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Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a

difficult problem. The wide range of sounds which elicit pitch and a lack of agreement

across neurophysiological studies on how pitch is encoded by the brain have made this

attempt more difficult. In describing the potential neural mechanisms by which pitch may

be processed, a number of neural networks have been proposed and implemented.

However, no unsupervised neural networks with biologically accurate cochlear inputs

have yet been demonstrated. This paper proposes a simple system in which pitch

representing neurons are produced in a biologically plausible setting. Purely unsupervised

regimes of neural network learning are implemented and these prove to be sufficient in

identifying the pitch of sounds with a variety of spectral profiles, including sounds with

missing fundamental frequencies and iterated rippled noises.

Keywords: competitive neural network, auditory brain, pitch identification, harmonic training, unsupervised

learning

1. INTRODUCTION

1.1. Pitch and the Auditory Brain
Pitch, an entirely perceptual phenomenon, conveys a great deal of semantic information in speech,
music and animal vocalizations, and plays a key role in our ability to attend to a single object in
our noisy natural environments. It can be described as the tonal (low or high) quality of sound,
which is most often acoustically associated with the periodicity of that sound. A pitch experienced is
generally characterized by its fundamental frequency (F0), the pure tone (Figure 1, top row) which
produces the most similar experience. Natural sounds which exhibit pitch can be shown to contain
not only a fundamental frequency but also energy in frequency components which are integer
multiples of this F0 (i.e., higher harmonics). We shall refer to such pitch stimuli as “F0-containing
stimuli.” However, the features which make pitch perception an interesting phenomenon are the
full range of instances in which a pitch sensation is elicited despite the sound having very different
acoustical characteristics to this well defined case.

An interesting feature emerges when the fundamental frequency of a pitch is removed (Figure 1,
middle row). This type of pitch is referred to as a missing fundamental (MF) pitch. Although the
resulting sound has energy only at higher harmonics, it nonetheless elicits a perception of pitch
at the fundamental frequency, which corresponds to the highest common multiple of the present
harmonics. Another interesting sound which is able to elicit a pitch percept is an iterated rippled
noise (Figure 1, bottom row) (Yost, 1996). Iterated Rippled Noises (IRNs) are sounds in which
broadband noise is added to itself multiple times at a given time delay. This time delay is the period
of the resulting pitch experienced by the listener. Thus, as the sound is made up of broadband noise,
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FIGURE 1 | Various stimuli (left) which elicit a sensation of

approximately the same pitch and their corresponding Fourier

Transforms (shown right). The top row shows a pure tone, the middle row

shows the first 10 harmonics of the preceding tone without the fundamental

frequency (i.e., a missing fundamental stimulus) and the bottom row shows an

Iterated Rippled Noise stimulus (30 iterations of addition).

amplitude variations in the sound waveform remain largely
irregular, but become more periodic as the number of delay-and-
add iterations are increased. Nonetheless, there is a very clear set
of regular peaks in the frequency spectrum and listening to such
a sound produces a sensation of pitch.

Sound waves are first transduced into neural signals in
the cochlea. Here, the primary auditory nerve fibers act as a
gammatone filter bank, each tuned to a different frequency in
the sound. This produces a logarithmically-spaced frequency
representation of the sound, known as the tonotopic map. Due
to the logarithmic spacing, these cochlear filters are broader
for higher frequencies, such that only the lower harmonics
(approximately the first 6–10 harmonics) of a pitch-evoking
sound are resolved on this map (Glasberg and Moore, 1990).
Harmonics which lie above this range are generally difficult to
distinguish due to the overlap and proximity of cochlear hair cell
frequency receptive fields. In order to extract the pitch of the
sound, the higher auditory system must integrate information
across the cochlear frequency filters in order to compute the
spacing between harmonics.

The place theory of pitch suggests that because hair cells
and, in turn, auditory nerve fibers, are topographically mapped
according to their preferred frequency, pitch is represented as
the spatial pattern of excitation across this map (Goldstein,

1973; Cohen et al., 1995). Temporal theories instead point out
that as pitch-evoking sounds are periodic, their pitch can be
derived from the temporal dynamics of cochlear activation. Due
to the ability of neurons in the cochlea and auditory brain to
produce action potentials that are phase locked to the envelope
of a sound stimulus, the pitch of a sound can be derived
as the dominant periodicity of spiking in responses that are
pooled across the auditory nerve fibers (Cariani and Delgutte,
1996). The temporal theory can explain how we experience
pitch even when only high numbered, unresolved harmonics are
present in a sound (Moore et al., 1985; Shackleton and Carlyon,
1994; Bernstein and Oxenham, 2003). However, temporal theory
has more recently been argued to be insufficient to provide a
complete description of pitch (Shamma, 2004; Oxenham et al.,
2011). A combined model of both place and temporal pitch
encoding is likely to be necessary to explain the full range
of stimuli that evoke a perception of pitch, and these more
complex models are being developed (Shamma and Klein, 2000;
Oxenham, 2008).

This paper describes how neurons might be expected to form
a representation of pitch when provided with input from a
biologically realistic cochlear model. The model implemented
was based upon information in the place code alone and was not
tested to determine how temporal information might contribute
to the resulting pitch representation. We propose that a simple
system based upon place theory alone can produce neurons that
identify the pitch of a range of complex sounds, includingmissing
fundamental and IRN stimuli.

2. METHODS

2.1. Cochlear Model
The cochlear model implemented in this paper has been shown to
reproduce a number of phenomenon in the auditory nerve. Some
of the features which allow it to do so are: two modes of basilar
membrane excitation contributing to Inner Hair Cell (IHC)
firing [via parallel filters and transduction through separate
filters (Zilany and Bruce, 2006)] and power-law adaptation
of IHC firing [as shown to be better suited to reproduction
of physiological data when compared to alternatives (e.g.,
exponential adaptation) (Zilany et al., 2009)]. More recently
still, tuning parameters based either on the cat cochlea or the
human cochlea (Zilany et al., 2014) have been made available.
The implementation of the Zilany model was achieved by use
of the online available Cochlea library (Rudnicki and Hemmert,
2014). In order to produce the response of the cochlea to various
auditory stimuli we implemented this as the first stage of the
network. For our rate coded implementation, we removed the
fine structure of the neural firing patterns and therefore defined
the auditory nerve fiber (ANF) firing rates as the average of their
temporally varying firing rates over the entire time period of the
stimulus.

Our simulations implemented the Cochlea model with 2500
ANFs in the range 125 to 20,000 Hz. These ANFs were each
normalized and their outputs were provided to the neural
network as the set of input neurons.
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2.2. Network Model
The rate coded neural network is a 1-layer model (i.e., one
layer of modifiable synapses) with full feedforward connectivity
as shown in Figure 2. There is an input layer of cells
which represent the output of the cochlea with associatively
modifiable synaptic connections onto an output layer of cells.
There is competition between neurons in the output layer,
which in the brain is implemented by inhibitory interneurons.
This mechanism allows the network to self-organize pitch
representations in the output layer through associative learning
on the afferent connections to these neurons. Thus, the model
reflects the general architecture and operational principles
of cortex. Furthermore, it has the minimal architecture that
captures the essential learning mechanisms demonstrated in
this paper that lead to the emergence of representations of
pitch.

Individual output cells in this network learn to represent the
pitch of the sound stimulus presented to the network through a
form of coarse coding. That is, as pitch perception occurs over a
continuum, neurons are expected to learn to respond over some
interval of pitch with a peaked response curve.

At each time-step during learning, an input pattern is applied
to the layer of input cells (the Auditory Nerve Fiber layer).
This consists of setting the firing rates of the input cells
equivalent to the ANF firing rates produced by the cochlear
model. Next, activity from the input layer is propagated through
the feedforward connections to activate the cells in the output
layer.

The activation of the cells in the output layer are calculated
according to

hi =
∑

j

wijrj (1)

where hi is the activation of output neuron i, wij is the weight of
the synapse from input neuron j and output neuron i, and rj is
the firing rate of input neuron j.

The activation hi of each output neuron is then converted
to their firing rate ri using a threshold non-linear activation
function. This sigmoid activation function has the form

ri = 1/(1+ e−2β(hi−α)) (2)

FIGURE 2 | The network structure implemented.

where ri is the firing rate of the output neuron i, β is the slope
of the sigmoid function, α is the threshold of activation of the
sigmoid function, and hi is the activation of the output neuron i.

Within the output layer there is competition implemented
by shifting the threshold α of the non-linear sigmoid activation
function. Adjustment of the threshold is carried out in order
to achieve a prescribed sparseness of the representation in the
output cells. Sparseness is defined as the proportion [0, 1]
of neurons that are active in the output layer. This shifting
threshold and defined sparseness represents a process by which
mutual inhibition between the output cells through inhibitory
interneurons implements competition to ensure that there is only
a small winning set of output cells left active. The sparseness was
fixed for all simulations at 10%. This was achieved by determining
the threshold of the activation function at which this sparseness
would be achieved. In this case, as there were 200 output neurons
and we desired 10% sparseness, the threshold α of the activation
function (1) was set equal to the activation of the output neuron
with the 20th highest computed activation h. The threshold
implemented was the same for all output neurons during a single
presentation and redefined on each subsequent presentation
of a stimulus. Varying the sparseness had no significant effect
upon the network performance and solely altered the number
of neurons which collectively responded to a given training
stimulus. The learning rate and sigmoidal slope shown in
Table 1 were chosen through a grid search of parameter space
to find the parameters which resulted in the greatest network
performance.

Next, the synaptic weights between the active input cells and
the active output cells are strengthened by associative (Hebbian)
learning. The output cells self-organize to represent and thus
categorize different patterns of activity in the input layer. The
associative Hebb learning rule is defined

δwij = krirj (3)

where δwij is the change in the weight between input neuron j
and output neuron i, k is the learning rate constant, ri is the
firing rate of the output neuron i and rj is the firing rate of the
input neuron j. To prevent the same few neurons from always
winning the competition, the synaptic weight vectors are set to
unit length after each learning update for each training pattern.
To implement weight vector normalization the synaptic weights
were rescaled to ensure that for each output cell i we have

√

∑

j

(wij)2 = 1 (4)

TABLE 1 | The parameters used for the simulations described in this

section (except where stated otherwise in text).

Parameter Value

Learning rate 0.25

Sigmoidal slope 17.45

Sparseness 10%

Number of epochs 50
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where the sum is over all input cells j. Such a renormalization
process was observed in coronal slices of the amygdala by Royer
and Paré (2003). Such a mechanism would require interaction
between the cells in the output layer and is therefore an
augmentation to our proposed connectivity.

The competitive network contained 2500 input cells, 200
output cells and was fully connected. The synaptic weights from
the input to output cells were initially set to random values
from a uniform distribution in the range 0–1, and then the
weight vector of the individual output cells are normalized to
a vector length of 1. Each simulation employed a set of stimuli
spanning a range of fundamentals from 200 to 600 Hz. These
pitch stimuli were individually presented to the network after
being processed through the cochlear model. For each individual
stimulus, presentation involved calculating the average firing
rates of the 2500 Auditory Nerve Fibers (ANFs) in the cochlear
model, normalizing across these ANFs, and setting the firing
rate of the input cells to the model according to the normalized
average firing rate of their corresponding ANF.

Unless stated otherwise, all models described in this paper
used the set of parameters described in Table 1.

The presentation of all possible stimulus training patterns (in
a randomized order) corresponds to one training epoch. Unless
stated otherwise, for each experiment there were 50 training
epochs to ensure convergence of the synaptic weights.

2.3. Single Cell Information Analysis
A single cell information measure was implemented to analyse
output neuron performance (Rolls and Milward, 2000). This
measure determined how much information an individual
neuron’s activation provided about the pitch category to which a
given stimulus belonged. The calculation of information is based
upon Shannon’s information theory, describing the amount of
information, I(s, r), that a set of possible responses, R, give about
a stimulus, s, such that

I(s,R) =
∑

r∈R

P(r|s) log2
P(r|s)

P(r)
(5)

where r is a response from the set of possible responses, R, of a
particular neuron. The information content of a single neuron
is greatest when it is responsive to all sounds which elicit a
given sensation of pitch (associated with some F0) without being
responsive to sounds which elicit a different sense of pitch (of a
different associated F0). The maximum amount of information,
Imax, which a single cell can contain is calculated

Imax = log2 N (6)

where N is the total number of stimuli. Cells will be expected
to increase their amount of information significantly through
training though they may not often reach this maximum due to
the coarse coding discussed above.

2.4. Sound Stimuli
The sound stimuli presented to the network were of three main
categories: F0-containing harmonic tone complexes, missing

fundamental harmonic tone complexes and Iterated Rippled
Noises. All of these stimuli were produce such that the
fundamental frequencies, F0, varied from 200 to 600 Hz in
20 Hz increments. The F0-containing stimuli all contained
10 harmonics (including F0). Missing fundamental stimuli
contained no F0 component but the 9 subsequent harmonics.
Finally, Iterated Rippled Noises were created by producing a
random broadband noise and adding this noise to itself for
30 repetitions (at delays corresponding to the period of the
fundamental frequencies 200 to 600 hz). These sounds were all
presented to the cochlear model scaled to 50 dB SPL with cosine
onset and offset ramps.

The harmonic decay profiles of the harmonics of the F0-
containing stimuli and missing fundamental stimuli were the
only properties varied. Rather than assuming a fixed harmonic
decay profile, we tested the network with a set of variable profiles
(Figure 3). These harmonic decay profiles were chosen to test
how well the network could recall the pitch of a sound when
trained on sounds with varied relative power in their harmonics.
During each training epoch, the network was presented with a
single set of 21 F0-containing stimuli (all with the same harmonic
decay profile) in a randomized order (no pitch presented twice).
This presentation was carried out for 50 epochs of training.

The network was finally tested with the same pitches (F0
values) it was trained with. In this case we first tested to see

FIGURE 3 | The harmonic profiles with which the network was trained

and tested. The decays in amplitude of the harmonics are such that their

amplitude is multiplied by the function exp(−f/τ ) with varying values of the

decay constant τ . Decay constants for the various profiles are as follows: (A)

τ=F0; (B) τ=(10/3)F0; (C) τ=(10/2)F0; (D) τ=(10)F0. Profile (E) has no

harmonic decay and therefore has a constant amplitude.
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whether the neurons were able to distinguish the different pitches
by presenting F0-containing stimuli and observing the output.
Finally, missing fundamental stimuli were presented and the
output once again observed to check whether our network was
capable of correct pitch categorization.

It is important to note that in all results presented hereafter,
training was carried out only with F0-containing stimuli.

3. RESULTS AND DISCUSSION

The key question in this study was whether the network trained
on harmonic complex tones that included F0 could generalize
pitch categorization to missing fundamental stimuli. We began
by analysing the network response when it was trained and tested
with no harmonic decay (Figure 3E). The neurons in Figure 4

were sorted according to the locations of their highest peaks
in firing rate responses and the “block”-like structure observed
in these responses (groups of neurons responding to a given
stimulus as a set) is an effect the sparseness value implemented
in the network. Figure 4A shows that the unsupervised network
was able to produce responses that were tuned to the pitch
percepts of harmonic tone complexes after this network was
trained with those same stimuli.

We observe that the network produces a fairly clean
representation of the range of pitch stimuli presented. This
figure shows that the network converts the input frequency
representation (which has structured peaks based upon the
specific pitch stimulus) into a well defined representation
of pitch in which individual output neurons are tuned to
particular pitches. This same network when tested with missing
fundamental stimuli of no harmonic decay (Figure 4B) is able to

accurately identify the corresponding pitch. This was facilitated
by the fact that no single harmonic in the training of this network
had a greater amplitude than any other. Thus, its training did not
place a disproportionate amount of importance upon the (now
missing) fundamental frequency.

However, one notable feature (of all the results shown in
Figure 4) is the lack of distinct structure in neuron firing
below 300 Hz fundamental frequency. Due to the logarithmic
distribution of frequencies across the cochlea, pitch stimuli of
low fundamental frequencies have highly overlapping higher
harmonics. In the case of the lowest frequency stimuli tested, the
proximity of their highest harmonics becomes so close that they
begin to become indistinguishable in this specific training regime.

We continued this investigation by training and testing the
network with sounds in which the fundamental frequency of
the pitch was greatest in amplitude. The other harmonics were
damped with amplitudes modified by an exponential decay
with decay constant equal to the fundamental frequency of the
pitch (Figure 3A). Figure 5A shows the network’s ability to
identify F0-containing pitch stimuli. The network’s ability to
distinctly represent stimuli with fundamental frequency greater
than 400 Hz appears to be similar to the network performance
when trained on stimuli of no harmonic decay (Figure 4).
However, at the lower fundamental frequency range (<300 Hz)
this training regime appears to produce a network responsemuch
more able to distinguish pitch stimuli. Thus, a network trained
and tested on pitches with sharply decaying higher harmonic
amplitudes outperforms the network trained and tested on
constant harmonic amplitudes (Figure 4A) when tested on F0-
containing stimuli of low fundamental frequency (<300 Hz).

However, as can be observed in Figure 5B, training with
decaying harmonic amplitudes does not allow a generalization

FIGURE 4 | The neuronal firing rate profiles were sorted along the y-axis after the simulation according to the location of their highest peak. (A) The

network response when it was trained and then tested with F0-containing stimuli with no decay in the harmonic profile. (B) Response when trained with F0-containing

stimuli and then tested with missing fundamental stimuli (again of no harmonic decay).
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FIGURE 5 | (A) The network response when it was trained and then tested with F0-containing pitch stimuli of harmonic profile with exponential decay (τ = F0).

(B) Response when trained with F0-containing stimuli and then tested with missing fundamental pitch stimuli of harmonic amplitude exponential decay (τ = F0).

of pitch representations from harmonic tone complexes to
missing fundamental sounds. Training the network with stimuli
so heavily weighted to their fundamental frequencies results
in a network almost solely dependant upon that frequency.
Thus, removal of the fundamental frequency means that the
remaining sound is characterized by the next harmonic of
highest intensity (i.e., double the fundamental frequency). This
results in each pitch stimulus appearing to have a fundamental
frequency that is double the true fundamental frequency and
the network misidentifies the pitch of the missing fundamental
stimulus as a single octave above what it should be. For example,
neurons tuned to a pitch of 400 Hz in harmonic tone complexes
containing F0, respond to missing fundamental sounds with a
pitch of either 400 or 200 Hz. Thus, training a network with
stimuli of sharp harmonic amplitude decay does not lead to the
development of output neurons that correctly identify missing
fundamental stimuli. In this respect, constant amplitude training
and testing performs more accurately (Figure 4B).

In testing and training the above described networks, the
question arose as to what harmonic decay profile would be
the limit beyond which a missing fundamental stimulus would
give rise to an incorrect pitch assignment. This was investigated
by training and testing the network with stimuli of different
harmonic decay profiles as shown in Figures 3B–D. It was found
that the harmonic profile for which the decay of the harmonic
amplitudes followed exp(10f /F0) (Figure 3D) was the point of
change. A larger decay constant allows the neurons to learn a
more accurate identification of the MF pitch stimulus. A smaller
harmonic decay constant leads to the network misidentify low
frequency missing fundamental stimuli (<400Hz) as one octave
too high.

In order to replicate the mechanisms by which the brainmight
learn pitch stimuli more realistically, the network architecture

was trained with pitches of harmonic decay which were randomly
varied across stimuli on every epoch of training for 100
epochs. The variation in the harmonic decay was achieved
by setting the decay constant τ = F0 · exp(x) where x
was a randomly chosen real number between zero and ten
for each pitch. Thus, the training stimuli varied from sharp
exponential decays to almost constant amplitude stimuli. It
is important to note that having the decay constant chosen
randomly from an exponential distribution resulted in training
with many instances of sounds with a large decay constant and
fewer instances of sounds with very short decay constants. This
style of training was required in order to develop the results
described. In this regime, the stimuli were different for every
single epoch with no sound (of a given decay) repeated during
training.

This training resulted in a network response (Figure 6)
capable of identifying both decaying and non-decaying
harmonics with varying degrees of accuracy for F0 containing
and MF stimuli. Crucially, exponentially decaying and
constant amplitude stimuli performed close to equally well
in representation of F0 containing stimuli. The network shows
a greater discrimination of stimuli with low fundamental
frequency (<300 Hz) when tested with constant amplitude
pitches that in previous training cases (Figure 6C compared
to Figure 4A). It is proposed that this performance increase
is due to a more appropriate distribution of synaptic emphasis
upon the fundamental and higher harmonics of the stimuli as
a result of the training regime. Another important observation
is that the exponentially decaying stimuli have a much less
structured MF stimulus response, though the issue of pitch
octave misidentification has been somewhat addressed. This
result emphasizes the potential importance of training of the
auditory brain with pitches of differing harmonic decay profiles.
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FIGURE 6 | The network was trained with pitches of randomly selected harmonic decay constants. The network responses when testing the network with:

(A) F0-containing stimuli with Harmonic decay constant τ = F0; (B) The same stimuli as (A) but with missing fundamentals; (C) Constant Harmonic Amplitude stimuli;

(D) The same stimuli as (C) but with missing fundamentals.

The biological relevance of this is something which could
potentially be tested in psychoacoustic experiments.

When single cell information theoretic analyses were applied
to the data shown in Figure 6 it was found that there was a
significant increase in single cell information from the untrained
to the trained case (Figure 7, left) as expected. This analysis was
applied by binning the responses of each cell to each stimulus
into one of two types. All cells with firing rate greater than 0.5
were placed into one bin and cells with lower than 0.5 firing rate
into the other. These bins essentially described (by a very coarse
separation) whether a cell was in one of two states: active or
inactive. With this assignment of neuron state, the information

present in single neurons with respect to stimulus frequency was
also shown to be very high for the majority of the frequency
range (Figure 7, right). This plot also shows a comparison of
the network being presented to an identical network in which
the initial random weights were drawn with a different random
seed. As can be observed, most of the variation in the information
across stimuli can be attributed to the specific initial weight
distribution. For frequencies above 540 Hz, there is some drop
in single cell information which can be traced to the response
of these cells to adjacent pitch stimuli being very similar to one
another. Stimuli in this region are however distinguishable by
firing rate and therefore this coarse separation of cells into simply

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2016 | Volume 10 | Article 24

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ahmad et al. Harmonic Training and Pitch Representation

FIGURE 7 | Information theoretic analyses for the network trained on randomly selected harmonic decay profiles. The analyses are calculated using the

responses shown in Figure 6. Left, the ranked single cell information for the output neurons before and after training. Right, the maximum amount of information that

any single cell has with respect to each stimulus in the investigated frequency range. The trained and untrained cases are shown with analysis of a network trained

with a different set of initial random weights (with a different seed for the number generator). This illustrates that most of the variation in information is due to the

specific random seed.

firing/not firing is a simplification. In a much larger network
(withmore coverage of different initial weight combinations), the
variations observed in the information per stimulus type would
be less apparent and more informative neurons emerging more
readily.

A further test carried out with this network was how well it
could categorize the pitches of Iterated Rippled Noises (IRNs)
(Figure 8). The network was tested and trained as described
above (randomly chosen harmonic decay profiles) and is the
same network used to produce Figure 6. Despite the network
having never been trained with IRNs, the output shows an ability
to separate the IRN stimuli into the various pitch stimuli in a
similar arrangement to that seen for the more conventional pitch
stimuli. The occasional anomalous behavior may be attributed to
the fact that the network was only trained with 10 harmonics for
each pitch and the IRN stimuli contain frequency components at
many higher harmonics. In order to assess this network’s ability to
identify individual IRN stimuli, the single cell information theory
was re-calculated with the IRN stimuli responses included. As can
be observed in Figure 9, including the IRN responses does not
significantly affect the network’s information content. The lowest
fundamental frequency (<300Hz) stimuli are observed to have a
reduction in information. This is attributed to the the fact that
the network was not trained on any more than 10 harmonics
(whereas the IRNs had many more than 10 harmonics) and
low F0 pitches have high harmonics in very close proximity.
Therefore, the network performance when tested upon IRNs is
close to equal that of its response to more typical pitch associated
sounds (complex tones).

Overall, the network described in this paper shows a
reasonably good ability to categorize the pitches of both MF
stimuli and IRNs despite never having been trained with
examples of these sounds. Furthermore, since this network uses
no temporal cues to categorize pitch stimuli, the results support
a place theory of pitch (see Introduction) via a very simple
mechanism.

FIGURE 8 | The network response to Iterated Rippled Noise stimuli

when the network was trained with harmonic tone complexes of

randomly selected harmonic decay constants.

Relatively few Neural Network based models have been
published in relation to mechanisms of pitch decoding. Among
these, fewer still have been based upon unsupervised learning
rules. In some cases (Sano and Jenkins, 1989; Taylor and
Greenhough, 1994), a supervised network with backpropagation
of error was implemented and tested. Such a method of learning
requires that specific neurons are “informed" that they must
respond to a given stimulus and the neuronal weights are altered
to ensure that this is true. This appears too far removed from
the neural and synaptic dynamics of the brain to be plausible.
Furthermore, the fact that other primates and mammals have
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FIGURE 9 | Information theoretic analyses for the network trained on

randomly selected harmonic decay profiles. Calculated using the

responses shown in Figures 6, 8. This plot shows the maximum amount of

information that any single cell has with respect to each stimulus in the

investigated frequency range. The trained network is analyzed with the

responses in Figure 6 and with/without the responses in Figure 8. As can be

observed, including IRN responses only reduces the information content of

cells informative at low frequencies.

perceptions of pitchmeans that it is difficult to prove that external
supervision could drive the development of such a network.

Recently an attempt was made to implement an unsupervised
self-organizing map (Zarras et al., 2012). This model was able to
form a fairly well defined representation of absolute frequency
when trained with pure frequencies. After this training, the
network was then tested with F0-containing harmonic tone
complexes and missing fundamental stimuli and was not able
to distinguish the pitches well and entirely unable to identify
MF pitches. The network was then trained with harmonic tone
complexes including their F0. The output network learned to
classify the pitch of these harmonic tone complex, but only for
higher pitched sounds. However, the model was not tested onMF
stimuli or IRNs, so it is unclear if the network’s pitch rules could
generalize to other types of pitch-evoking sounds.

Another recent and particularly interesting attempt to
represent pitch in an unsupervised network is an implementation
of a spiking neural network (Laudanski et al., 2014). This paper
implemented both a place and temporal code in order to produce
a representation of pitch. In this case, ANFs from all cochlear
locations responding to the harmonics of a pitch were connected
to a given co-incidence detector neuron by axons with finite and
fixed delays based upon the expected delay between the phases of
each harmonic. The fixing of axonal delays was an artificial means
of producing these pitch representing co-incidence detector
neurons, and it is not clear that such axonal delays exist in
the auditory system. Furthermore, while selectively connecting
ANFs that are tuned to related harmonics provides a solution for
harmonic binding of pitches, there is not yet evidence for this
anatomical arrangement in the auditory system.

In this paper we have used a biologically plausible cochlear
model as an input (Zilany et al., 2009, 2014) and investigated
whether an entirely unsupervised learning network in order to
investigate whether a simple arrangement of neurons could form
a representation of pitch and recognize missing fundamental
sounds or IRNs. We found that training the network on F0-
containing harmonic tone complexes with a range of harmonic
decay profiles is key to the ability of the network to learn the
robust determination of pitches when MF stimuli or IRNs are to
be deciphered.

4. CONCLUSION

In this paper, we attempt to create the first entirely unsupervised
competitive neural network structure which can learn to identify
F0-containing stimuli, Missing Fundamental (MF) stimuli, and
Iterated Rippled Noises (IRNs) when presented with biologically
realistic inputs from a simulated cochlea. This network is
found to perform the task of pitch identification well following
training but its performance is found to depend upon the
decay profile of the harmonics with which it is trained. In
particular, when identifying missing fundamental pitch stimuli,
the network requires that the sounds it is trained upon
have higher harmonics of amplitude similar to that of the
fundamental. Single cell information analysis also shows a
high level of information almost the entire stimulus range,
including Iterated Rippled Noises. It is concluded that learning
pitch in such a network requires exposure during training to
stimuli with many different harmonic decay profiles but with
a bias toward equal amplitudes of higher and lower harmonics
(as implemented with the decay constants chosen from an
exponential distribution). Furthermore, the relative success of
this network suggests that for pitch stimuli in this frequency
range, a place theory of pitch provides a significant amount of
information.
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