b + L22u (22)

where u and y are the input and output vectors of the system.

The matrices Lij are linear algebraic, which depends on how

to define the input and output of components. Combining

(21) and (22) leads to the state-space model given in (19).

The prominent features of the CCM are the modularity and

scalability for large-scale power systems. The linear algebraic

interconnections of the components significantly reduces the

computational efforts.

It is worth noting that the state-space models of components

can also be represented by transfer functions, where the inputs

and outputs can be defined in a similar way to the impedance-

based models [17]. A frequency-domain CCM-based model

can thus be obtained with the frequency scanning (i.e., the

black box modeling) technique, which can be analyzed either

in a closed-form (MIMO transfer function matrices) based on

system poles [71] or with the impedance-based analysis [17],

which will be discussed next.

B. Impedance-Based Analysis

The impedance-based method was originally developed

for the design-oriented analysis of input filters for dc-dc

converters [29]. In that work, a minor feedback loop is intro-

duced, which consists of the input impedance of the converter

and the output impedance of the LC-filter, and the impedance

ratio defines the loop gain. Thus, the Nyquist stability criterion

can be applied to characterize the dynamic effect of the input

LC-filter resonance. The concept of minor feedback loop was

later extended for the stability analysis of dc power systems for

spacecraft [72], where the minor feedback loop comprises the

impedances of multiple converters, and the impedance ratio

characterizes the dynamic interactions of converters. In [30],

the impedance-based method was applied to analyze the stabil-

ity of ac power systems, and the generalized Nyquist stability

criterion was used to evaluate the MIMO transfer function

matrices, owing to the frequency-coupling dynamics of ac-dc

converters.

Fig. 9 elaborates the basic principle of the impedance-based

analysis method. A converter-based power system that consists

of voltage-controlled and current-controlled ac-dc converters is

represented by the impedance equivalent, where the converters

are modeled by the Norton (current-controlled converters) and

Thevenin (voltage-controlled converters) equivalent circuits, as

shown in Fig. 9 (a). It is interesting to note that the impedance-

based approach is similar to the CCM, where the system model

is also formed based on the models of components, and thus

it keeps the advantages of modularity and scalability as in the

case of the CCM. However, instead of identifying the eigen-

values of the system, the impedance-based approach predicts

the system stability locally at the point of connection of each

Fig. 9. Basic principle of the impedance-based stability analysis method.
(a) Impedance-based model of a converter-based power system. (b) General
impedance equivalent derived for each converter. (c) Minor feedback loop for
current-controlled converters. (d) Minor feedback loop for voltage-controlled
converters.

converter, where the rest of the system is equivalent to an

impedance seen from the converter.

Fig. 9(b) depicts a general impedance equivalent model

for characterizing the converter-system interaction, from

which the minor feedback loops for the current-controlled

and voltage-controlled converter can be derived, which are

depicted in Figs. 9(c) and 9(d), respectively. Both the current-

controlled and the voltage-controlled converters lead to the

same minor feedback loop, where the loop gain is the

impedance ratio, i.e., Yc(s)Zs(s). Thus, the system stability

can then be evaluated by

io(s) =
1

1 + Yc(s)Zs(s)
ic(s) +

Yc(s)

1 + Yc(s)Zs(s)
Vs(s) (23)

Vo(s) =
1

1 + Yc(s)Zs(s)
Vs(s) +

Zs(s)

1 + Yc(s)Zs(s)
ic(s). (24)

C. Comparison of Stability Analysis Tools

Table II presents a comparison between the basic state-space

representation, the CCM, and the impedance-based analysis,

on a number of features. Compared to the eigenvalue analy-

sis, the superior feature of the impedance-based approach is

the black-box modeling, i.e., the impedance profiles of con-

verters and the electric network can be measured with the

frequency scanning technique, which was earlier used for the

prediction of the sub-synchronous oscillations in the legacy

power systems [65]. This feature is particularly attractive for
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TABLE II
COMPARISON OF SYSTEM STABILITY ANALYSIS TOOLS

analyzing the interactions of multiple converters provided

by different vendors. Further, compared to the CCM, the

impedance models provide physical insights into the effects

of controllers on the terminal behaviors of converters, and it

facilitates a design-oriented analysis [29].

By utilizing the nodal admittance matrix [17], the

frequency-domain impedance analysis is more computation-

ally efficient than the basic state-space representation, and is

scalable to different scales of power systems [73]. However,

the transfer functions can merely predict the input-output

dynamics at the converter terminal, i.e., how a single con-

verter interacts with the rest of the system. The effects of

state variables on the stability margin of the system are not

identified, and consequently the system oscillation modes with

different damping levels cannot be observed in the frequency

domain [74].

In addition, the dynamic interactions of the rest subsystems

may bring RHP poles/zeros into the equivalent impedance

seen from the converter [30], [31], [75]. The presence of RHP

poles may give rise to an inaccurate stability implication [31],

while the presence of RHP zeros may yield incorrect

impedance specifications for the active stabilization [30], [75].

Thus, the RHP poles/zeros impose constraints on the system

partitioning and the aggregation of impedances of subsystems.

In contrast, the CCM not only preserves the modular-

ity and the scalability of the impedance method, but also

overcomes its limits on the identification of system oscilla-

tion modes and the participation factors of state variables.

However, owing to the state-space representation of the CCM,

it requires a prior knowledge of the system parameters and

control structures [69]. Thus, the CCM cannot be readily used

to analyze the interaction between converters from multiple

vendors. Moreover, the CCM merely simplifies the compu-

tation procedure for obtaining the state-space model of the

system. The eigenvalue-based stability analysis still requires

higher computational resources than the frequency-domain

impedance method. The dynamic reduction techniques based

on a subset of oscillation modes have been developed for the

efficient analysis [26], yet its effectiveness on the analysis of

sideband oscillations needs to be further studied.

V. FUTURE TRENDS AND CONCLUSIONS

This paper has discussed the concept and phenomena of the

harmonic stability in the modern power electronic based power

systems. It has been pointed out that the harmonic stability is

in essential a breed of small-signal stability, yet it is used

to denote the sideband oscillations around the fundamental

frequency and the switching frequency of converters, as well

as the resonances induced by the wideband control dynamics

of converters. It has also been emphasized that the frequency-

coupling small-signal models of converters are important for

the harmonic stability analysis. It has been revealed that the

HTF obtained from the LTP system theory yields a unified

model of ac-dc converters. The challenges with the system

stability analysis have also been discussed. To address the

challenges, more research efforts on the following topics are

expected:

1) Adequate small-signal modeling of power converters,

which is dependent on the system conditions and the

concerned instability phenomena.

2) An effective system analysis tool, which can identify

the oscillation modes for multiple converters provided

by different vendors, is demanded.

3) The system partitioning methods and dynamic model

aggregation techniques are urgently demanded for the

stability analysis of very large power electronic based

power systems.
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