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 
Abstract—The small-signal impedance modeling of 

modular multilevel converter (MMC) is the key for 

analyzing resonance and stability of MMC-based power 

electronic systems. MMC is a power converter with a 

multi-frequency response due to its significant steady-state 

harmonic components in the arm currents and capacitor 

voltages. These internal harmonic dynamics may have 

great influence on the terminal characteristics of the MMC, 

which, therefore, are essential to be considered in the MMC 

impedance modeling. In this paper, the harmonic 

state-space (HSS) modeling approach is first introduced to 

characterize the multi-harmonic coupling behavior of the 

MMC. On this basis, the small-signal impedance models of 

the MMC are then developed based on the proposed HSS 

model of the MMC, which are able to include all the 

internal harmonics within MMC, leading to accurate 

impedance models. Besides, different control schemes for 

the MMC, such as open-loop control, ac voltage closed-loop 

control, and circulating current closed-loop control, have 

also been considered during the modeling process, which 

further reveal the impact of the MMC internal dynamics 

and control dynamics on the MMC impedance. 

Furthermore, an impedance-based stability analysis of the 

MMC-HVDC connected wind farm has been carried out to 

show how the HSS based MMC impedance model can be 

used in practical system analysis. Finally, the proposed 
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impedance models are validated by both simulation and 

experimental measurements. 

 
Index Terms—Modular multilevel converter (MMC), 

impedance, harmonic state-space (HSS), internal dynamics, 

impedance measurement, stability. 

 

I. INTRODUCTION 

N RECENT years, modular multilevel converter (MMC) has 
been widely used in high-voltage/high-power applications 

[1], [2], e.g. high-voltage direct current (HVDC) transmission, 
thanks to its advantages such as modularity, scalability, high 
efficiency, high performance, etc. However, due to the complex 
internal structure of MMC, its modeling and control is much 
more complicated than that of conventional voltage-source 
converters (VSCs) [3]-[5]. In addition, MMC is a power 
converter with a typical multi-frequency response due to its 
significant steady-state harmonic components in the arm 
currents and capacitor voltages. These internal harmonic 
dynamics may have detrimental effects on the stable operation 
of the MMC-based power electronic systems, especially for 
applications of renewable energy integration [6]-[8]. Therefore, 
it is essential to consider the MMC internal dynamics in the 
MMC modeling when concerning the harmonic interaction and 
small-signal stability issues. 

So far, researchers have made much efforts on the MMC 
modeling. Several average models for the MMC [9]-[12] have 
been proposed for power system analysis, which truly facilitate 
the large power system studies on the assumption that enough 
internal damping is guaranteed in the MMC itself. However, 
those models neglect the MMC internal dynamics such as 
harmonic circulating currents and capacitor voltage 
fluctuations, which cannot accurately reflect the actual 
characteristics of the MMC. Furthermore, the MMC is actually 
widely used in high-voltage applications where a weak internal 
damping is a common phenomenon due to the small arm 
resistance. In this case, the instability issues caused by the 
MMC internal dynamics cannot be properly identified by using 
the previous models. More recently, several researchers have 
focused on the MMC modeling with consideration of the 
internal dynamics. In [13]-[15], the dynamic phasor models of 

Harmonic State-Space Based Small-Signal 
Impedance Modeling of Modular Multilevel 

Converter with Consideration of Internal 
Harmonic Dynamics 

Jing Lyu, Member, IEEE,  Xin Zhang, Member, IEEE,  Xu Cai,  and Marta Molinas, Member, IEEE 

I 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2842682, IEEE

Transactions on Power Electronics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

the MMC were developed in multiple dq rotating coordinate 
frames simultaneously, including dc, fundamental, second, and 
third harmonics. However, this modeling method involves 
lengthy algebra and is difficult to be extended to any number of 
harmonics. What is more, the MMC models in the time periodic 
framework were derived in [16], [17], which can achieve high 
accuracy, but still need lengthy algebra and are difficult to be 
used for harmonic interaction and stability analysis in power 
electronics interconnected systems. 

Fortunately, the harmonic state-space (HSS) modeling 
method [18]-[26] can overcome the above limitations. The HSS 
modeling is able to simultaneously represent multiple 
frequency responses in each variable and to build 
multi-dimensional harmonic transfer function based models 
[23]. Furthermore, the HSS model, in which harmonics of state 
variables, inputs, and outputs are posed separately in a 
state-space form, is easy to be implemented by computer (e.g. 
Matlab) and to be extended to any number of harmonics. The 
HSS method has already been used in many fields of power 
systems, e.g. buck-boost converter [20], thyristor-controlled 
reactor (TCR) [21], single- and three-phase two-level VSCs 
[22]-[26], MMC [27], etc. 

The impedance-based stability analysis method is one of the 
preferred methods for stability analysis of power electronic 
systems, especially for multi-converter interconnected systems 
[28], [29]. The impedance modeling of power converters is the 
prerequisite for applying the impedance-based analytical 
approach. Most of the research has so far focused on the 
impedance modeling of two-level converters [30]-[32], while 
only several researchers have reported the impedance modeling 
of the MMC. The dc-side impedance [33], [34] and ac-side 
impedance [35], [36] of the MMC were derived, respectively, 
where, however, the submodule capacitors are assumed to be 
large enough and the internal harmonic dynamics are neglected, 
which are usually improper in practice. A few papers discussed 
the MMC impedance modeling with consideration of internal 
harmonics [37]-[39]. In [37], the harmonic linearization 
method was directly applied to derive the MMC impedance, in 
which, however, the algebraic operation is lengthy, particularly 
serious if higher harmonics are considered. The HSS method 
was also introduced by the authors to develop the impedance 
model of the MMC in [38]. In addition, a new method called as 
multi-harmonic linearization, which is essentially equivalent to 
the HSS method, was proposed to derive the sequence 
impedance of the MMC in [39]. What distinguish this paper 
from the above contributions are that the impact of the internal 
harmonics and circulating current control on the MMC 
impedance is analyzed and experimental measurements are also 
provided to further validate the proposed impedance models. 

The paper is organized as follows. The formulation of the 
HSS modeling is reviewed, the large- and small-signal HSS 
models of the MMC are then presented in Section II. In Section 
III, the small-signal impedance of the MMC is derived based on 
the developed HSS model. As a case study, an 
impedance-based stability analysis of the MMC-HVDC 
connected wind farm has been carried out to show how the 
proposed impedance model is used in practical system analysis 

in Section IV. The simulation and experimental results are 
provided to validate the proposed MMC impedance models in 
Section V. Section VI concludes the paper. 

II. HSS BASED LARGE/SMALL-SIGNAL MODELS OF MMC 

A. A Preliminary and Formulation of HSS Modeling 

For any time-varying periodic signal x(t), it can be written in 
the form of Fourier series as: 

  1jk t

k

k

x t X e




                                (1) 

where ω1=2π/T, T is the fundamental period of the signal, and 
Xk is the Fourier coefficient that can be calculated by 
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The time-domain state-space equation of the studied system 
can be expressed as [18]-[27] 

         x t A t x t B t u t                        (3) 

Based on the Fourier series and harmonic balance theory [18], 
the time-domain state-space equation can be transformed into 
the frequency-domain harmonic state-space equation, which is 
like [20]-[27] 

 s   X A Q X BU                            (4) 

where X, U, A, B, and Q are indicated as (5)~(9), respectively, 
of which the elements Xh, Uh, Ah, and Bh are the Fourier 
coefficients of the hth harmonic of x(t), u(t), A(t), and B(t) in (3), 
respectively. Note that A and B are Toeplitz matrices in order to 
perform the frequency-domain convolution operation, Q is a 
diagonal matrix that represents the frequency information, and I 
is an identity matrix having the same matrix size with the 
number of state variables. In addition, h is the harmonic order 
considered in the model. 
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B. HSS Based Large-Signal Model of MMC 

Fig. 1 shows the circuit diagram of a three-phase MMC. 
Each phase-leg of the MMC consists of one upper and one 
lower arm connected in series between the dc terminals. Each 
arm consists of N identical series-connected submodules (SMs), 
one arm inductor L and its equivalent series resistor R. Each SM 
contains a half-bridge as a switching element and a dc storage 
capacitor CSM. In high-voltage applications, N may be as high as 
several hundreds. It should be noted that the SM may use a 
half-bridge or a full-bridge topology, which, however, doesn’t 
affect the discussion here. Moreover, it needs to be pointed out 
that the modulation and voltage-balancing control have little 
effects on the impedance response due to their action on a 
cycle-by-cycle at the switching frequency. 

 
Fig. 1.  Circuit diagram of a three-phase MMC. 
 

 
Fig. 2.  Averaged equivalent circuit of one phase leg of MMC. 

It is assumed that the equivalent switching frequency is high 
enough and the capacitor voltages are balanced at all times [3], 
[4]. This way the need for treating the submodules individually 
can be avoided and each arm can be treated as one equivalent 
submodule. Hence, according to the average-value modeling 
method [9], the averaged equivalent circuit of the MMC can be 
obtained, as presented in Fig. 2 (taking one phase for example), 
where Carm=CSM/N, iu(t) and il(t) are the upper and lower arm 

currents,  cuv t
  and  clv t

  are the sum capacitor voltages of 

the upper and lower arms, vg(t) and ig(t) are the ac-side phase 
voltage and current, ic(t) is the circulating current, Vdc is the dc 
bus voltage, and nu(t) and nl(t) are the switching functions of the 
upper and lower arms. In addition, In addition, ZL(=RL+jω1LL) 
is the ac-side equivalent load in order to determine the 
steady-state operating point, and vp(t) is the injected small 
perturbation voltage in order to derive the small-signal 
impedance of the MMC according to the harmonic linearization 
theory. Furthermore, the dc-link voltage Vdc is assumed to be 
constant. 

The circulating current is defined as 

     
2

u l

c

i t i t
i t


                              (10) 

The ac phase current can be expressed as 

     g u li t i t i t                             (11) 

Applying Kirchhoff’s law to the single-phase equivalent 
circuit of the MMC shown in Fig. 2, one can obtain 
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Based on the continuous model of the MMC [3], [4], we have 
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Substituting vg = ZLig into (12) and (13), (10)~(15) can be 
reorganized into the state-space form as (3), where x(t), u(t), 
A(t), and B(t) are given in (16)~(19). 
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where the switching functions nu(t) and nl(t) are determined by 
the controller employed in the MMC, which can be expressed 
as 
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where m and 1m  are the modulation index and phase of the 

fundamental modulation voltage generated by the fundamental 
controller, m2 and 2m  are the modulation index and phase of 

the second harmonic modulation voltage generated by the 
second harmonic circulating current controller. Additionally, 
the harmonic components above second-order in (20) are 

normally zero, i.e.  0 3nm n  . 

It is noted that there are significant steady-state harmonic 

components in the state variables such as ic(t),  cuv t
  and 

 clv t
 , which are caused by the operation characteristics of the 

MMC [4]. For instance, the circulating current ic(t) contains dc 
and second harmonic components as well as other even 
harmonics which are negligibly small in normal operation. 

Moreover, the capacitor voltage  cuv t
  and  clv t

  

theoretically contains all the harmonics. Therefore, in order to 
accurately represent the multi-harmonic MMC model, the HSS 
modeling method, in which harmonics of state variables, inputs, 
and outputs are posed separately in a state-space form, is 
introduced to model the MMC in this work. 

Following the HSS modeling procedure introduced in 
(1)~(9), the time-domain state-space model of the MMC that is 
formulated as (3) and (16)~(20) can be converted into the HSS 
model that is expressed in (4), where the elements Xh, Uh, Ah, 
and Bh are shown in (21)~(24). It is noted that each element of 
the Toeplitz matrix A is also a matrix that has the same size as 
A(t), whose element can be calculated by applying (2) to the 
corresponding element of A(t). 
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Letting the left side of (4) to be zero, the steady-state 
harmonics of state variables can thus be calculated by 

   1

ss

  X A Q BU                        (25) 

In order to validate the precision of the HSS model 
developed in this paper, a comparison between the results from 
the HSS model and the nonlinear time-domain simulation 
model has been carried out, where the nonlinear time-domain 
simulation model is implemented in MATLAB/Simulink, and 
the HSS model is performed by using an m-file in MATLAB. 
In this case, open-loop control is adopted by directly setting the 
fundamental-frequency reference voltage. The harmonic order 
considered in the HSS model of the MMC is h = 3, and the main 
electrical parameters of the MMC in the simulation are listed in 
Table I. As shown in Fig. 3, it can be seen that the results 
between the HSS model and the time-domain simulation model 
have a good match, which indicates that the HSS model of the 
MMC developed in this paper is able to capture all the 
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steady-state harmonics in the circulating current and capacitor 
voltage, and is accurate enough for harmonic steady-state 
studies. It is noted that the results from the HSS model can be 
converted into the time-domain signals by using (1). 

TABLE I. MAIN ELECTRICAL PARAMETERS OF MMC 

Parameter  Value 

Rated power 50 MW 

Rated frequency 50 Hz 

Rated dc voltage 320 kV 

Rated ac voltage 166 kV 

Submodule number per arm 20 

Submodule capacitor 140 µF 

Arm inductance 360 mH 

Arm resistance 1 Ω 

 

 
(a) 

 
(b) 

Fig. 3.  Validation for the HSS model of the MMC. (a) Circulating current ic. (b) 

Capacitor voltage cuv
 . 

 
 

C. HSS Based Small-Signal Model of MMC 

In Section II B, the HSS based large-signal model of the 
MMC is first developed, which aims at showing the high 
accuracy of the proposed HSS model and also providing the 
steady-state solution for the subsequent small-signal modeling. 
Since the steady-state operation point of the MMC is 
periodically time-varying rather than constant, the harmonic 

linearization principle needs to be applied in order to derive the 
small-signal model of the MMC. 

By applying small perturbation analysis to the state-space 
equation of the MMC formulated in (3) and (16)~(19), the 
small-signal state-space equation of the MMC can be obtained 
as 

         p p p p px t A t x t B t u t                    (26) 

where 

         , , ,
T

p cp cup clp gpx t i t v t v t i t
                (27) 

       , ,
T

p up lp pu t n t n t v t                     (28) 
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(30) 
in which the subscripts “s” and “p” denote steady-state and 
perturbation components, respectively. The small perturbations 
nup(t) and nlp(t) of the switching functions depend on the 
controller dynamics, which will be discussed in the next 
section. 

According to the operation principle of MMC, the injected 
small perturbation voltage will lead to perturbations in all 
variables at frequencies that are listed in (31). Since these 
frequency components may have important effects on the 
MMC impedance response, all these frequency components 
will be included in the impedance modeling in this paper. 

1 1 1, , 2 , ,
p p p p

h                         (31) 

Accordingly, the small-signal HSS model of the MMC can 
be obtained as (32) by using the HSS modeling procedure to the 
time-domain small-signal state-space equation of the MMC 
that is formulated in (26). 

 p p p p p p
s   X A Q X B U                     (32) 

where Xp, Up, and Qp are given in (33)~(35), respectively, in 
which the subscript “p±h” denotes the perturbation component 
at frequency “ωp±hω1”. It is noted that the diagonal matrix Qp 
contains all the perturbation frequencies that are defined in (31), 
which means that this model considers all the frequency 
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coupling effects. Additionally, the Toeplitz matrices Ap and Bp 
depend on the specific control scheme used in the MMC, which 
will be given in Section III. 

, , , ,

, , ,

T

p p h p p h

p h cp h cup h clp h gp h

X X X

X I V V I

 

 
    

   
   

X
                   (33) 

  

, , , ,

, = 0 1

T

p p h p p h

p p p h

U U U

U V U h

 



   
   

U
                      (34) 

   1 1diag , , , ,p p p pj h I j I j h I        Q (35) 

III. HSS BASED SMALL-SIGNAL IMPEDANCE MODELING OF 

MMC 

A. Definition of the Small-Signal Impedance of MMC 

According to the harmonic linearization principle, by 
injecting a small sinusoidal perturbation voltage at frequency 
ωp in the ac-side of the MMC and then calculating the 
corresponding ac-side current response at the perturbation 
frequency ωp, the ac-side small-signal impedance of the MMC 
can thus be obtained by calculating the ratio of the resulting 
complex voltage to current at the perturbation frequency ωp, 
which is defined as 

  gp

MMC p

gp

Z j  
V

I
                              (36) 

where the bold letters Vgp and Igp are the complex phasors of the 
resulting perturbation voltage and current at frequency ωp. 
Additionally, the perturbation voltage Vgp can be expressed as 

gp p L gpZ V V I                                  (37) 

in which the perturbation input voltage Vp is predefined, and the 
resulting perturbation current Igp can be solved as a function of 
the perturbation input voltage Vp based on the small-signal HSS 
model of the MMC. 

Fig. 4 shows the flowchart of the small-signal impedance 
modeling of the MMC based on the HSS modeling method. 

In order to uncover the impact of the control strategies and 
internal dynamics of the MMC on the small-signal impedance, 
three cases are considered in the impedance modeling in this 
paper, i.e., open-loop control, ac voltage closed-loop control, 
and circulating current closed-loop control. 

B. Impedance Modeling of MMC with Open-Loop Control 

If open-loop control is used, the fundamental modulation 
voltage is given directly and the second harmonic component in 
(20) is zero. As a result, the switching functions nu and nl are 
not perturbed by the injected small perturbation voltage, which 
means nup= nlp=0. Hence, up(t) and Bp(t) of the small-signal 
state-space equation of the MMC in (26) become as (38) and 
(39), respectively, while xp(t) and Ap(t) remain the same as (27) 
and (29). 

   _p op pu t v t                                  (38) 

 _

2
0,0,0,

T

p opB t
L

    
                        (39) 

 
Fig. 4.  Flowchart of the small-signal impedance modeling of MMC based on 
HSS modeling. 

 
 
Accordingly, the small-signal HSS model of the MMC with 

open-loop control can be obtained as (32), where the elements 
of the Toeplitz matrix Ap are identical to (23), whereas the 
elements A±2 are zero matrices in this case. Additionally, the 
elements of the Toeplitz matrix Bp are shown as (40). 

   0

2
0,0,0, , 0,0,0,0 1

T
T

hB B h
L


      

          (40) 

Ignoring the transient behavior of the perturbation signals, 
that is, letting the left-hand side of (32) to be zero, the small 
perturbation components of the state variables at each 
perturbation frequency in (31) can be solved by 

   1

p p p p p


  X A Q B U                    (41) 

It should be pointed out that the harmonic order h must be 
predetermined in order to solve (41), and all the small 
perturbation components of the state variables can be 
calculated as a function of the injected perturbation voltage Vp, 
where Vp is also predefined. According to the definition of the 
small-signal impedance in (36), only the resulting perturbation 
voltage and current at frequency ωp in the ac-side of the MMC 
need to be concerned. From (41), the resulting perturbation 
current Igp at frequency ωp can be calculated as a function of the 
perturbation input voltage Vp. Subsequently, the resulting 
perturbation voltage Vgp at frequency ωp can be figured out by 
substituting Igp in (37). Finally, the ac-side small-signal 
impedance of the MMC at frequency ωp can be calculated by 
substituting Vgp and Igp into (36). It is worth noting that the 
higher the harmonic order h is, the more accurate the MMC 
impedance model is. Nevertheless, the analytical impedance 
expression of the MMC with high harmonic order will become 
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much more complex and lengthy. However, in general, the 
MMC impedance model is accurate enough if the harmonic 
order h≥3, which will be further confirmed in the following 
section. 

C. Impedance modeling of MMC with AC Voltage Closed- 

Loop Control 

Fig. 5 depicts the diagram of the ac voltage closed-loop 
control in a three-phase stationary frame, where Hv(s) is a 
proportional-resonant (PR) controller to achieve zero 
steady-state errors for sinusoidal quantities, and kf is the 
feedforward gain to improve dynamic response. 

 
Fig. 5.  Diagram of the ac voltage closed-loop control. 

 
 
The transfer function of the ac voltage regulator Hv(s) is 

  2 2
1

r
v p

K s
H s K

s 
 


                         (42) 

where Kp and Kr are the proportional and resonant gains of the 
PR controller, respectively. 

The reference modulation voltage can be obtained as (43), 
where the subscript “x” (x=a,b,c) is omitted for simplicity. 

            *
sref v g g f g dv s H s v s v s k v s G s        (43) 

where Gd(s) represents the digital control delay of 1.5 sampling 
periods. 

Applying linearization to (43), one can obtain 

       srefp f v d gpv s k H s G s v s                   (44) 

Hence, the small perturbations nup and nlp of the switching 
functions can be obtained as 

 

 

f v d

up gp v gp

dc

f v d

lp gp v gp

dc

k H G
G

V

k H G
G

V

 
   




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

n v v

n v v

                (45) 

where the bold letters represent the complex phasors at the 
perturbation frequency. 

Combining (45), (37), and (26)~(30), and applying the HSS 
modeling procedure that is introduced in (1)~(9), the 
small-signal HSS model of the MMC with ac voltage 
closed-loop control can be obtained like (32), where Xp, Up, and 
Qp are the same as (33)~(35), and the elements of Ap and Bp are 
given in (46) and (47), respectively, in which the subscript “h” 
(h=0,1,2…) of the state variables represents the Fourier 

coefficient of the hth harmonic of the state variable under 
steady state, which can be calculated by (25). 
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(47b) 
In the same way, by substituting (34), (35), (46) and (47) into 

(41), the resulting perturbation current Igp at frequency ωp can 
be solved by (41), and then the resulting perturbation voltage 
Vgp at frequency ωp can be obtained by (37). Hence, the ac-side 
small-signal impedance of the MMC with ac voltage 
closed-loop control can then be calculated by (36). 

D. Impedance Modeling of MMC with Circulating Current 

Closed-Loop Control 

The circulating current control strategies commonly used in 
the MMC can be categorized into two groups, one is based on 
PI controllers in the dq rotating frame, the other is based on PR 
controllers in the abc stationary frame. However, both of these 
two strategies are able to effectively suppress the harmonic 
circulating currents. It is worth noting that no matter the 
integral part of the PI controller or the resonant part of the PR 
controller, it can mainly affect the voltage and current signals at 
around the designated frequency while having little impact on 
those signals at other frequencies. In other words, the 
impedance-frequency characteristics of the MMC are mainly 
influenced by the proportional part of the controller. Therefore, 
to reveal the influence mechanism of the circulating current 
closed-loop control on the impedance-frequency characteristics 
of the MMC, a proportional controller based circulating current 
control [3] is used in this paper, as presented in Fig. 6, where 
the modified modulation voltage vcref is added to the original 
fundamental modulation voltage. The circulating current 

reference is * 3cx dci P V , where P is the active power. 

In a similar way to that with the ac voltage closed-loop 
control, we can derive the ac-side small-signal impedance of 
the MMC with circulating current closed-loop control. Due to 
the limited space, the detailed derivation process is no longer 
given in this paper. 

 
Fig. 6.  Diagram of the circulating current closed-loop control. 

IV. APPLICATION OF THE HSS BASED SMALL-SIGNAL 

IMPEDANCE MODEL: STABILITY ANALYSIS OF MMC-HVDC 

CONNECTED WIND FARM 

Fig. 7 shows the structure diagram of wind farm integration 
through an MMC-HVDC transmission system, where the wind 
farm consists of full-power wind turbines based on two-level 

VSCs, and the MMC-HVDC transmission system comprises a 
wind farm side MMC station (WFMMC), a grid side MMC 
station (GSMMC), and dc transmission lines. The MMC 
topology for both WFMMC and GSMMC is shown in Fig. 1. 
For simplicity, the simplified circuit structure diagram of the 
interconnected system is presented in Fig. 8, which can be 
obtained by applying the following procedures: 1) The wind 
farm is aggregated into one wind turbine generator; 2) The 
generator side dynamics (including turbine mechanical and 
generator side converter) are ignored, since the grid side 
converter of the wind turbine generator is decoupled with the 
generator side by the dc-link capacitor; 3) It is assumed that the 
ac power grid is strong and the control bandwidth of the dc 
voltage loop of the GSMMC is less than the SSO frequency 
under study, thus, the GSMMC can be simply replaced with a 
dc voltage source. 

The small-signal impedance representation of the 
interconnected system is shown in Fig. 9. The wind farm is 
modeled by its Norton equivalent circuit consisting of a current 
source Iwf in parallel with the wind farm impedance Zwf. The 
WFMMC is modeled by its Thevenin equivalent circuit in the 
form of an ideal voltage source Vs in series with the WFMMC 
impedance ZWFMMC. Hence, the voltage stability at the PCC of 
the interconnected system is determined by the impedance ratio 
ZWFMMC/Zwf, i.e., the voltage at the PCC is stable if and only if 
ZWFMMC/Zwf satisfies the Nyquist stability criterion. In addition, 
the wind farm impedance Zwf includes the wind power inverter 
impedance, step-up transformer impedances, and collection 
line impedance, and the WFMMC impedance ZWFMMC can be 
obtained by adding the converter transformer impedance and 
the MMC impedance which needs to be converted to the PCC 
side of the converter transformer. 

 
Fig. 7.  Structure diagram of wind farm integration via an MMC-HVDC 
transmission system. 

 
Fig. 8.  Simplified circuit structure of the interconnected system. 
 

+
-Iwf Zwf

ZWFMMC

Vs

Wind farm WFMMC
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Fig. 9.  Small-signal impedance representation of the interconnected system. 
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Fig. 10 shows the ac-side impedance-frequency 
characteristics of the WFMMC and wind farm under different 
power level conditions, i.e. 10%, 20%, 40%, and 100% of the 
rated power, where the ac voltage closed-loop control is used in 
the WFMMC without circulating current control and the wind 
turbine operates at unity power factor. It can be seen that the 
magnitude of the wind farm impedance decreases as the output 
active power of the wind farm increases, while the phase of the 
wind farm impedance is almost unchanged. It is worth noting 
that the magnitude-frequency characteristics of the WFMMC 
impedance and wind farm impedance can intersect around the 
low-frequency resonance peak of the WFMMC impedance 
magnitude, where the corresponding phase margin (PM) of the 
interconnected system becomes smaller as the wind farm 
output power becomes larger. That’s the key reason why the 
SSO phenomenon can happen in an MMC-HVDC system for 
wind farm integration. However, it should be pointed out that 
the intersection doesn’t always arise, which depends on many 
factors such as the wind farm output power, control strategies 
and controller parameters of both the WFMMC and wind farm, 
etc. 

 
Fig. 10.  AC-side impedance-frequency characteristics of the WFMMC and 
wind farm under different power conditions. 

 
 
Fig. 11 shows the simulated results of the interconnected 

system under 20% of the rated power condition. It is seen that 
the interconnected system is stable, but with slight oscillations, 
due to the small phase margin (about 20° as predicted in Fig. 
10). Furthermore, the FFT analysis shows that the dominant 
oscillation frequency is around 22 Hz, which is consistent with 
the theoretical analysis in Fig. 10. Fig. 12 shows the simulated 
results of the interconnected system at the rated power. As can 
be seen, the ac voltages and currents are seriously distorted, 
which indicates that the interconnected system becomes 
unstable. It should be pointed out that the reason why the 
unstable case presents the sustained equal amplitude oscillation 
rather than the divergent oscillation is because of the effect of 
the voltage-limiting in the current controller of the wind power 
inverter. 

 
(a) 

 
(b) 

Fig. 11.  Simulated results of the interconnected system under 20% of the rated 
power condition. (a) Three-phase ac phase voltages and currents at the PCC of 
the interconnected system. (b) Frequency analysis of the ac phase voltage. 

 

 
(a) 

 
(b) 

Fig. 12.  Simulated results of the interconnected system under the rated power 
condition. (a) Three-phase ac phase voltages and currents at the PCC of the 
interconnected system. (b) Frequency analysis of the ac phase voltage. 

V. SIMULATION AND EXPERIMENTAL VERIFICATION 

A. Simulation Verification 

To verify the derived impedance models of the MMC, a 
nonlinear time-domain simulation model of a three-phase 
MMC with a three-phase resistance load has been built by using 
MATLAB/Simulink. In the simulation, the ac-side small-signal 
impedance of the MMC is measured by means of injecting a 
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series of small perturbation voltage signals at different 
frequencies in the ac-side of the MMC. Then by measuring the 
resulting perturbation current signals, the ac-side small-signal 
impedance can be readily calculated for each frequency. The 
main electrical parameters of the MMC in the simulation are 
the same as those in Table I. 

Fig. 13 shows the comparison between the analytical and 
simulation measured ac-side small-signal impedances of the 
MMC with open-loop control, where the harmonic order h of 
the analytical model is selected as 4. It is seen that the analytical 
impedance matches well with the measured result in the 
simulation, which validates the analytical impedance model. 
Furthermore, it can been seen that there are several resonance 
points in the ac-side impedance of the MMC below 150 Hz, 
where the resonance concave at the fundamental frequency is 
generated by the fundamental voltage control, and the other 
resonances are originated from the internal dynamics of the 
MMC. And, more remarkable, the resonance peak around 21 
Hz caused by the internal circulating current resonance of the 
MMC, is likely to result in oscillations by interacting with the 
impedance of the load converter. The frequency at the 
resonance peak mainly depends on the main circuit parameters 
of the MMC, such as the arm inductance, SM capacitance, SM 
number per arm, etc. 

Fig. 14 shows the impact of the harmonic order considered in 
the HSS model of the MMC on the accuracy of the analytical 
MMC impedance model. It can be observed that the harmonic 
order considered in the HSS model of the MMC has great 
impact on the accuracy of the analytical impedance model. The 
higher the harmonic order considered in the HSS model is, the 
more accurate the analytical impedance model is. However, 
only several significant low-order harmonics play dominant 
roles in the MMC impedance response. Generally, it can be 
concluded that the analytical MMC impedance model is 
accurate enough if the harmonic order h ≥ 3. In addition, it’s 
worth noting that if the MMC internal harmonic dynamics are 
not considered in the impedance modeling, i.e., h = 0, the 
resulting impedance model cannot reflect the low-frequency 
resonance characteristics of the MMC. Therefore, it is essential 
to consider the MMC internal harmonic dynamics in the MMC 
impedance modeling in order to accurately capture the 
low-frequency resonance characteristics of the MMC. 

Fig. 15 presents the comparison between the analytical and 
simulation measured ac-side small-signal impedances of the 
MMC with ac voltage closed-loop control (where Kpv=1, 
Krv=20), which verifies the analytical MMC impedance model 
as well. Furthermore, by comparing Fig. 15 and Fig. 13, it can 
be observed that the shape of the ac-side small-signal 
impedance with ac voltage closed-loop control is very similar 
to that with open-loop control, where the major difference is at 
the fundamental frequency (50 Hz hereof) because of the 
resonant part of the ac voltage controller. Besides, it can be seen 
from Fig. 16 how the proportional gain of the ac voltage 
controller affects the ac-side impedance of the MMC, where the 
larger the proportional gain of the ac voltage controller is, the 
smaller the magnitude of the MMC impedance in the entire 
frequency range is, but having little impact on the resonance 

frequencies. In addition, it needs to be pointed out that the 
resonant gain of the ac voltage controller has less effect on the 
MMC impedance except at the fundamental frequency. 

 

 
Fig. 13.  Analytical and simulation measured impedances of the MMC with 
open-loop control. 

 

 
Fig. 14.  Impact of the harmonic order considered in the HSS model on the 
accuracy of the analytical MMC impedance model with open-loop control. 

 

 
Fig. 15.  Analytical and simulation measured impedances of the MMC with ac 
voltage closed-loop control. 
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Fig. 16.  Impact of the proportional gain of the ac voltage controller on the 
MMC impedance. 

 

 
Fig. 17.  Analytical and simulation measured impedances of the MMC with 
circulating current closed-loop control. 
 

 
Fig. 18.  Impact of the harmonic order h considered in the HSS model on the 
accuracy of the analytical MMC impedance model with circulating current 
closed-loop control. 

 
 
Fig. 17 shows the comparison between the analytical and 

simulation measured ac-side small-signal impedances of the 
MMC with circulating current closed-loop control (where 
Ra=20). As can be seen, the analytical impedance has a good 
agreement with the measured result in the simulation, which 

validates the analytical MMC impedance model. Moreover, it 
is worth noting that the low-frequency resonance 
characteristics of the MMC are well suppressed by the 
circulating current controller, which indicates that the 
circulating current controller can provide internal damping to 
the MMC system. In other words, the proportional gain Ra of 
the circulating current controller essentially plays a role of a 
virtual arm resistance. Moreover, the impedance responses with 
different harmonic order considered in the HSS model of the 
MMC with the circulating current closed-loop control are 
shown in Fig. 18, where it can be seen that the harmonic order 
considered in the HSS model has similar impact characteristics 
on the impedance responses under the circulating current 
closed-loop control comparing to Fig. 14. Nevertheless, the 
differences among the impedance responses with different 
harmonic order under the circulating current closed-loop 
control are much smaller due to the damping effect of the 
circulating current controller. 

B. Experimental Verification 

To further validate the proposed MMC impedance models, 
the small-signal impedance measurements on a three-phase 
scale-down MMC experimental setup have also been carried 
out. The topology of the MMC experimental setup is identical 
to that in Fig. 1. The California Instruments MODEL RS90 
programmable power source is used as the small perturbation 
voltage injection source. Since this power source only has 
three-phase output terminals that can be connected to other 
components, the three-phase resistor load has to be serially 
connected between the power source and the MMC in this 
experiment. However, the resistor load doesn’t affect the 
measured MMC impedance, because the converter-side voltage 
and current of the MMC are measured, from which the resulting 
perturbation voltage and current are extracted and the MMC 
impedance is then calculated by the ratio of the resulting 
perturbation voltage to current. In addition, since the 
programmable power source is merely used as a small 
perturbation voltage injection in this experiment, the output 
voltage of the programmable power source is set to be very low. 
The available output frequency range of the programmable 
power source is from 16 Hz to 500 Hz. Furthermore, since the 
focus of this paper is on the low-frequency impedance 
characteristics of the MMC, the high resolution of frequency 
perturbation with an interval of 1Hz was used below 50 Hz 
frequency range, while an interval of 2 Hz in the frequency 
range of 50-100 Hz, an interval of 10 Hz in the frequency range 
of 100-200 Hz, and then the impedance responses at 250 Hz, 
300 Hz, 400 Hz and 500 Hz were also measured. A dc power 
source is connected to the dc terminals of the MMC. The 
schematic diagram of the experimental setup is illustrated in 
Fig. 19. The main electrical parameters of the experimental 
setup are as follows: dc voltage Vdc = 500V, ac phase voltage 
amplitude Vm = 200V, SM number per arm N = 12, SM 
capacitance CSM = 6.6 mF, arm inductance L = 5 mH, load 
resistance RL = 10 Ω, and output phase RMS voltage of the 
programmable power source 7 V. 
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Fig. 19.  Schematic diagram of the experimental setup. 

 
 
It is worth noting that there are relatively significant resistive 

components in the low-voltage MMC experimental setup, 
compared with the high-voltage applications. As a result, the 
internal damping of the low-voltage MMC setup is much 
stronger than that of the high-voltage one, which means that the 
instability issues caused by the internal dynamics of the MMC 
are not prominent for the low-voltage MMC setup. This is a key 
factor to be considered in order to simulate the actual operating 
characteristics of the high-voltage MMC setups. Therefore, a 
virtual resistance compensation (VRC) based strategy is 
proposed in this work to counteract the actual physical 
resistance in order to make the operating characteristics of the 
low-voltage MMC setup appear closer to those of the 
high-voltage one. As aforementioned, the circulating current 
control strategy essentially increases the arm equivalent series 
resistance because of the positive proportional gain Ra. But if 
the proportional gain Ra is negative, it can be regarded as a 
negative resistance that can counteract the arm parasitic 
resistance. Therefore, the resistance compensation strategy 
based on the circulating current control with negative Ra in Fig. 
6 is used in the course of impedance measurements on the 
MMC experimental setup, where the circulating current 
reference is the same as that with positive Ra, i.e., 

* 3cx dci P V . 

At first, the ac-side small-signal impedance of the MMC 
with open-loop control was measured in the case of no VRC 
control, as shown in Fig. 20, where it can be seen that there is a 
good agreement between the experimental measurement 
impedance and the analytical model. It is worth noting that 
there is no low-frequency resonance peak in the MMC 
impedance, which is due to the relatively large resistive 
components in the low-voltage MMC experimental setup. 
Furthermore, the analytical impedance is obtained by setting 
the arm resistance R = 1 Ω, which shows a good matching with 
the experimental results. It indicates that the equivalent arm 
resistance of the MMC experimental setup is approximately 
equal to 1 Ω. Since the effect of the circulating current control 
with positive Ra is similar to that of the physical arm resistance, 
the measurements for the MMC impedance under the 
circulating current control with positive Ra are no longer given 
in this paper. 

 
Fig. 20.  Experimental measurement impedance with open-loop control and 
without VRC. 

 
 
Then, the ac-side small-signal impedances of the MMC with 

VRC control were measured in the experiments, as shown in 
Fig. 21 and Fig. 22, where the proportional gain Ra = -1. Fig. 21 
and Fig. 22 are the comparisons between the analytical and 
experimentally measured impedances of the MMC with 
open-loop control and ac voltage closed-loop control, 
respectively. As can be seen, although there exist some error at 
lower frequencies, the experimental measurements exhibit 
good overall matching to the analytical impedances. In addition, 
it is worth noting that the low-frequency resonance peaks 
appear in the MMC impedances when the resistance 
compensation strategy is used, which confirms the 
effectiveness of the proposed resistance compensation strategy. 

It is noted that the differences between the experimental and 
analytical impedances in the low-frequency range (e.g., <150 
Hz) are larger than those at higher frequencies, which can be 
attributed to two reasons. The first reason is that there are large 
background noises around fundamental frequency so that the 
injected perturbation signals at frequencies around fundamental 
frequency are difficult to be accurately extracted, even though 
having subtracted the original harmonic components in the 
voltage and current (before injecting the small perturbation) 
from the perturbed voltage and current (after injecting the small 
perturbation), since some exogenous frequency contents may 
be generated due to the nonlinear and non-ideal components in 
the experimental setup. The second reason is due to the effect of 
the internal harmonic dynamics and interaction between 
harmonic components of arm and line quantities of MMC, 
which could further affect the measurement results. 
Nevertheless, since the impedance characteristics of the MMC 
in the high-frequency range (>150 Hz) are inductive which are 
dominated by the arm inductance, the MMC impedance can be 
regarded to be linear in the high-frequency range. Hence, there 
exist much less background harmonics or exogenous frequency 
contents in this frequency range so that the magnitudes and 
phase angles of the MMC impedance are easier to be accurately 
measured compared to the lower frequencies. 
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Fig. 21.  Experimental measurement impedance with open-loop control and 
with VRC. 
 

 
Fig. 22.  Experimental measurement impedance with ac voltage closed-loop 
control and with VRC. 

 

VI. CONCLUSION 

This paper presents the small-signal impedance modeling of 
the MMC based on the HSS method. The HSS method is first 
used for the MMC modeling, which considers all the internal 
harmonics within MMC. The steady-state and small-signal 
HSS models of the MMC are developed, based on which, the 
small-signal impedance of the MMC is then derived. The 
simulation and experimental results validate the proposed 
models. The results show that the MMC internal harmonics 
have a great impact on the terminal impedance of the MMC in 
the low-frequency range (<150 Hz). Furthermore, different 
control schemes are also considered to reveal the impact of the 
control on the MMC impedance. The proposed MMC 
impedance model has been used to analyze the stability of the 
MMC-HVDC connected wind farm, which shows the 
feasibility of the proposed impedance model. 
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