“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”



SUBMITTED TO IEEE TRANS ON COMMUNICATIONS, NOVEMBER 2016

Harmonising Coexistence of Machine Type

Communications with Wi-Fi1 Data Traffic under
Frame-based LBT

Gordon J. Sutton, Ren Ping Liu, Senior Member, IEEE, and Y. Jay Guo, Fellow, IEEE

Abstract—The existence of relatively long LTE data blocks
within the Licensed-Assisted Access (LAA) framework results
in bursty Machine type communications (MTC) packet arrivals,
which cause system performance degradation and present new
challenges in Markov modelling. We develop an embedded
Markov chain to characterise the dynamic behaviour of the
contention arising from bursty MTC and Wi-Fi data traffic in the
LAA framework. Our theoretical model reveals a high contention
phenomenon caused by the bursty MTC traffic, and quantifies the
resulting performance degradation for both MTC and Wi-Fi data
traffic. The Markov model is further developed to evaluate three
potential solutions aiming to alleviate the contention. Our analysis
shows that simply expanding the contention window, although
successful in reducing congestion, may cause unacceptable MTC
data loss. A TDMA scheme instead achieves better MTC packet
delivery and overall throughput, but requires centralised coordi-
nation. We propose a distributed scheme that randomly spreads
the MTC access processes through the available time period. Our
model results, validated by simulations, demonstrate that the
random spreading solution achieves a near TDMA performance
while preserving the distributed nature of the Wi-Fi protocol. It
alleviates the MTC traffic contention and improves the overall
throughput by up to 10%.

Index Terms—Licensed-assisted access, Internet of Things,
Machine Type Communications, LTE-Wi-Fi coexistence, listen-
before-talk.

I. INTRODUCTION

T is predicted that 50 billion devices will be connected

to mobile networks worldwide by 2020 [1]. These are
not just devices communicating among humans; embedded
devices, sending bits of information to other devices, will
account for a large percentage of the devices. Researchers
and the telecom industry all over the world are envisioning
new networks referred to as fifth generation, or 5G, that will
transform our lives and unleash enormous economic potential
[2], [3]. We now have the opportunity to redefine our networks
with 5G technologies not only to enable faster data access
and to support greater capacity, but also to accommodate a
wealth of new and diverse connected devices that comprise
the Internet of Things (IoT).

The scarcity of licensed spectrum for cellular communi-
cations below 6 GHz has motivated the consideration of
unlicensed bands for the operation of LTE, namely Licensed-
Assisted Access (LAA) to unlicensed spectrum [4]. Shared
use of radio spectrum is particularly useful for IoT device and
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machine communications [5]. However, the usage of LTE in
unlicensed spectrum creates numerous challenges since LTE
physical channels have largely been designed on the basis of
uninterrupted operation on licensed carriers [6]. As a result,
one of the 3GPP Study Items is fair coexistence with existing
Wi-Fi networks with minimum impact. One of the new func-
tionalities required of LAA, from a coexistence perspective,
includes a mechanism for clear channel assessment based on
Listen-Before-Talk (LBT) [7].

There have been several papers discussing the coexistence of
LTE and Wi-Fi in unlicensed spectrum. Simulation evaluations
were conducted in [8] and [9] to reveal that Wi-Fi performance
would deteriorate significantly while LAA system performance
would be only slightly affected. These performance evalu-
ations indicate that appropriate coexistence mechanisms are
necessary to prevent the degradation of Wi-Fi systems from the
impacts of LTE traffic. LBT is specified in [10] as a method
that enables the coexistence of LTE in unlicensed spectrum
with other technologies. LBT is analysed in terms of the
coexistence of LAA systems with Wi-Fi in [11]. LBT is also
analysed in terms of the coexistence of LTE and Wi-Fi in [6].
Simulation results in both papers show that LBT is effective
for enabling the coexistence even in dense deployment. A
theoretical framework based on Markov chain models was es-
tablished in [12] to calculate the downlink throughput of LAA
and Wi-Fi systems. Their work confirmed the effectiveness of
LBT in LTE and Wi-Fi coexistence scenarios.

Recently, many popular IoT devices, e.g. Raspberry Pi 3,
Arduino UNO, and Waspmote, are equipped with Wi-Fi radios.
These IoT devices are sharing the unlicensed spectrum with
Wi-Fi users. Under the LAA framework, the introduction of
LTE in the unlicensed spectrum will have impacts on both
normal Wi-Fi users and MTC/IoT devices. Existing literatures
focus on the impact of LTE on Wi-Fi users under the LAA
framework. However, the impacts on IoT devices haven’t been
considered so far. As such, the scenarios we consider are
MTC/IoT devices using Wi-Fi technology, coexisting with
normal Wi-Fi users and LTE under the LAA framework.

MTC/IoT have a very different traffic pattern from hu-
man communications. Each IoT device has infrequent data
transmissions, but the IoT system involves a potentially very
large number of IoT devices (in the order of 10,000s per
square kilometre). The presence of the relatively long LTE
data blocks within the LAA framework gives rise to a bursty
MTC packet arrival process, where many newly awoken IoT
devices have to defer their access until the LTE data block
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finishes, and then simultaneously start accessing the channel,
using the CSMA/CA protocol. Such simultaneous starts induce
high contention among IoT devices, which not only causes
delay and packet loss for the MTC traffic, but also degrades
the Wi-Fi data traffic, resulting in wasted radio resources.

Analysing the contention behaviour of the IoT devices
is challenging. Although many Markov models, e.g. [13]-
[16], have been used to analyse Wi-Fi protocols, the existing
Markov models provide only stationary system properties.
They are unable to characterise the dynamic behaviour of the
MTC contentions. In our previous work [17], we developed
an embedded Markov chain to characterise the time-varying
transmission and collision probabilities in large scale IoT
device deployments, where the IoT devices woke periodically
at the beginning of an allocated 100 ms beacon Period and
competed with other IoT devices allocated to the same beacon
Period, using the CSMA/CA protocol. In the current explo-
ration, IoT devices additionally compete with Wi-Fi stations
and an eNB using FB-LBT in the LAA framework. The
network traffic comprises infrequent MTC traffic from the IoT
devices, saturated data traffic from the Wi-Fi stations, and large
periodic data blocks from the eNB. A new set of embedded
Markov chains are developed to characterise the dynamic
behaviour of MTC contentions in the LAA framework.

This paper aims to investigate the impacts of MTC traffic
and provide congestion mitigation solutions to improve the
coexistence of MTC traffic with Wi-Fi data traffic in the
LAA framework. We first develop a new embedded Markov
model to characterise the dynamic interactive behaviours of
the IoT devices and Wi-Fi stations. Our theoretical model
confirms the high contention phenomenon caused by the bursty
MTC traffic, and provides insights into the dynamic contention
behaviour.

The Markov model is then extended to characterise three
potential solutions that aim to alleviate the traffic congestion.
The first solution is to simply increase the contention window
size for the IoT devices to alleviate contention. Although
this solution requires only minor modifications to the IoT
device protocol (and the Markov model), it may result in
unacceptable MTC packet loss. The second solution is a
TDMA-like protocol aiming to evenly space the starting times
of the IoT devices through the available time period. Although
this solution can provide better performance in terms of MTC
packet delivery and overall throughput, it requires centralised
coordination, which is incompatible with Wi-Fi distributed
protocols. The third solution is to randomly spread the starting
times of the IoT devices through the available time period.

Our model results, validated by simulations, demonstrate
that the random spreading solution achieves a near TDMA
performance in terms of MTC packet delivery and overall
throughput, while preserving the distributed nature of the Wi-
Fi protocol. Our results show a 25% reduction in collision
probability and a 25% lift in instantaneous total (Wi-Fi plus
IoT) throughput when applying random spreading to the IoT
devices in a typical setting. Our proposed random-spreading
solution achieves up to 10% gain in overall throughput.

The rest of the paper is organised as follows. Features of
the system are presented in Section II and the exploration

motivated. Markov models are developed in Section III to
reveal the contention phenomenon and characterise potential
solutions. Theoretical models are validated and performance
evaluations are conducted in Section IV to support our pro-
posal. Concluding remarks are given in Section V.

II. BACKGROUND AND MOTIVATIONS

We consider a hybrid network comprising LTE LAA op-
erating in frame-based LBT sharing an unlicensed spectrum
band with IEEE 802.11, where both Wi-Fi stations and IoT
devices are present. We consider a typical use case of meter
reading and environmental monitoring, where each IoT device
has infrequent data transmissions, but the IoT system involves
a potentially very large number of IoT devices.

A. Listen-Before-Talk

Listen-Before-Talk (LBT) [10] is an important functionality
for the coexistence of LTE and Wi-Fi. It is defined as a
mechanism by which an equipment applies a clear channel
assessment (CCA) check prior to transmitting on the channel.
Two types of LBT procedures are defined: frame-based LBT
and load-based LBT.

In frame-based LBT, CCA is performed periodically at
predefined time instances according to a predetermined frame
structure as shown in Fig. 1a. The Channel Occupancy Time is
designated for transmissions of up to 10 LTE subframes, and
shall not exceed 10 ms. The Idle Period is left for access by
other technologies, e.g. other LTE systems, Wi-Fi hot spots,
and IoT systems. The minimum Idle Period shall be at least
5% of the Channel Occupancy Time. If the equipment finds the
Operating Channel(s) to be clear, it may transmit immediately.
If the equipment finds an Operating Channel occupied, it shall
not transmit on that channel during the next Fixed Frame
Period. LBT has the advantage that similar operations are
already supported by Frame structure type 2 defined in LTE
TDD [7].
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(b) High contention by IoT traffic
Fig. 1. LBT Frame Structure and Timing

The load-based LBT is not restricted to a certain frame
structure or to transmitting at fixed defined times. Instead,
load-based LBT may perform CCA whenever it has data to
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transmit. If the equipment finds the Operating Channel(s) to be
clear, it may transmit immediately. The Channel Occupancy
Time shall be less than 13 ms. If the equipment finds an
Operating Channel occupied, it will perform an Extended CCA
check which includes a random backoff before transmitting
(details can be found in [10]).

In this paper, we focus on Frame-based LBT with a periodic
frame structure as shown in Fig. la. In practice, the frame
period in frame-based LBT may not be fixed due to channel
occupancy by Wi-Fi data frames. Such variation has been
captured in our Markov model.

B. High contention among IoT devices in LAA operations

Most existing literatures [8]-[12] study the fair share of
the unlicensed spectrum between LTE traffic in the Channel
Occupancy Time and Wi-Fi traffic in the Idle Period. In
addition to the current mobile services, future 5G networks
are expected to integrate IoT services. The machine-type
communications (MTC) of the IoT devices exhibit a very
different traffic pattern from Wi-Fi or LTE traffic. The IoT
devices stay in doze mode most of the time to save power.
A device might only wake up every few hours or days to
send a single packet, and go back to sleep. The traffic from
these devices include sensor/meter readings in the uplink
and actuation/control messages in the downlink. Although the
traffic from a single IoT device is very light, the number of
devices can be very large. Due to the high and unpredictable
number of IoT devices expected to simultaneously access
the network, congestion and overloading of radio access and
core networks are the prime issues to be solved in order to
guarantee low-latency and low-energy for IoT devices and to
minimize the impact of MTC traffic on these network segments
[18].

The high contention situation can be exacerbated by the
presence of LTE data frames and the specific MTC traffic
pattern. In particular, as shown in Fig. 1b, MTC packets
arriving during the Channel Occupancy Time are not able to
access the channel immediately. They are deferred until the
Channel Occupancy Time finishes. In this case, all the deferred
MTC packets will start their backoff process simultaneously
at the beginning of the Idle Period. Such simultaneous starts
can cause high collision, as also shown in Fig. 1b.

III. MARKOV MODELS FOR 10T IN LAA

In this section we develop a series of new models to reveal
the high contention phenomenon caused by the MTC traffic
and to characterise potential solutions that aim to alleviate the
traffic congestion.

An initial model is presented, in Section III-B, for the
scenario in which both Wi-Fi and MTC traffic use the stan-
dard CSMA/CA protocol. The modelling is based on jointly
evolving embedded Markov chain distributions that represent
the IoT devices and Wi-Fi STAs through the Idle Period,
and then converting the embedded Markov chains to time-
based distributions and properties. This uncontrolled scenario
has temporarily high congestion. Three solutions to this high
congestion are then presented and modelled in which the

CSMA/CA protocol is altered for the IoT devices, with the
aim of reducing contention.

o The first solution, presented in Section III-C, is to simply
increase the contention window size for the IoT devices
to alleviate contention.

o The second solution, presented in Section III-D, is
a TDMA-like protocol aiming to evenly space the
transmission-process starting times of the IoT devices
through the Idle Period. Although this solution provides
the best results based on spreading the MTC traffic, it
requires centralised coordination which is incompatible
with Wi-Fi and MTC distributed protocols. Nevertheless
it is seen as providing the upper limit of the possible
gains obtained from spreading the transmission-process
starting times of the IoT devices.

o The third solution, presented in Section III-E, is to
randomly distribute the starting times of MTC packets
arriving during the Channel Occupancy Period through
the Idle Period. This solution achieves statistical spread-
ing of the MTC while preserving the distributed nature
of IoT protocol.

A. Model Set-up and Methodology

We consider a LAA framework comprising LTE, Wi-Fi and
IoT networks, with timing as depicted in Fig. 1b. In particular,
we investigate the collision and throughput performance of a
number of saturated Wi-Fi stations and IoT devices contending
for channel access during the Idle Period. The Wi-Fi STAs
and IoT devices are assumed to use the 802.11 DCF protocol.
We assume that there are many IoT devices and that a fixed
number wake from a doze mode each FFP with a single packet
to deliver, with the arrival times distributed randomly through
the FFP. If a packet is not successfully transmitted after a
short period, the packet is dropped and the IoT device goes
to a doze mode to conserve energy'. The LTE blocks are
assumed to be of fixed duration and to commence as soon as
the channel is free after a periodic target time, making the Idle
Period approximately of fixed duration. Transmission failures
are assumed only to occur due to collisions from concurrent
transmissions. All the devices are assumed to be within the
carrier sensing range of each other.

Our analysis is based on embedded Markov chains that
model the 802.11 DCF protocol. Embedded Markov chains
have been used to model the 802.11 DCF protocol for a single
Wi-Fi station (STA) by many authors, with state transitions
occuring at, or embedded in, the MAC-slot transitions. The
steady-state distributions provide per-MAC-slot properties and
the Markov-chain states are then weighted by their expected
durations to convert the per-MAC-slot properties to time-based
properties.

Various embedded Markov-chain models have been used,
but the general approach to obtaining network properties is
the same. The nonlinear per-STA embedded Markov-chain
models (most often all identical), are solved simultaneously
with a nonlinear network-interaction model. The collision and

Information loss due to packet loss can be compensated for by IoT
application layer retransmission or data fusion.
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transmission probabilities feed between the two components.
In particular, there is:

e a per-STA model for each STA, which is a function
of the collision probability for the particular STA and
from which the STA’s probability of transmitting can be
extracted; and

« a network-interaction model that combines all the per-
STA transmission probabilities of the other STAs in the
network to give a collision probability for a partucular
STA.

In [13], [15], and multiple other papers, a single embedded
Markov chain, with a stationary Poisson packet-arrival process,
is used for the per-STA model of each STA and the steady-
state distribution of the Markov chain is used to estimate
stationary system properties. In [17], a single packet arrives
at each active STA at the beginning of each Beacon Period,
but then no more arrive during the Beacon Period, making the
model non-stationary. The two interacting model components
are iteratively propagated to obtain simultaneous solutions,
giving time-varying transmission and collision probabilities,
estimated at each network count.

In our current modelling endeavours, one per-STA model
represents each of the IoT devices and another per-STA model
represents each of the saturated Wi-Fi STAs. The premise is
that all the IoT devices exhibit a particular behaviour and can,
by symmetry, be approximately represented by the one per-
STA model; similarly for the Wi-Fi STAs. All the STAs and
devices change their backoff state simultaneously at the end of
each MAC slot. As such, the joint embedded Markov chain,
comprising both per-STA models, can capture the interactions
between them and the dynamics of the process. The transition
points also mark the points when successfully transmitted
packets leave the process; for the IoT devices, the input buffer
then becomes empty, whereas for the saturated Wi-Fi stations,
a new transmission process begins for the next packet in the
input buffer.

In the initial, uncontrolled scenario considered in this paper,
the saturated Wi-Fi STAs have a stationary arrival process
(with the input buffer being assumed always full), whereas
the periodic LTE block creates a non-stationary, yet periodic,
arrival process for the IoT devices, with a burst of packets
arriving at the beginning of each Idle Period. As such, the
network effectively has a periodic arrival process, so rather
than obtaining a steady-state solution to the network, we
strive to estimate a steady-cycle solution and understand the
dynamics within the cycle.

B. Markov Model for Uncontrolled MTC Access

The network comprises an eNB, a number of IoT devices
and a number of Wi-Fi stations (STAs). The eNB employs a
framed-based access mechanism. At the start of each Fixed
Frame Period (FFP), the eNB transmits a data block of
duration T, 7r. The channel is then left to non-LTE traffic
for the Idle Period, which has average duration 77p. The
eNB nominally commences each FFP periodically, with period
Trrp. To reduce collisions, if the channel is busy, the eNB
is assumed to wait until the end of the current non-LTE

transmission, then to jump in before any further transmissions,
giving Trp = Trpp — TroTE-

The Wi-Fi STAs and IoT devices contend for the channel
during the Idle Period. There are N saturated Wi-Fi STAs.
Each FFP, M IoT devices become active with a single new
packet that arrives with uniform probability throughout the
FFP. The STAs and devices follow the 802.11 CSMA/CA
protocol. The IoT devices have only zero or one packet in
their input buffer, whereas the Wi-Fi STAs always have a
full input buffer. Hence, the current state of each device or
STA can be described by a (backoff stage, backoff counter)
combination, or the idle state. The IoT devices are assumed
to drop their packet Trprp after first attempting to transmit,
which may involve two partial Idle Periods.

The devices and STAs are modelled by evolving the
marginal state probabilities corresponding to the different
possible DCF (backoff stage, backoff counter) combinations
through the Fixed Frame Period (FFP). The devices and STAs
change states simulataneously at the end of each MAC slot,
after either a slot time, o, of channel silence or, in the case of a
transmission by any device or STA, after T, which includes a
final DIFS of silence. Each state change increments a ‘virtual’
MAC-slot count, which is set to one at the beginning of
each Idle Period. By symmetry, the marginal state probability
distributions of all the devices of a particular type (either IoT
device or Wi-Fi STA), during a given MAC-slot, are the same.
Hence, only two evolving interacting marginal probability
distributions need to be modelled.

Let W; denote the size of the backoff window for backoff
stage-7, such that each time backoff stage-i is initiated, an
initial backoff counter is selected uniformly from {0, .., W; —
1}, where W; = Wy x gmin(mi) ; — 0, .., s. Superscripts D
and M are respectively used to represent the Wi-Fi STA data
traffic and the IoT device MTC traffic. Let S¥ (i, ) denote
the marginal state probabilities of a device of type T being in
backoff stage-i, with backoff count j, at MAC-slot k, where
T e {D,M}, i€ {0,..,s}, j € {0,..,W; — 1}, and k €
{1,2,..}.

The marginal state probabilities are jointly propagated from
their initial distributions at MAC-slot one through to the end
of the Idle Period, based on the assumption that the state
distributions of all the STAs and devices at MAC-slot k are
independent of each other, so that their joint distribution is a
product of their marginal distributions, SP (i, j) or S (i, j).
In particular, their transmission probabilities are treated as
independent when estimating collision probabilities for each
device or STA. The comparison of the model output to
simulation results in Section IV-A demonstrates that this is
a weak assumption.

The saturated Wi-Fi STAs start processing a new packet
immediately after the DCF proccess is completed for its
previous packet, so the packet arrival process for the saturated
devices equals the departure process. The IoT devices instead
return to the Idle state after the DCF process is completed, or
once its packet times out. So, the [oT device state distribution
propagation includes a packet arrival probability, a current
packet DCF-process propagation, and a time-out departure
probability.
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Let 7/, T € {D,M}, be the probability that a partic-
ular type-T' device transmits in MAC-slot k, and let pf,
T € {D,M}, be the conditional probability that, given a
type-T" device transmits in MAC-slot k, it has a collision
with at least one other transmitting device, resulting in packet
failure. Given the assumption of independent state distributions
between devices, these per-device transmission and conditional
collision probabilities are:

= > S/(i,0), Te{D M}, (1)
=0

e = 1-(-7)V - mhHY, 2)

e E  E

Combining (1)-(3) give the probabilities that, at MAC-slot
k, a particular type-T device, T € {D,M}, completes a
successful transmission, denoted Pguc’k, or has a collision,
denoted P2, ;, as:

T _
PS’uc,k -

T —
PCol,k -

7 (1 =pi), T €{D, M}, “)
ipt, T € {D,M}. (5)

Let P,orx,x be the probability that no device or STA
transmits during MAC slot £ and P,,,1«, be the probability

that at least one device or STA transmits during MAC slot k.
Then

Q=72 (1 —mHM, (6)
- PnoTx,lw (7)

and the expected duration of MAC slot k, denoted FEj j, is

PnoTx,k =

PanyTx,k: = 1

Es,k = UPnoTx,k: + TTxPanyTx,k~ (8)

The MTC packets arrive uniformly through each Trrp, so
have a Ty, g /Trrp chance of commencing at the start of the
Idle Period and an E ;/Trrp chance of commencing after
MAC slot k. When a new packet arrives, backoff stage-0 is
initiated, so the arrival probability is distributed evenly across
the backoff stage-0 states. Type-M device arrivals during the
Channel Occupancy Time are accounted for in the initial state,
SM (3, 7), which is left to Section III-B2; arrivals throughout
the Idle Period are accounted for at each MAC slot transition.

In general, backoff stage-0 is initiated as the first step in
processing a new packet and backoff stage-z, 7 > 0 is initiated
after a collision. Denote the probability that a type-1' device,
T € {D, M}, initiates backoff stage-i at the end of MAC-slot
k, k > 0, and hence selects an integer random-backoff counter
uniformly from {0,.., W; — 1}, by Pf,,, .[i]. Then

. PP, +pPSP(s,0), i=0,k>0

D Sue,k k Mk 7Y ’ ’

Pran il {]fggng7 i>&k>0f%
Mg Es/Trrp, i=0,k>0,

Pfan,k:[l] - { pﬁjsljfw(l — 1,0), 7> O7k > 0, (10)

Let Pé\fp «(1,7) be the probability that a type-M device
drops its packet from backoff stage-i with backoff count j due
to a timeout, after attempting to transmit the packet for Trrp.
The model for P/ . (i,5) is presented in Section III-B4.
Given, initial state distriubtions S (i,7) and SM (i, j), the

state distributions SP (i, j) and S (i, j) are propagated ac-
cording to:

Pﬁzn,k[i]/Wi —|—S]?(Z,] + 1)7

SkD+1(Z.7j): ) jZO,,WZ—27 (11)
Pl i lil/ Wi, j=Wi-1,

M P%7z,k[i]/Wi+S£[(i7j+1)_Pdt[p,k(iaj)a

Sk+1(i7j): M ) o ) ]:077W’L_27

Pfan,k[z]/Wi - Pdep,k(l’])7 j=W; _(112>

fori=0,.,sand k > 1.

1) Properties at time t: The STAs and devices all change
backoff states simultaneously, however the timings of the
transitions are stochastic. To be in MAC slot k at time t,
either MAC slot k starts in the interval (¢ — o,¢] and is a no-
transmission MAC slot; or MAC slot k£ starts in the interval
(t — Trx,t] and is a transmission MAC slot. Let "¢ denote
the time at the end of MAC slot k£, which is stochastic. Then,
the probability of being in MAC slot k, given it is time ¢,
denoted P(k|t) is

P(k‘t) = PanyTx,kP(tzzdl S (t —TTX,t]) +

Paots s Pt € (t — T,,t]).  (13)

The number of transmission MAC slots during MAC slot 1
to MAC slot k, is modelled as the sum of the outcomes from k
independent Bernoulli trials?, with probabilities PanyTx,r» for
k =1,.., k. Let P(c|k) be the probability of ¢ transmission
MAC slots occurring during MAC slot 1 to MAC slot k. Then

Hi=1 Promx, ks c=0,k>1,

PanyTx,h c= ].,]C:]_7

Plelk) ={ 0, c>1,k=1,
P(c— 1]k = 1) Panyrsck + Plclk — 1) Pagri

c>0,k>1.

(14)

Next, let t°"¢(c, k) be the time at the end of MAC slot k,
when ¢ of the k MAC slots are transmission MAC slots, so
that

te”d(c7 k) = ko + c(Trx — o). (15)
Then
k
Pty € (t = Trx,t]) = > P(clk) -1yt (c, k),
=0 (16)
k
Pt € (t—o,t]) = > Plclk)I—o gt (c, k), (17)
c=0

where I4(¢) is the indicator function for set A; and equals 1
when ¢t € A, and 0 otherwise.

Values of device properties at time ¢ are then evaluated
as the weighted average of the property during MAC slot k&,
weighted by the probability that MAC slot k is occurring at
time t. Let ST (,5)(t), T € {D, M}, denote the probability
of being in backoff stage-¢, with backoff count j, at time ¢ for

2Note that the assumption of independent Bernoulli trials is not strictly
correct, because, for example, it allows the small probability of there being no
transmission after Wq network counts, which is obviously incorrect. However,
it is a close approximation.
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a type-T device; let pT (t), T € {D, M}, be the probability of
a collision for a type-T' device transmitting at time ¢; and let
Thr” (¢), T € {D, M}, be the average throughput, in packets
per second, for a type-1' device at time ¢. Then

ST, 4)( ZP k[t)SE(i,§), T € {D,M}, (18)
ph(t) = ZP (Elt)pk, T €{D, M}, (19)
Thr? ZP E|t)PE,. /B, T € {D, M}(20)

2) State distribution at MAC-slot one: The MAC-slot-one
distributions are estimated by iteratively propagating the sys-
tem from the current MAC-slot-one distributions to the end of
the Idle Period, then using the end-of-Idle-Period distributions
to evaluate the next MAC-slot-one distributions. The process
is stochastically cyclic, with periodicty is Trpp, however, the
Wi-Fi STAs and IoT devices ‘freeze’ their DCF processes
during the Channel Occupancy Time, so the model periodicity
is T] P-

The saturated Wi-Fi STAs have full input queues and
‘freeze’ their backoff counters during the Channel Occupancy
Time, so their state distribution at MAC-slot one is the same
as at the end of the Idle Period. The IoT devices instead have
at most one packet, and there is a Trrgp/Trrp probability
that the packet arrives during the Channel Occupancy Period.
Hence, their state distribution at MAC-slot one is the sum of
their state distribution at the end of the Idle Period and the
distribution from new arrivals.

Let S?(i,j), T € {D,M}, be the state distribution for
a type-T device at the end of the Idle Period. To evaluate
ST (i, 7), first note that we are assuming the eNB allows any
current transmission to be completed before transmitting its
LTE block, and that the eNB’s target transmission time is
periodic, with periodicity Trpp. As such, the eNB could
transmit up to Ty after its target time, making the next target
Idle Period duration up to 7Tmy shorter. Assuming this delay
is uniformly distributed over [0, T'ry),

1 Trp
/ ST (i, )(t)dt
Trx Trp—Trx

n—1
725 i,j)(Trp — hTrg/n)).  (22)

ST (i, ) Q1)

Q

for some n. Then, the initial state distributions at MAC slot
one are

SPGi,5) = SP,4),i>0, j=0,.,W; -1, (23)

o S0 5) + Terei

Sl (Z?j) = 1_07]:07"7W1_17(24)
SY(i,4), i>0,j=0,.,W;—1.

For the first iteration, the saturated MAC-slot-one distri-
bution is initialised to the analytical solution of Bianchi’s
saturated-STA Markov chain model [13], and the MTC de-
vices are initiated to S (0,7) = Trre/(TrrpWo), for
j=0,.., Wy —1; otherwise 0. However, the model converges
from all initial distributions tried.

3) Total Throughput: Let P}” be the probability that MAC
slot k occurs during the Idle Period. Again noting that the
target Idle Period duration can be up to Ty shorter than T p,
PkI P is evaluated as

1 Trp
pr— L / Pt € (0,4))dt 25)
T Trp—Trx
~ — Z P tznd 0 T]p — hTTX/’fl]) (26)
1 n—1 k
=~ SN P(elk)Xo.1, 5T m) (8 (e, K)) (27)
h=0 c=0

Then the average total throughput during the Idle Period per
type-T device, T € {D, M} and denoted Thr7 p, is evaluated
as
Thrip = > PIPP§,.,, T €{D,M}. (28)
k

4) Timeout-departure distribution: MTC packets can arrive
at the IoT devices throughout the FFP and the IoT devices are
assumed to drop their packets Trrp after commencing their
backoff process. Hence, at each MAC slot there is a chance
of a new MTC packet arriving, of a current MTC packet
progressing through the backoff process and of a MTC packet
departing due to a timeout. The evolving state distribution
represents the combination of these processes, and has no
memory of how long the packet has been in the process. The
timeout, or departure, process aims to account for the packets
that have been in the process for Trprp.

We start by calculating the distribution of the number of
MAC slots it takes to reach each state of the backoff process.
We then estimate the distribution of the number of MAC slots
it takes to reach T7p of Idle-Period time. Combining the two,
we obtain a proportion of each current state that has reached
T7p and hence departs due to a timeout.

Let x(i,j)[k] be the probability that it takes & MAC slots
to reach state S (i, 5) from the start of backoff stage-i; and
let y(i,7)[k] be the probability that it takes k& MAC slots to
reach state S (4,5) from the start of backoff stage-0. Then

1 . .
.- _ W,—j° ]:Oa"7WL_1;k:1a"7Wi_j7
st ={
(29)
and
y(0,5)[k] = x(0,5)[k], (30)
m—1
> (i, )k +nly(i — 1,0)[m —n],
n=0
1=1,.,s,
. 17=0,..,W; —1,
y(i,j)[k+m] = (31)
[ ] for k=1,. W
0, else. o

Let z(4,j)[k] be the probability of having reached state
SM(i,5) in k MAC slots since the start of backoff stage-
0, given the backoff process is in S (i, ) and that paths
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longer than kK MAC slots have been removed from the backoff
process. Then

y(i, 7)[F]
et (i ) [P

P(k|Trp) approximates the distribution of the number of
MAC slots it takes to reach the end of the Idle Period and
z(i,7)[k] approximates the proportion of probability mass
SM(4,4) that took k MAC slots to reach S™ (i, j). So, the

probability of departure due to a timeout from state S (i, 5),
P} 1.(i,4), is approximated as

ZP k[ Trp)z(i, j)[K]-

2(i, j)[k] = (32)

Pdepk i,7) 33)

C. Solution 1: increase Wy for IoT access

One way to reduce the increased congestion caused by the
simultaneous CSMA/CA process starts of the M IoT devices
is to increase the IoT devices’ Wj, which proportionally
increases their contention windows for all backoff stages. This
requires minor modifications to the process. In particular, let
the new minimum backoff window width be W . Then all
that is needed is to replace W;, in (12), (24), (29) and (31),
with WM, where WM = WM x 2min(mi) =0 .. s

D. Solution 2: Equally space loT commencements

Assume now that the MTC packets are equally spaced using
a TDMA-like process such that the M IoT devices initiate their
backoff-transmission processes at equal intervals through the
Idle Period. That is, one IoT device intiates its transmission
process at each of the times jT7p/M, j = 0,.., M —1. Assume
again that MTC packets that are unsuccessfully transmitted
Trpp after their transmission process is intiated are then
dropped. All the devices freeze their backoff processes during
the Channel Occupancy time, so the system model now has a
periodicty of Trp/M.

The system is modelled by evolving state distributions for a
saturated device and an IoT device from when the IoT device
intiates its transmission process, through 77 p seconds, to when
the IoT device would drop its packet if undelivered. Each state-
distribution trajectory is then used to represent devices of its
type, starting at any of the times jT;p/M, j =0,.,M — 1.

In particular, SP and S now represent the evolution of
state distributions starting equally spaced through the Idle
Period, with one IoT device starting at each of jT7p/M,
7 =0,..,M — 1, and with the N saturated devices starting
at jTrp/M, 7 = 0,..,M — 1, with equal probability. The
state distributions are evolved as per (1)-(31), except that
the collision probabilities, (2) and (3), and the probability
of no device transmitting, (6), are replaced by equations that
account for the other M —1 state-trajectory starting points; and
equations based on the arrival process for the IoT devices, (10)
and (24), now reflect that one packet arrives at MAC slot one,
then no others arrive.

The collision probability is based on the transmission prob-
ablity of the other devices in the system, with their states,
at MAC slot k, estimated as the expected state distributions

at equally spaced times through T7p relative to the expected
start time for MAC slot k, where S (i, )(t) is evaluated as
in Section III-B1.

Denote the probability of a type-T" device, T € {D, M},
transmitting at time ¢ as 77 (¢), which is evaluated from
ST(i,7)(t) as 3, 57(0,5)(t). Given a representative device
is at time ¢ through its evolved trajectory, denote the proba-
bility of: no IoT device transmitting P2 (¢); no other IoT
device transmitting Pohe™ (3); no saturated Wi-Fi station
transmitting PR (¢); and no other saturated Wi-Fi station

noTx
transmitting PP (). Also, denote the M times equally

noTx

spaced, mod Tp, through [0,T;p), starting at t, TM[j],
j=0,..,M—1, such that TM[j] = (t+jTrp/M) mod Typ.
Then,
M—1
pari) = I a=="TMi), (34)
=0
M1
Prast)y = ][] =@M, (35)
j=1
Mt N/M
paR) = | JJ a=="@Mu) . (36)
=0
Mt (N-1)/M
Pt = | [T a-"@) @7
j=0

Denote the expected starting time of MAC slot k, Ef*°",

such that
0 k=1
Esta’l‘t — ? _ ’ 38
k { S B ., k>1 (38)
Then, (2) and (3) are replaced with
e = 1= Proai” (B Plon ™ (B ) (1 = 70).39)
Pl = 1= Poher(Bytert) Pother (Bert) (1 — 7P), (40)

and (6) is replaced with

PRI (Bt P (B (1P ) (17,
(41)

To reflect the change to the IoT device arrival process, (10)
becomes

PnoTx,k

. 0, i=0,k>0,
Pfan k[ ] { pI]:[SéW(Z _ 17 O), P> 07 k> O, (42)
and (24) becomes
My -\ 1/W07 7’:07]:077W2717
5 (”)_{ 0,  i>0j=0.wi—1 @

Given the estimated representative state-distribution trajec-
tories, ST (i, 7)(t), and hence 77 (t), Thr” (t) and pT(t), are
now evaluated as

M-1
P'].HM( )P'].HD ( )

Th noTx noTx 44

T Z na—rey)
and M1

Pa (1 >Pa£% 0
noTx noTx 4
Pt =7 Z =T (45)
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TABLE I

SIMULATION SETTINGS
Channel Occupancy Time 10 ms
Idle Period 20 ms
Slot time o 9 pus | basic rate 2 Mbps
SIFS 16 ps ACK 20 byte
DIFS 34 us data rate  72.2 Mbps
Preamble 96 us headers 64 byte
Wo 16 payload 500 byte

Wm 512

where F(t) is the expected duration of a MAC slot, if it were
to commence at time ¢, given by

Es (t) = UPnoTx(t) + /I‘Tx(1 - PnoTx(t))7

and in turn, P,o7x(t) is the probability of no device trans-
mitting during a MAC slot that commenced at time ¢, such
that

(46)

PnoTx(t) — PallM (t)PallD (t)

noTx noTx

(47)

E. Solution 3: Randomly spread IoT commencements

Assume now that the IoT devices that receive their single
new packet during the Channel Occupancy Period have been
programmed to wait a random time from the end of the
LTE block transmission, selected uniformly over [0,77p),
before commencing their backoff-transmission process and
that if their packet is still unsuccessfully transmitted after a
further Trrp it is dropped. Instead of there being a burst
of MTC packets at the beginning of the Idle Period, all
the MTC packets from the M IoT devices now effectively
arrive throughout the Idle Period, with uniform distribution.
To reflect this change to the IoT device arrival process, (10)
becomes

v o ) Esk/Trp, i=0,k>0,
Pfan,km - { p;cV[SlJCW(Z- _ 1’0)’ i>0,k>0, (48)
and (24) becomes
SM(i,5) = S (i,4), i>0,5=0,.,W; =1 (49)

IV. PERFORMANCE EVALUATIONS

The Markov models developed in the previous section were
validated against simulations performed in R [19], using the
system parameters summarized in Table I, setting N = 10
Wi-Fi stations and M = 20 IoT devices, and running the
simulations for 100,000 Fixed Frame Periods. These system
parameters correspond to the IEEE 802.11n(20MHz) stan-
dard. All packets were assumed to have 500 byte payloads,
giving Ty = 288us. The contention windows used for the
CSMA/CA processes was Wy = 16, m = 5 and s = 7.
The performance degradation caused by uncontrolled MTC
access is quantified, the effectiveness of the potential solutions
are evaluated, and a proposal is put forward. For Solution 3:
Randomly spread IoT commencements, it is assumed that the
IoT devices can sense the Idle Period within a few FFPs and
that they do so when joining the network.

A. Model validation for uncontrolled IoT Access

The model developed in Section III-B aims to characterise
the high contention caused by uncontrolled IoT access. The
model results are shown in Fig. 2. Fig. 2a shows the collision
probability for the Uncontrolled sytem of Section III-B for the
settings just given. The solid red line and dotted black line are
the modelled collision probability for the saturated Wi-Fi STAs
and IoT devices respectively. The red circles and black crosses
are the corresponding simulated collision probabilities. The
horizontal dashed grey line is the collision probability for the
network with with no IoT devices active (i.e. just the N Wi-
Fi STAs), obtained from Bianchi’s saturated-network model
[13]. Our model closely matches the simulation results and
demonstrates the increased collision probability at the begining
of the Idle Period, which is 40% higher than at the end of the
Idle Period.

Fig. 2b shows the throughput (in packets/s/STA) for the
same settings as for Fig. 2a. The dot-dashed blue line is the
modelled total throughput (from both Wi-Fi STAs and IoT
devices) divided by N (in packets/s/STA) and the blue +’s
are the values obtained from the simulation. The close match
between the model and simulation results is again apparent.
Our model demonstrates that there is a significant drop in
Wi-Fi throughput and in overall throughput at the start of
the Idle Period, as a result of the high contention caused by
simultaneous MTC access. By the end of the Idle Period, the
Wi-Fi throughput is more than twice its lowest value and the
total throughput plateaus at 30% above its lowest value.

The first potential solution for the high-contention problem,
presented in Section III-C, was to increase the contention
window size for IoT access. The Markov model for this solu-
tion required only minor modification to the uncontrolled IoT
access model. We confirm that the results match the simulation
results, with the collision probability and average throughput
given by the Markov model and the simulation agreeing within
approximately 3%, using the validation settings. Due to space
limitations, graphs will not be presented here.

B. Model Validation for Spreading IoT Access (Solutions 2 &
3)

In Sections III-D and III-E, we presented two solutions that
spread the IoT accesses equally (Section III-D), or randomly
(Section III-E) throughout the Idle Period in order to reduce
the high contention.

Fig. 3a and Fig. 3b show the collision probability and
throughput obtained when the MTC transmission starting
times are equally spaced through the Idle Period (Solution
2) for the same settings as for Fig. 2a. The repeated sawtooth
throughput pattern per TDMA slot in the simulation is closely
reproduced by the model. When the MTC transmission starting
times are instead uniformly randomly started through the Idle
Period (Solution 3), again under the same settings, the average
collision probabilities and throughputs given by the model and
simulation are constant through the Idle Period. Average model
collision probabilities and throughputs have been included in
Fig. 3a and Fig. 3b as green horizontal dashed lines, which cut
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Fig. 2. Model validation for Uncontrolled IoT access. N = 10, M = 20

through the periodic patterns of the equally-spaced IoT-start
model.

Compared to the uncontrolled scenario, the system proper-
ties provided by Solutions 2 and 3 are more constant through
the LAA Idle Period. In particular, the high contention at the
beginning of the LAA Idle Period in Fig. 2a for the uncon-
trolled IoT access is avoided. The collision probability is re-
duced from 0.66 for the uncontrolled access (Fig. 2a) to around
0.49 for Solution 2 and Solution 3 (Fig. 3a). This represents
a 26% reduction in the collision probability. Such reduced
contention lifts the throughput from 200 pkt/s/STA in Fig. 2b
to a close-to-stationary total throughput of 240 pkt/s/STA
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Fig. 3. Model validation for Equally spaced IoT packet starts solution. N =
10, M = 20.

(Fig. 3b) for Solution 2 and Solution 3, giving an increase
of 20%. The percentage gain varies with the numbers of
IoT devices and Wi-Fi STAs active, as presented in the next
section.

C. Solution comparison

We compare the solutions presented in Section III using
the Markov chain models developed therein and validated
above. The model average throughputs closely matched the
simulation average throughputs, so the models were used to
compare the throughputs of the different solutions across a
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range of the number of IoT devices, M, for N = 20 Wi-
Fi stations. Fig. 4 compares the average Total (Wi-Fi plus
MTC) throughput normalised by the average Wi-Fi throughput
in the absence of any IoT devices. To gain insights into the
performance comparisons, the total throughput of Fig. 4 is
decomposed into Wi-Fi and MTC compoenents in Fig. 5.
Fig. 5a presents the average Wi-Fi throughput, normalised by
the average throughput in the absence of any IoT devices and
Fig. 5b presents the MTC throughput, as a proportion of the
offered MTC load.

1.0

0.9

0.8
|

Normalised Throughput
0.7
l

) —e— Uncontrolled scenario
S 7| |2 Solution 1: IoT WO = 64
—+— Solution 2: Equally spread
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o

M

Fig. 4. Normalised average total throughput (Wi-Fi plus IoT) over different
M and protocol variations, for N = 10.

Fig. 4 shows that all the methods considered for controlling
the contention improve the average total throughput over
the uncontrolled scenario. Increasing Wy of the IoT devices
to 64 increases the total throughput more than the other
presented solutions; however, as demonstrated by Fig. 5b,
it does so at a substantial expense to the MTC throughput.
In contrast, equally spacing the MTC starts through the Idle
Period increases both the average Wi-Fi throughput and the
average MTC throughput, as demonstrated by Fig. 5a and
Fig. 5b respectively. The average throughputs obtained by
randomly spreading the MTC starts through the Idle Period
are very similar to, though predominantly slightly less than,
those obtained by equally spacing the MTC starts through the
Idle Period.

D. Discussion and Proposals

This last presented solution: randomly spreading the IoT
starts through the LAA Idle Period, is a distributed protocol.
It improves the system performance and is practical. In its
operation, when a packet arrives at an IoT device during
the Channel Occupancy Time, rather than using the standard
CSMA/CA Wi-Fi protocol, the initiation of the backoft-
transmission process is delayed beyond the beginning of the
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(a) Average Wi-Fi Throughput normalised by the average throughput
achieved with no active IoT devices.
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Fig. 5. Measures of average throughput decomposed into Wi-Fi and IoT
components, for different M and protocol variations, for N = 10.

Idle Period an additional random time, selected uniformly over
the Idle Period.

The throughput obtained by randomly spreading the IoT
starts (Solution 3), is compared to the Uncontrolled scenario
in Fig. 6, for a range of N and M. Fig. 6a presents the
average total throughput per Idle Period for the Uncontrolled
scenario (red dashed line) and the Randomly-spread-MTC-
starts solution (black solid line), with vertical (black dotted)
lines connecting the two scenarios for the same N and M
values. The vertical lines represent the additional average
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Fig. 6. Throughput and gain for Solution 3: Randomly-spread IoT starts

throughput obtained by implementing randomly-spread MTC
starts over the Uncontrolled scenario. This gain is presented
as a percentage gain in Fig. 6b.

The model can be used to explore different network settings
and loads. For the network settings we have used and with
N =5, for example, the drop-off in average total throughput
is much less severe when the IoT devices use randomly spread
starts (Solution 3). Even with M = 30 IoT devices, there is
little drop-off in the average total throughput.

The highest percentage gains for our network settings are
made for M in the range 44 to 53, depending on N, with the
highest average total througput percentage gain being 13% for

N =2 and M = 46.

The randomly spread MTC start solution produces through-
put gains for loads up to N = 30 Wi-Fi stations and M = 50
IoT devices. Although the network will perform miserably
when trying to support M = 50 IoT devices, even in the
absense of contention, using randomly-spread IoT starts will
help.

Our modelling has assumed fixed numbers of saturated Wi-
Fi stations and IoT devices are active during each Fixed Frame
Period. In practice, their numbers will vary, however, for a
given number of each, our modelling shows that delaying
the MTC starts for a random time, selected from a uniform
distribution over the Idle Period, will increase the average
throughput for both the IoT and Wi-Fi streams, relative to just
applying the standard CSMA/CA Wi-Fi protocol, and that the
average throughput achieved will be very close to the logically-
lowest-peak-congestion case of equally spacing the MTC starts
through the Idle Period.

We briefly report on the findings obtained from a limited
number of simulations for unsaturated Wi-Fi traffic. We use the
normalised offered load, A, to specify the Wi-Fi load, where
A = 1 corresponds to the maximum Wi-Fi load that could
be transmitted if every MAC slot were a successful Wi-Fi
transmission. For the settings used in Fig. 2 and Fig. 3, the
Wi-Fi traffic becomes saturated for A > 0.3. For unsaturated
Wi-Fi loads, instead of the Wi-Fi STAs always having a packet
queued in their input buffers, there is a chance of no packet
being queued at the end of the LTE Idle period, and the
probability of a packet being queued increases through the
LTE Channel Occupancy Time, in a similar fashion as for the
IoT devices. This effect adds to the congestion at the start of
the LTE Idle period and reduces the congestion towards its
end.

On the other hand, for pure Wi-Fi systems, the maximum
throughput occurs for slightly undersaturated loads, producing
a slightly higher throughput [15]. This effect occurs in the IoT
plus Wi-Fi scenario as well, with the total (IoT plus Wi-Fi)
throughput increasing, for the settings used in Fig. 2 and Fig. 3,
from 47.2 pkt/FFP for saturated Wi-Fi loads (A > 0.3) to 48.1
pkt/FFP for A = 0.28.

For A = 0.2 and A = 0.1, the total (IoT plus Wi-
Fi) throughput decreased to 40.7 pkt/FFP and 30.6 pkt/FFP
respectively, allowing the network to accommodate more IoT
devices. Adding 7 and 16 IoT devices per FFP respectively
achieved a maximum total (IoT plus Wi-Fi) throughput of 46.4
pkt/FFP and 44.7 pkt/FFP respectively. By randomly spreading
the IoT commencements through the Idle period, the total (IoT
plus Wi-Fi) throughputs for the same settings were increased
to 47.6 pkt/FFP and 46.3 pkt/FFP respectively.

V. CONCLUSION

The presence of the relatively long LTE data blocks within
the proposed LAA framework causes an effectively bursty
packet arrival process during the contention-based Idle Period
in LAA. Simulations show that such bursty arrivals give rise
to temporarily high congestion and reduce the overall system
throughput. However, existing Markov models are unable to
characterise such time-varying contention behaviour.
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We developed an embedded Markov model to characterise
the time-varying contention behaviour caused by the bursty
MTC traffic. We then presented, modelled and validated three
possible solutions to reduce the temporary high contention:
increasing the contention window for the IoT devices; schedul-
ing the accesses of the IoT devices through TDMA over
the Idle Period; and randomly spreading the MTC accesses
over the Idle Period. The first solution increased the total
system throughput, but at the cost of significant MTC data
loss. The second solution improved both the Wi-Fi and MTC
throughput, but required a centralised scheduling, which is
impractical. The third, random spreading, solution was a
practical distributed scheme. It achieved an increase in system
throughput of almost as much as the TDMA scheme. The pro-
posed random spreading solution produced a 25% reduction
in collision probability and a 25% lift to the instantaneous
network throughput for a typical setting of 10 saturated Wi-
Fi stations and 20 active IoT devices. The proposed solution
achieves up to 13% system throughput gain for the coexistence
of Machine type communications with Wi-Fi data traffic under
Frame-based LBT.
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