Harmonic sums and polylogarithms at negative multi-indices

Gérard H. E. Duchamp ${ }^{\curvearrowright}$ - Hoang Ngoc Minh ${ }^{\diamond}$ - Ngo Quoc Hoan^
${ }^{\circ}$ Paris XIII University, 93430 Villetaneuse, France, gheduchamp@gmail.com
\diamond Lille II University, 59024 Lille, France, hoang@univ-lille2.fr
* Paris XIII University, 93430 Villetaneuse, France, quochoan_ngo@yahoo.com.vn

Abstract

Extending the Faulhaber's formula, the Bernoulli polynomials and the Eulerian polynomials, we study the multi-indexed harmonic sums and polylogarithms. Our techniques are based on the combinatorics of the noncommutative generating series in the quasi-shuffle ${ }^{1}$ Hopf algebra.

1 Introduction

In this paper, in order to implement the renormalization of the following divergent polyze$\operatorname{tas}[11,12,6]$

$$
\sum_{n_{1}>\ldots>n_{r}>0} n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}, \quad \text { for } \quad s_{1}, \ldots, s_{r} \in \mathbb{N}
$$

we study, via the combinatorics of noncommutative generating series in the Hopf quasishuffle algebra [9, 10], the relations among harmonic sums and polylogarithms, indexed by the words $y_{s_{1}} \ldots y_{s_{r}}$ belonging to the monoid Y_{0}^{*}, generated by the alphabet $Y_{0}=\left\{y_{k}\right\}_{k \geq 0}$ and among their noncommutative generating series. They are defined as follows

$$
\mathrm{H}_{y_{s_{1}} \ldots y_{s_{r}}}^{-}(N):=\sum_{n_{1}>\ldots>n_{r}>0}^{N} n_{1}^{s_{1}} \ldots n_{r}^{s_{r}} \quad \text { and } \quad \operatorname{Li}_{y_{s_{1}} \ldots y_{s_{r}}}^{-}(z):=\sum_{n_{1}>\ldots>n_{r}>0} n_{1}^{s_{1}} \ldots n_{r}^{s_{r}} z^{n_{1}}
$$

where $r, N \in \mathbb{N}_{+}$and $z \in \mathbb{C}$ such that $|z|<1$. In particular, for $r \in \mathbb{N}_{+}$, we have

$$
\mathrm{H}_{y_{0}^{r}}^{-}(N)=\binom{N}{r} \quad \text { and } \quad \mathrm{Li}_{y_{0}^{r}}^{-}(z)=\left(\frac{z}{1-z}\right)^{r}
$$

Let us introduce also the following noncommutative generating series ${ }^{2}$, for $t \in \mathbb{C}$,

$$
\begin{align*}
& \mathrm{H}^{-}(N):=\sum_{w \in Y_{0}^{*}} \mathrm{H}_{w}^{-}(N) w \quad \text { and } \quad \Theta(t) \tag{1}\\
& \mathrm{L}^{-}(z):=\sum_{w \in Y_{0}^{*}} t^{(w)+|w|} w=\left(\sum_{y \in Y_{0}^{*}} t^{(y)+1} y\right)^{*}, \tag{2}\\
& C^{-}:=1_{Y_{0}^{*}}+\sum_{w \in Y_{0} Y_{0}^{*}} C_{w}^{-} w, \quad \text { where } \quad C_{w}^{-}:=\prod_{w=u v, v \neq 1_{Y_{0}^{*}}} \frac{1}{(v)+|v|} . \tag{3}
\end{align*}
$$

[^0]
2 Main results

For harmonic sums, we define, firstly, the multiple Bernoulli polynomials $\left\{B_{y_{n_{1}} \ldots y_{n_{r}}}\right\}_{n_{1}, \ldots, n_{r} \in \mathbb{N}}$ by their commutative exponential generating series as follows

$$
\sum_{n_{1}, \ldots, n_{r} \in \mathbb{N}} B_{y_{n_{1}} \ldots y_{n_{r}}}(z) \frac{t_{1}^{n_{1}} \ldots t_{r}^{n_{r}}}{n_{1}!\ldots n_{r}!}=\frac{t_{1} \ldots t_{r} e^{z\left(t_{1}+\ldots+t_{r}\right)}}{\prod_{k=1}^{r}\left(e^{t_{k}+\ldots+t_{r}}-1\right)}, \quad \text { for } \quad z \in \mathbb{C}
$$

or by the following difference equation, for $n_{1} \in \mathbb{N}_{+}$,

$$
B_{y_{n_{1}} \ldots y_{n_{r}}}(z+1)=B_{y_{n_{1}} \ldots y_{n_{r}}}(z)+n_{1} z^{n_{1}-1} B_{y_{n_{2}} \ldots y_{n_{r}}}(z)
$$

For any $w \in y_{s} Y_{0}^{*}, s>1$, we have $B_{w}(1)=B_{w}(0)$. Then let us define also ${ }^{3} b_{w}:=B_{w}(0)$ and $\beta_{w}(z):=B_{w}(z)-b_{w}$. In the same way, for polylogarithms, we extend the Eulerian polynomials [5] as follows, for any $w \in Y_{0}^{*}$,
$A_{w}^{-}(z):=\left\{\begin{aligned} 1 & \text { if } \quad w=y_{0}, \\ \sum_{k=0}^{s_{1}-1} A_{s_{1}, k} z^{k} & \text { if } \quad w=y_{s_{1}} \in Y_{0}-\left\{y_{0}\right\}, \\ \sum_{i=0}^{s_{1}}\binom{s_{1}}{i} A_{y_{i}}^{-}(z) A_{y_{s_{1}+s_{2}-i} y_{s_{3}} \ldots y_{s_{r}}}^{-}(z) & \text { if } \quad w=y_{s_{1}} \ldots y_{s_{r}} \in Y_{0} Y_{0}^{*}, z \in \mathbb{C},\end{aligned}\right.$
where $A_{s_{1}, k}$ are Eulerian numbers. We obtain then the following results

1. For any $w \in Y_{0}^{*}, N \in \mathbb{N}_{+}$and $z \in \mathbb{C}$ such that $|z|<1, \operatorname{Li}_{w}^{-}(z)$ and $\mathrm{H}_{w}^{-}(N)$ are polynomials, with rational coefficients on $(1-z)^{-1}$ and N respectively, of valuation 1 and of degree $(w)+|w|$. Moreover,

$$
\lim _{N \rightarrow+\infty} \frac{\mathrm{H}_{w}^{-}(N)}{N^{(w)+|w|}}=\lim _{z \rightarrow 1} \frac{(1-z)^{(w)+|w|}}{((w)+|w|)!} \mathrm{Li}_{w}^{-}(z)=C_{w}^{-} \in \mathbb{Q}
$$

2. For any $n_{1}, \ldots, n_{r}, N \in \mathbb{N}_{+}$, we have ${ }^{4}$

$$
\begin{array}{r}
\beta_{y_{n_{1} \ldots y_{n_{r}}}}(N)=\sum_{k=1}^{r}\left(\prod_{i=1}^{k} n_{i}\right) b_{y_{n_{k+1} \ldots y_{n_{r}}}} \mathrm{H}_{y_{n_{1}-1 \ldots y_{n_{k}-1}}^{-}(N-1)}, \\
\mathrm{H}_{y_{n_{1} \ldots y_{n_{r}}}^{-}}(N)=\frac{\beta_{y_{\left(n_{1}+1\right)} \ldots y_{\left(n_{r}+1\right)}}(N+1)-\sum_{k=1}^{r-1} b_{y_{\left(n_{k+1}+1\right)}^{\prime} \ldots y_{\left(n_{r}+1\right)}} \beta_{y_{\left(n_{1}+1\right) \ldots y_{\left(n_{k}+1\right)}}(N+1)}}{\prod_{i=1}^{r}\left(n_{i}+1\right)} .
\end{array}
$$

where $b_{n_{k}}^{\prime}=b_{n_{k}}$ and $b_{n_{k} \ldots n_{r}}^{\prime}=b_{n_{k} \ldots n_{r}}-\sum_{j=0}^{r-1-k} b_{n_{k+j+1} \ldots n_{r}} b_{n_{k} \ldots n_{k+j}}^{\prime}$ for any $1 \leq k \leq r$.

[^1]3. For any $w=y_{s_{1}} \ldots y_{s_{r}} \in Y_{0}^{*}$, we get on the one hand ${ }^{5}$
$$
\operatorname{Li}_{w}^{-}(z)=\left(\theta_{0}^{s_{1}+1} \iota_{1}\right) \ldots\left(\theta_{0}^{s_{r-1}+1} \iota_{1}\right) \operatorname{Li}_{y_{s_{r}}}^{-}(z)=\left(\frac{z}{1-z}\right)^{|w|} \frac{A_{w}^{-}(z)}{(1-z)^{(w)}},
$$
and on the other hand
(a) If $r=1$, then we have $\mathrm{Li}_{y_{s_{1}}}^{-}(z)=\sum_{k=1}^{s_{1}} S_{2}\left(s_{1}, k\right) k!\frac{z^{k}}{(1-z)^{k+1}}$, where $\left\{S_{2}\left(s_{1}, k\right)\right\}_{1 \leq k \leq s_{1}}$ are the Stirling numbers of second kind. Hence,
$$
\forall k \in \mathbb{N}_{+}, \quad \frac{1}{(1-z)^{k}}=\frac{(-1)^{k+1}}{1-z}+\sum_{j=2}^{k} \frac{(-1)^{k+j} S_{1}(k, j)}{k!} \mathrm{Li}_{y_{j-1}}^{-}(z),
$$
where $\left\{S_{1}\left(s_{1}, k\right)\right\}_{1 \leq k \leq s_{1}}$ are the Stirling numbers of first kind.
(b) If $r>1$ then $\mathrm{Li}_{y_{s_{1}} \ldots y_{s_{r}}}^{-}(z)=\left(\frac{z}{1-z}\right) \sum_{i=r}^{k 0 c_{1}} \sum_{j=0}^{s_{1}+\ldots+s_{r}} l_{i, j}^{s_{1} \ldots+s_{r-1}} l^{\frac{z^{i-1-j}}{(1-z)^{i}}}$, where for $r \leq i \leq s_{1}+\ldots+s_{r}$ and $0 \leq j \leq s_{1}+\ldots+s_{r-1}, l_{i, j}$ are defined as follows,
\[

$$
\begin{gathered}
l_{i j}=\sum_{\substack{1 \leq k_{t} \leq s_{t} \\
k_{1}+\ldots+k_{r}}}\left(\prod_{n=1}^{r}\left(k_{n}!S_{2}\left(s_{n}, k_{n}\right)\right)\right) \sum_{\substack{0 \leq t_{m} \leq k_{m} ; \forall m=1, \ldots, r-1 \\
t_{1}+\ldots t_{r-1}=j}} \prod_{p=1}^{r-1} \\
\binom{k_{r}+\ldots+k_{r-p+1}+p-t_{r-p+1}-\ldots-t_{r-1}}{t_{r-p}}\binom{k_{r-p}+t_{r-p+1}+\ldots t_{r-1}}{k_{r-p}-t_{r-p}} .
\end{gathered}
$$
\]

4. The noncommutative generating series H^{-}and C^{-}are group-like, for $\Delta_{\text {แш }}$, and ${ }^{6}$

$$
\lim _{N \rightarrow+\infty} \Theta^{\odot-1}(N) \odot \mathrm{H}^{-}(N)=\lim _{z \rightarrow 1} \Lambda^{\odot-1}\left((1-z)^{-1}\right) \odot \mathrm{L}^{-}(z)=C^{-}
$$

5. There is a law of algebra T which is not dualizable in $\mathbb{Q}\left\langle Y_{0}\right\rangle[7]$ such that the following maps are surjective morphisms of algebras

$$
\begin{aligned}
\mathrm{H}_{\bullet}^{-}:\left(\mathbb{Q}\left\langle Y_{0}\right\rangle, \pm\right. & \longrightarrow\left(\mathbb{Q}\left\{\mathrm{H}_{w}^{-}\right\}_{w \in Y_{0}^{*}}, .\right), \\
\mathrm{Li}_{\bullet}^{-}:\left(\mathbb{Q}\left\langle Y_{0}\right\rangle, \mathrm{T}\right) \longrightarrow\left(\mathbb{Q}\left\{\mathrm{Li}_{w}^{-}\right\}_{w \in Y_{0}^{*}}^{-}, .\right), & w \longmapsto \mathrm{Li}_{w}^{-}
\end{aligned}
$$

Moreover, $\operatorname{ker} \mathrm{H}_{\bullet}^{-}=\operatorname{ker~Li}_{\bullet}^{-}=\mathbb{Q}\left\langle\left\{w-w \top 1_{Y_{0}^{*}} \mid w \in Y_{0}^{*}\right\}\right\rangle$.
6. Let $\mathrm{T}^{\prime}: \mathbb{Q}\left\langle Y_{0}\right\rangle \times \mathbb{Q}\left\langle Y_{0}\right\rangle \longrightarrow \mathbb{Q}\left\langle Y_{0}\right\rangle$ be a law such that $\mathrm{Li}_{\bullet}^{-}$is a morphism for T^{\prime} and such that $\left(1_{Y_{0}^{*}} \top^{\prime} \mathbb{Q}\left\langle Y_{0}\right\rangle\right) \cap \operatorname{ker}\left(\mathrm{Li}_{\bullet}^{-}\right)=\{0\}$. Then $\top^{\prime}=g \circ \top$ where $g \in G L\left(\mathbb{Q}\left\langle Y_{0}\right\rangle\right)$ such that $\mathrm{Li}_{\bullet}{ }^{-} \circ g=\mathrm{Li}_{\bullet}^{-}$.
7. $\left\{\mathrm{H}_{y_{k}}^{-}\right\}_{k \geq 0}$ (resp. $\left\{\mathrm{Li}_{y_{k}}^{-}\right\}_{k \geq 0}$) are \mathbb{Q} - linearly independent.
${ }^{5}$ Here, we use the operators over polylogarithms $\theta_{0}: g(z) \longmapsto z \frac{d}{d z} g(z)$ and $\iota_{1}: g(z) \longmapsto \int_{0}^{z} \frac{g(t) d t}{1-t}$.
${ }^{6}$ Here, the Hadamard product is denoted by \odot and its dual law is denoted by Δ_{\odot}. The inverses of Θ and Λ, for the Hadamard product [13], are denoted respectively by $\Theta^{\odot-1}$ and $\Lambda^{\odot-1}$ (their coefficients do not vanish). One obtains then an Abel like theorem for the noncommutative generating series given in (1), (2) and (3).

References

[1] G.H.E. Duchamp, S.Goodenough and K.A. Penson- Rational Hadamard products via Quantum Diagonal Operators,
Arxiv arXiv:0810.3641 [cs.SC]
[2] Pawel Blasiak, Philippe Flajolet- Combinatorial Models of Creation-Annihilation Séminaire Lotharingien de Combinatoire, B65c (2011)
[3] T. Arakawa, M. Kaneko- Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189-209.
[4] J. Faulhaber- Darinnen die miraculosische Inventiones zu den hochsten Cossen weiters continuirt und profitiert werden, Academia Algebrae (1631).
[5] D. Foata, M.-P. Schützenberger- Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 138.
[6] H. Furusho, Y. Komori, K. Matsumoto, H. Tsumura- Desingularization of multiple zetafunctions of generalized Hurwitz-Lerch type, 2014.
[7] V.C. Bui, G.H.E. Duchamp, N. Hoang, V. Hoang Ngoc Minh, C. Tollu- Combinatorics on the ϕ-deformed stuffle product, arXiv:1302.5391
[8] Hoang Ngoc Minh- Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, in the proceeding of 4 -th International Conference on Words, pp. 232-250, September, 10-13, 2003, Turku, Finland.
[9] Hoang Ngoc Minh- On a conjecture by Pierre Cartier about a group of associators, Acta Math. Vietnamica (2013), 38, Issue 3, pp. 339-398.
[10] Hoang Ngoc Minh- Structure of polyzetas and Lyndon words, Vietnamese Math. J. (2013), 41, Issue 4, pp. 409-450.
[11] Guo L., B. Zhang- Renormalization of multiple zeta values, Journal of Algebra 319 (2008): 3770-809.
[12] D. Manchon, S. Paycha- Nested sums of symbols and renormalized multiple zeta values, International Mathematics Research Notices, Vol 2010, N. 24, p. 4628-4697.
[13] C. Reutenauer-Sur les éléments inversibles de l'algèbre de Hadamard des séries rationnelles, Bulletin de la Société Mathématique de France, 110 (1982), p. 225-232

[^0]: ${ }^{1}$ The quasi-shuffle product is denoted by \downarrow and its coproduct by $\Delta_{ \pm+}$.
 ${ }^{2}$ We denote the length and the weight of $w=y_{s_{1}} \ldots y_{s_{r}} \in Y_{0}^{*}$ by the numbers $|w|=r$ and $(w)=$ $s_{1}+\ldots+s_{r}$, respectively.

[^1]: ${ }^{3}$ The number b_{w} is also called multiple Bernoulli number which differ from those defined in [3, 8] or in [11, 12].
 ${ }^{4}$ The identity (4) extends the Johann Faulhaber's formula (obtained for $r=1$) [4].

