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Abstract 
 

We are all familiar with power factor, but are we using it to its true potential?  In this paper we 
investigate the effect of harmonics on power factor and show through examples why it is 
important to use true power factor, rather than the conventional 50/60 Hz displacement power 
factor, when describing nonlinear loads. 
 

Introduction 
 

Voltage and current harmonics produced by nonlinear loads increase power losses and, therefore, 
have a negative impact on electric utility distribution systems and components.  While the exact 
relationship between harmonics and losses is very complex and difficult to generalize, the well-
established concept of power factor does provide some measure of the relationship, and it is 
useful when comparing the relative impacts of nonlinear loads–providing that harmonics are 
incorporated into the power factor definition. 
 

Power Factor in Sinusoidal Situations 
 

The concept of power factor originated from the need to quantify how efficiently a load utilizes 
the current that it draws from an AC power system.  Consider, for example, the ideal sinusoidal 
situation shown in Figure 1. 
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Figure 1:  Power System with Linear Load 
 

The voltage and current at the load are 
 

   v(t) = V1sin (ωot + δ1) , (1) 
 

   i(t) = I1sin (ωot + θ1) , (2) 
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where   V1 and   I1  are peak values of the 50/60 Hz voltage and current, and   δ1 and   θ1 are the 
relative phase angles.  The true power factor at the load is defined as the ratio of average power 
to apparent power, or 
 

 pf
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= =  . (3) 

 

For the purely sinusoidal case, (3) becomes 
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where   pf disp  is commonly known as the displacement power factor, and where   δ1 − θ1( ) is 

known as the power factor angle.  Therefore, in sinusoidal situations, there is only one power 
factor because true power factor and displacement power factor are equal. 
 

For sinusoidal situations, unity power factor corresponds to zero reactive power Q, and low 
power factors correspond to high Q.  Since most loads consume reactive power, low power 
factors in sinusoidal systems can be corrected by simply adding shunt capacitors. 
 

Sinusoidal Example 
 

Consider again the case in Figure 1, where a motor is connected to a power system.  The losses 

incurred while delivering the power to the motor are   Irms
2 R .  Now, while holding motor active 

power   Pavg  and voltage   V1rms  constant, we vary the displacement power factor of the motor.  

The variation in losses is shown in Figure 2, where we see that displacement power factor greatly 
affects losses. 
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Figure 2: Effect of Displacement Power Factor on Power System Losses for Sinusoidal 

Example (Note:  losses are expressed in per unit of nominal sinusoidal case where 

  pf true = pfdisp = 1.0) 
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Power Factor in Nonsinusoidal Situations 
 

Now, consider nonsinusoidal situations, where network voltages and currents contain harmonics.  
While some harmonics are caused by system nonlinearities such as transformer saturation, most 
harmonics are produced by power electronic loads such as adjustable-speed drives and diode-
bridge rectifiers.  The significant harmonics (above the fundamental, i.e., the first harmonic) are 
usually the 3rd, 5th, and 7th multiples of 50/60 Hz, so that the frequencies of interest in 
harmonics studies are in the low-audible range. 
 

When steady-state harmonics are present, voltages and currents may be represented by Fourier 
series of the form 
 

 
  
v(t) = Vksin (kωot + δk )

k=1

∞
∑ , (5) 

 

 
  
i(t) = Ik sin  (kωot + θk )

k=1

∞
∑ , (6) 

 

whose rms values can be shown to be 
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The average power is given by 
 

 
��  
Pavg = VkrmsIkrms cos δk – θk( )

k=1

∞
∑ = P1avg + P2avg + P3avg +  � , (9) 

 

where we see that each harmonic makes a contribution, plus or minus, to the average power. 
 

A frequently-used measure of harmonic levels is total harmonic distortion (or distortion factor), 
which is the ratio of the rms value of the harmonics (above fundamental) to the rms value of the 
fundamental, times 100%, or 
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Obviously, if no harmonics are present, then the THDs are zero.  If we substitute (10) into (7), 
and (11) into (8), we find that 
 

 ( )V V THDrms rms V= +1
2

1 100/ , (12) 

 

 ( )I I THDrms rms I= +1
2

1 100/ . (13) 

 

Now, substituting (12) and (13) into (3) yields the following exact form of true power factor, 
valid for both sinusoidal and nonsinusoidal situations: 
 

   

pf true =
Pavg

V1rmsI1rms 1 + THDV / 100( )2 1+ THDI / 100( )2
 . (14) 

 

A useful simplification can be made by expressing (14) as a product of two components, 
 

 

  

pf true =
Pavg

V1rmsI1rms
 •  

1

1 + THDV / 100( )2 1+ THDI / 100( )2
, (15) 

 

and by making the following two assumptions: 
 

1. In most cases, the contributions of harmonics above the fundamental to average power in 
(9) are small, so that   Pavg ≈ P1avg . 

2. Since   THDV  is usually less than 10%, then from (12) we see that   Vrms ≈ V1rms . 
 

Incorporating these two assumptions into (15) yields the following approximate form for true 
power factor: 
 

 

  

pf true ≈
Pavg1

V1rmsI1rms
 •  

1

1 + THDI / 100( )2
= pfdisp  •  pfdist . (16) 

 

Because displacement power factor   pf disp  can never be greater than unity, (16) shows that the 

true power factor in nonsinusoidal situations has the upper bound 
 

 

  

pf true ≤ pfdist = 1

1+ THDI / 100( )2
 . (17) 
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Equation (17), which is plotted in Figure 3, provides insight into the nature of the true power 
factors of power electronic loads, especially single-phase loads.  Single-phase power electronic 
loads such as desktop computers and home entertainment equipment tend to have high current 
distortions, near 100%.  Therefore, their true power factors are generally less than 0.707, even 
though their displacement power factors are near unity. 
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Figure 3:  Maximum True Power Factor   pf true  Versus   THDI  

 

On the other hand, three-phase power electronic loads inherently have lower current distortions 
than single-phase loads and, thus, higher distortion power factors.  However, if three-phase loads 
employ phase control, their true power factors may be poor at reduced load levels due to low 
displacement power factors. 
 

It is important to point out that one cannot, in general, compensate for poor distortion power 
factor by adding shunt capacitors.  Only the displacement power factor can be improved with 
capacitors.  This fact is especially important in load areas that are dominated by single-phase 
power electronic loads, which tend to have high displacement power factors but low distortion 
power factors.  In these instances, the addition of shunt capacitors will likely worsen the power 
factor by inducing resonances and higher harmonic levels.  A better solution is to add passive or 
active filters to remove the harmonics produced by the nonlinear loads, or to utilize low-
distortion power electronic loads. 
 

Power factor measurements for some common single-phase residential loads are given in Table 
1, where it is seen that their current distortion levels tend to fall into the following three 
categories:  low ( THDI  ≤  20%), medium (20% < THDI  ≤  50%), high ( THDI  > 50%). 
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Table 1: Power Factor and Current Distortion Measurements for Common Single-Phase 
Residential Loads 

 

 Load Type   pf disp    THDI    pf dist    pf true  
 

 Ceiling Fan 0.999 1.8 1.000 0.999 
 Refrigerator 0.875 13.4 0.991 0.867 
 Microwave Oven 0.998 18.2 0.984 0.982 
 Vacuum Cleaner 0.951 26.0 0.968 0.921 
 Fluorescent Ceiling Lamp 0.956 * 39.5 0.930 0.889 
 Television 0.988 * 121.0 0.637 0.629 
 Desktop Computer and Printer 0.999 * 140.0 0.581 0.580 
 

* Leading displacement power factor 
 

Nonsinusoidal Example 
 

Now, consider the situation shown in Figure 4, where the motor load of Figure 1 is replaced by a 
nonlinear load with the same   Pavg . 

 

-
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Vsin(wt)

+
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Figure 4:  Power System with Nonlinear Load 
 

Assuming that Pavg  is constant, we vary the displacement power factor and compute the impact 

on system losses.  The results are plotted in Figure 5, where it is seen that THDI  has a significant 
impact on system efficiency and that the efficiency is considerably less than in the sinusoidal 
case of Figure 2. 
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Figure 5: Effect of Displacement Power Factor on Power System Losses for Nonsinusoidal 

Example (Note:  harmonic amperes held constant at the level corresponding to the 
following:  THDI = 100% , pfdisp = 10. .  Losses are expressed in per unit of 

nominal sinusoidal case where pf true = 10. .) 
 

Other Considerations 
 

In the previous examples, we assumed that the resistance of the power system does not vary with 
frequency, so the losses are simply 
 

 P I R R I I Rloss krms k
k

krms
k

rms= = =
=

∞

=

∞
∑ ∑2

1

2

1

2 . (18) 

 

In an actual system, however, resistance increases with frequency because of the resistive skin 
effect, so an ampere of harmonic current (above the fundamental) produces more loss than does 
an ampere of fundamental current.  For typical wire sizes found in distribution systems, the 
resistance at the 25th harmonic may be 2 - 4 times greater than the 50/60 Hz resistance.  
Generally speaking, the larger the diameter of a wire, the greater the impact.  This resistance 
increase is especially important in transformers, and it forms the basis upon which transformer 
derating calculations are made [1]. 
 

Another consideration is the affect of voltage harmonics on losses, which is even more complex 
than that of current.  Studies by Fuchs, et al., [2] show that voltage harmonics can either increase 
or decrease losses in equipment, depending on their phase angles. 
 

Because of the belief that harmonic voltages and currents should be weighted according to 
frequency, McEachern [3] proposed the following generalized harmonic-adjusted power factor 
definition: 
 

 

  

hpf =
Pavg

CkVkrms( )2

k=1

∞
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∞
∑

. (19) 
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He proposed several sets of   Ck  and   Dk  weighting coefficients, but there is not yet a consensus of 
opinion on which set is most appropriate. 
 

Conclusions 
 

Harmonics and power factor are closely related.  In fact, they are so tightly coupled that one can 
place limitations on the current harmonics produced by nonlinear loads by using the widely-
accepted concept of power factor, providing that true power factor is used rather than 
displacement power factor. 
 

Equation (17) gives the limit on true power factor due to harmonic current distortion.  Each 

  THDI  corresponds to a maximum true power factor, so a limit on maximum true power factor 
automatically invokes a limitation on   THDI .  Some examples are 
 

 Desired Limit Corresponding Limit 
 on THDI  - % on pf true  
 20 0.981 
 50 0.894 
 100 0.707 
 

Efforts are presently underway to develop new power factor definitions, such as harmonic-
adjusted power factor, that take into account the frequency-dependent impacts of voltage and 
current harmonics. 
 

In conclusion, even though power factor is an old and at first glance uninteresting concept, it is 
worthy of being "re-visited" because it has, in a relatively simple way, the potential of being very 
useful in limiting the harmonics produced by modern-day distorting loads. 
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