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Deep learning basedmedical image segmentation has shown great potential in becoming

a key part of the clinical analysis pipeline. However, many of these models rely on

the assumption that the train and test data come from the same distribution. This

means that such methods cannot guarantee high quality predictions when the source

and target domains are dissimilar due to different acquisition protocols, or biases in

patient cohorts. Recently, unsupervised domain adaptation techniques have shown

great potential in alleviating this problem by minimizing the shift between the source

and target distributions, without requiring the use of labeled data in the target domain.

In this work, we aim to predict tissue segmentation maps on T2-weighted magnetic

resonance imaging data of an unseen preterm-born neonatal population, which has

both different acquisition parameters and population bias when compared to our

training data. We achieve this by investigating two unsupervised domain adaptation

techniques with the objective of finding the best solution for our problem. We compare

the two methods with a baseline fully-supervised segmentation network and report

our results in terms of Dice scores obtained on our source test dataset. Moreover,

we analyse tissue volumes and cortical thickness measures of the harmonized data

on a subset of the population matched for gestational age at birth and postmenstrual

age at scan. Finally, we demonstrate the applicability of the harmonized cortical gray

matter maps with an analysis comparing term and preterm-born neonates and a

proof-of-principle investigation of the association between cortical thickness and a

language outcome measure.

Keywords: deep learning, segmentation, neonatal brain, unsupervised domain adaptation, cortical thickness

1. INTRODUCTION

Medical image deep learning has made incredible advances in solving a wide range of scientific
problems, including tissue segmentation or image classification (Miotto et al., 2018). However, one
major drawback of these methods is their applicability in a clinical setting, as many models rely
on the assumption that the source and target domains are drawn from the same distribution. As
a result, the efficiency of these models may drop drastically when applied to images which were
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acquired with acquisition protocols different than the ones used
to train the models (Kamnitsas et al., 2017; Orbes-Arteaga et al.,
2019).

At the same time, combining imaging data from multiple
studies and sites is necessary to increase the sample size
and thereby the statistical power of neuroimaging studies.
However, one major challenge is the lack of standardization in
image acquisition protocols, scanner hardware, and software.
Inter-scanner variability has been demonstrated to affect
measurements obtained for downstream analysis such as voxel-
based morphometry (Takao et al., 2011), and lesion volumes
(Shinohara et al., 2017). Therefore, the purpose of harmonizing
magnetic resonance imaging (MRI) datasets is to make sure that
the differences arising from different image acquisition protocols
do not affect the analysis performed on the combined data. For
example, volumetric and cortical thickness measures should only
be affected by brain anatomy and not the acquisition protocol
or scanners.

A class of deep learning methods called domain adaptation
(DA) techniques aims to address this issue by suppressing
the domain shift between the training and test distributions.
In general, DA approaches are either semi-supervised, which
assume the existence of labels in the target dataset, or
unsupervised, which assume the target dataset has no labels.
For example, a common approach is to train a model on
source domain images and fine-tune it on target domain data
(Ghafoorian et al., 2017; Kushibar et al., 2019). Although these
methods can give good results, they can become impractical as
more often than not the existence of labels in the target dataset
is limited or of poor quality. Unsupervised domain adaptation
techniques (Ganin and Lempitsky, 2015; Kerfoot et al., 2019)
offer a solution to this problem by minimizing the disparity
between a source and a target domain, without requiring the use
of labeled data in the target domain.

In our previous work (Grigorescu et al., 2020), we investigated
two unsupervised DA methods with the aim of predicting brain
tissue segmentations on 2D axial slices of T2-weighted (T2w)
MRI data of an unseen neonatal population. We proposed
an additional loss term in one of the methods, in order
to constrain the network to more realistic reconstructions.
Our models were trained using as source domain a dataset
with majority of term-born neonates and as target domain a
preterm-only population acquired with a different protocol. We
calculated mean cortical thickness measures for every subject
in the two datasets and we performed an ANCOVA analysis in
order to find group differences between the predicted source
and target domains. This analysis showed that our proposed
method achieved harmonization of our two datasets in terms
of cortical gray matter tissue segmentation maps. In this
paper, we build on the aforementioned framework, which we
expanded in three main ways. First, we build and train 3D
neural networks in order to capture more information about
the neonatal brain. Second, we extend the validation of our
trained models to subsets of the two cohorts matched for
gestational age (GA) at birth and postmenstrual age (PMA) at
scan, for which we analyse tissue volumes and global and local
cortical thickness (CT) measures. Finally, we perform an analysis
comparing term and preterm-born neonates on the harmonized

cortical gray matter maps and we show the importance of
harmonizing the data by a proof-of-principle investigation
of the association between cortical thickness and a language
outcome measure.

2. MATERIALS AND METHODS

2.1. Data Acquisition and Preprocessing
The T2w MRI data used in this study was collected as
part of two independent projects: the developing Human
Connectome Project (dHCP1, approved by the National Research
Ethics Committee REC: 14/Lo/1169), and the Evaluation of
Preterm Imaging (ePrime2, REC: 09/H0707/98) study. The dHCP
neonates were scanned during natural unsedated sleep at the
Evelina London Children’s Hospital between 2015 and 2019. The
ePrime neonates were scanned at the neonatal intensive care
unit in Hammersmith Hospital between 2010 and 2013 (Edwards
et al., 2018). Infants with major congenital malformations were
excluded from both cohorts.

The dHCP data was acquired using a Philips Achieva 3T
scanner and a 32-channels neonatal head coil (Hughes et al.,
2017), using a T2w turbo spin echo (TSE) sequence with fat
suppression, and using the following parameters: repetition time
TR = 12 s, echo time TE = 156 ms, TSE factor 12, and SENSE
factors of 2.11 for the axial plane and 2.58 for the sagittal plane.
Images were acquired with an in-plane resolution of 0.8 × 0.8
mm, slice thickness of 1.6 mm and overlap of 0.8 mm. For each
volume, there was an acquisition of 125 slices in the transverse
plane and 134 slices in the saggital plane. All data was motion
corrected (Kuklisova-Murgasova et al., 2012; Cordero-Grande
et al., 2018) and super-resolution reconstructed to a 0.5 mm
isotropic resolution (Makropoulos et al., 2018).

The ePrime dataset was acquired with a Philips Intera 3T
system and an 8-channel phased array head coil, using a T2w TSE
sequence with parameters: repetition time TR = 8.67 s, echo time
TE = 160 ms, and TSE factor 16. Images were acquired with an
in-plane resolution of 0.86 × 0.86 mm, slice thickness of 2 mm
and overlap of 1 mm. For each volume, the acquisition ranged
between 92 and 106 slices in the transverse plane.

Our two datasets comprise of 403 MRI scans of infants (184
females and 219 males) born between 23 and 42 weeks GA at
birth and scanned at term-equivalent age (after 37 weeks PMA)
as part of the dHCP pipeline, and a dataset of 486 MRI scans
of infants (245 females and 241 males) born between 23 and
33 weeks GA and scanned at term-equivalent age as part of the
ePrime project. Figure 1 shows their age distribution.

Both datasets were pre-processed prior to being used by the
deep learning algorithms. The ePrime volumes were linearly
upsampled to 0.5mm isotropic resolution tomatch the resolution
of our source (dHCP) dataset. Both dHCP and ePrime datasets
were rigidly aligned to a common 40 weeks gestational age atlas
space (Schuh et al., 2018) using the MIRTK (Rueckert et al.,
1999) software toolbox. Then, skull-stripping was performed on
all of our data using the brain masks obtained with the Draw-EM
pipeline for automatic brainMRI segmentation of the developing

1http://www.developingconnectome.org/
2https://www.npeu.ox.ac.uk/prumhc/eprime-mr-imaging-177
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FIGURE 1 | Age distribution of the subjects in our datasets, showing both their GA at birth, as well as their PMA at scan.

neonatal brain (Makropoulos et al., 2018). Tissue segmentation
maps were obtained using the same pipeline (Draw-EM) for both
(dHCP and ePrime) cohorts.

To train our networks, we split our datasets into 80% training,
10% validation, and 10% test (see Table 1), keeping both the
distribution of ages at scan and the male-to-female ratio as
close to the original as possible. We used the validation sets to
keep track of our models’ performance during training, and the
test sets to report our final models’ results and showcase their
capability to generalize.

2.2. Unsupervised Domain Adaptation
Models
To investigate the best solution for segmenting our target
dataset (ePrime), we compared three independently trained deep
learning models:

• Baseline.A 3DU-Net (Çiçek et al., 2016) trained on the source
dataset (dHCP) only and used as a baseline segmentation
network (see Figure 2).

• Adversarial domain adaptation in the latent space. A 3D U-
Net segmentation network trained on source (dHCP) volumes,
coupled with a discriminator trained on both source (dHCP)
and target (ePrime) datasets (see Figure 3). This solution is
similar to the one proposed by Kamnitsas et al. (2017) where
the aim was to train the segmentation network such that it
becomes agnostic to the data domain.

• Adversarial domain adaptation in the image space. Two 3D
U-Nets, one acting as a generator, and a second one acting
as a segmentation network, coupled with a discriminator
trained on both real and synthesized ePrime volumes. The
segmentation network is trained to produce tissue maps of
the synthesized ePrime volumes created by the generator (see
Figure 4). The normalized cross correlation (NCC) loss is

TABLE 1 | Number of scans in different datasets used for training, validation and

testing the models, together with their mean GA and PMA.

Dataset #Subjects GA at birth

[weeks]

PMA at scan

[weeks]

Train dHCP 340 (160♀ + 180♂) 39.1 (±2.7) 40.7 (±1.7)

Validate dHCP 32 (12♀ + 20♂) 39.3 (±1.6) 40.7 (±1.8)

Test dHCP 30 (12♀ + 19♂) 30 (±2.4) 41.4 (±1.7)

Train ePrime 417 (214♀ + 203♂) 29.6 (±2.3) 42.9 (±2.6)

Validate ePrime 38 (18♀ + 20♂) 29.8 (±2.3) 43 (±2.6)

Test ePrime 30 (13♀ + 18♂) 30 (±2.4) 41.4 (±1.7)

added to the generator network to enforce image similarity
between real and synthesized images, a solution which was
previously proposed by Grigorescu et al. (2020).

To further validate the harmonized tissue maps, we trained an
additional network (a 3D U-Net) to segment binary cortical
tissue maps into 11 cortical substructures (see Table 2) based
on anatomical groupings of cortical regions derived from the
Draw-EM pipeline. The key reasons for training an extra network
are: first, we avoid the time consuming task of label propagation
between our available dHCP Draw-EM output segmentations
and predicted ePrime maps, and second, we can train this
network using Draw-EM cortical segmentations, and apply it on
any brain cortical gray matter maps as in this case there will be
no intensity shift between target and source distributions.

2.3. Network Architectures
The segmentation networks in all three setups and the generator
used in the adversarial domain adaptation in the image space
model have the same architecture, consisting of 5 encoding-
decoding branches with 16, 32, 64, 128, and 256 channels,
respectively. The encoder blocks use 33 convolutions (with
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FIGURE 2 | The baseline model consists of a 3D U-Net trained to segment source (dHCP) volumes. The input T2w MRI images, the predicted segmentation and the

Draw-EM output segmentations are marked with S as they all belong to the source (dHCP) dataset.

FIGURE 3 | The latent space domain adaptation setup consists of a 3D U-Net trained to segment the source (dHCP) T2w MRI volumes, coupled with a discriminator

network which forces the segmentation network to learn domain-invariant features. Both source (dHCP) and target (ePrime) images are fed to the segmentation

network, but only source (dHCP) Draw-EM output labels are used to compute the segmentation loss. Source domain images are marked with S, while target domain

images are marked with T, respectively.

a stride of 1), instance normalization (Ulyanov et al., 2016)
and LeakyReLU activations. A 23 average pooling layer is
used after the first down-sampling block, while the others
use 23 max pooling layers. The decoder blocks consist of
33 convolutions (with a stride of 1), instance normalization
(Ulyanov et al., 2016), LeakyReLU activations, and, additionally,
33 transposed convolutions. The number of encoding-decoding
blocks, as well as the use of LeakyReLU activations and instance
normalization layers, were chosen based on the best practices
described in Isensee et al. (2018). At the same time, the
network configurations that we have chosen allowed us to work
with the hardware we have at hand (Titan XP 12 GB). The

segmentation network outputs a 7-channel 3D volume (of the
same size as the input image), corresponding to our 7 classes:
background, cerebrospinal fluid (CSF), cortical gray matter
(cGM), white matter (WM), deep graymatter (dGM), cerebellum
and brainstem. The generator network’s last convolutional
layer is followed by a Tanh activation and outputs a single
channel image.

For our unsupervised domain adaptation models (Figures 3,
4) we used a PatchGAN discriminator as proposed in Isola et al.
(2017). Its architecture consists of 5 blocks of 43 convolutions
(with a stride of 2) with 64, 128, 256, 512, and 1 channels,
respectively), instance normalization and LeakyReLU activations.
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FIGURE 4 | The image space domain adaptation setup uses a generator network to produce ePrime-like T2w MRI images (marked with T̃), which are then used as

input into the segmentation network. The discriminator is trained to distinguish between real (ePrime) and synthesized (ePrime-like) volumes, while the generator is

trained to produce realistic images in order to fool the discriminator. The NCC loss enforces image similarity between real and synthesized volumes.

The cortical parcellation network has the same architecture
as the tissue segmentation network, but outputs a 12-channel
3D volume corresponding to the following cortical substructures:
frontal left, frontal right, cingulate, temporal left, temporal right,
insula left, insula right, parietal left, parietal right, occipital
left, and occipital right, respectively. The last class represents
the background.

2.4. Training
The baseline segmentation network (Figure 2) was trained
by minimizing the generalized Dice loss (Sudre et al., 2017)
between the predicted and the Draw-EM segmentation maps
(Equation 1).

Lmethod1 = Lseg = 1− 2

∑M
l=1 wl

∑
n plntln∑M

l=1 wl

∑
n pln + tln

(1)

where wl = 1/(
∑

n tln)
2 is the weight of the lth tissue type, pln is

the predicted probabilistic map of the lth tissue type at voxel n,
tln is the target label map of the lth tissue type at voxel n, and M
is the number of tissue classes. While training, we used the Adam
optimizer (Kingma and Ba, 2014) with its default parameters and
a decaying cyclical learning rate scheduler (Smith, 2017) with a
base learning rate of 2 · 10−6 and a maximum learning rate of
2 · 10−3. The choice of optimizer was based on knowledge of
previous image translation literature (Isola et al., 2017; Zhu et al.,
2017; Liao et al., 2019; Ranzini et al., 2020) where it yielded good
results. At the same time, a varying learning rate during training

was shown to improve results in fewer iterations when compared
to using a fixed value (Smith, 2017).

The segmentation network from the adversarial domain
adaptation in the latent space model was trained to produce
tissue maps on the source (dHCP) volumes. In addition, both
target (ePrime) and source (dHCP) volumes were fed to the
segmentation network, while the feature maps obtained from
every level of its decoder arm were passed to the discriminator
network which acted as a domain classifier. This was done after
either up-sampling or down-sampling the feature maps to match
the volume size of the second deepest layer. This model was
trained by minimizing a Cross-Entropy loss between predicted
and assigned target labels representing our two domains. The
final loss function for our second model was therefore made up
of the generalized Dice loss and an adversarial loss:

Lmethod2 = Lseg − αLadv (2)

where α was a hyperparameter increased linearly from 0
to 0.05 starting at epoch 20, and which remained equal to
0.05 from epoch 50 onward. Similar to Kamnitsas et al.
(2017) we looked at the behavior of our discriminator and
segmentation network when training with different values of α ∈

[0.02, 0.05, 0.1, 0.2, 0.5]. We found the discriminator’s accuracy
during training stable for all investigated values, while the
segmentation network achieved the lowest loss when α = 0.05.
The segmentation network was trained similarly to the baseline
model, while the discriminator network was trained using the
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TABLE 2 | Grouping of cortical substructures showing their original tissue name

obtained from Draw-EM (Makropoulos et al., 2018) on the first column and their

corresponding cortical subregion on the second column.

Tissue name Cortical subregion

Anterior temporal lobe, medial part left

Anterior temporal lobe, lateral part left

Gyri parahippocampalis et ambiens anterior part left

Superior temporal gyrus, middle part left

Medial and inferior temporal gyri anterior part left

Lateral occipitotemporal gyrus, gyrus fusiformis anterior

part left

Temporal (left)

Gyri parahippocampalis et ambiens posterior part left

Lateral occipitotemporal gyrus, gyrus fusiformis posterior

part left

Medial and inferior temporal gyri posterior part left

Superior temporal gyrus, posterior part left

Anterior temporal lobe, medial part right

Anterior temporal lobe, lateral part right

Gyri parahippocampalis et ambiens anterior part right

Superior temporal gyrus, middle part right

Medial and inferior temporal gyri anterior part right

Lateral occipitotemporal gyrus, gyrus fusiformis anterior

part right

Temporal (right)

Gyri parahippocampalis et ambiens posterior part right

Lateral occipitotemporal gyrus, gyrus fusiformis posterior

part right

Medial and inferior temporal gyri posterior part right

Superior temporal gyrus, posterior part right

Insula left Insula (left)

Insula right Insula (right)

Occipital lobe left Occipital (left)

Occipital lobe right Occipital (right)

Cingulate gyrus, anterior part right

Cingulate gyrus, anterior part left Cingulate

Cingulate gyrus, posterior part right

Cingulate gyrus, posterior part left

Frontal lobe left Frontal (left)

Frontal lobe right Frontal (right)

Parietal lobe left Parietal (left)

Parietal lobe right Parietal (right)

Adam optimizer with β1 = 0.5 and β2 = 0.999, and a linearly
decaying learning rate scheduler starting from 2 · 10−3.

The generator network used in the image space domain
adaptation approach was trained to produce synthesized ePrime
volumes, while the segmentation network was trained using the
same loss function, optimizer and learning rate scheduler as
in the other two methods. In the previous model (adversarial
domain adaptation in the latent space) we fed both dHCP and
ePrime volumes to the segmentation network to obtain data
agnostic feature maps. For this reason, and to allow for a fair
comparison between the two unsupervised domain adaptation
models, we trained the segmentation network from the image
spacemodel on both real dHCP and synthesized ePrime volumes.

For both the discriminator and the generator networks the Adam
optimizer with β1 = 0.5 and β2 = 0.999 was used, together with
a linearly decaying learning rate scheduler starting from 2 · 10−3.
The loss function of the discriminator was similar to that of the
Least Squares GAN (Mao et al., 2017):LD = Ex∼T[(D(x)−b)2]+
Ex∼S[(D(G(x)) − a)2] where a signified the label for synthesized
volumes and b was the label for real volumes. The generator
and the segmentation network were trained together using the
following loss:

Lmethod3 = Lseg + Ladv (3)

where Ladv = Ex∼S[(D(G(x)) − b)2]. An additional NCC loss
was used between the real and the generated volumes in order
to constrain the generator to produce realistic looking ePrime-
like images.Without the additional NCC loss, the generator tends
to produce images with an enlarged CSF boundary in order to
match the preterm-only distribution found in the ePrime dataset,
as was previously shown in Grigorescu et al. (2020).

These three methods were trained with and without data
augmentation for 100 epochs, during which we used the
validation sets to inform us about our models’ performance and
to decide on the best performing models. For data augmentation
we applied: random affine transformations [with rotation angles
θi ∼ U(−10o, 10o) and/or scaling values si ∼ U(0.8, 1.2)],
random motion artifacts [corresponding to rotations of θi ∼

U(−2o, 2o) and translations of ti ∼ U(−2 mm, 2 mm)], and
random MRI spike and bias field artifacts (Pérez-García et al.,
2020). The cortical parcellation network was trained in a similar
fashion as the baseline tissue segmentation network, with data
augmentation in the form of random affine transformations (with
the same parameters as above).

The test set was used to report our final models’ results
and to showcase their capability to generalize on the source
domain. Finally, we produced tissue segmentation maps for all
the subjects in our datasets, and used them as input into ANT’s
DiReCT algorithm (Tustison et al., 2013) to compute cortical
thickness measures. To validate our results, we compared cortical
thickness measures between subsets of the two cohorts matched
for GA and PMA, for which we expect no significant difference
in cortical thickness if the harmonization was successful. We also
assessed the association between PMA and cortical thickness in
the two cohorts.

3. RESULTS

3.1. dHCP Test Dataset
3.1.1. Baseline and Domain Adaptation Models

In our first experiment we looked at the performance of the six
trained models when applied to the source (dHCP) test dataset.
The aim was to assess whether our trained models were able
to generalize to unseen source domain (dHCP) data for which
we have reliable Draw-EM outputs. Figure 5 summarizes the
results of our trained models, showing mean Dice scores, mean
Hausdorff distance calculated using SimpleITK (Lowekamp et al.,
2013; Yaniv et al., 2018), precision and recall. These metrics
were computed between the predicted tissue segmentation maps
and the Draw-EM output labels for each of the six trained
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FIGURE 5 | The results on our dHCP test dataset for all six methods. The yellow diamond highlights the model which obtained the best mean score for its respective

tissue type and metric. Models which obtained non-significant differences when compared to the best performing method are shown above each pair.

models. The model that obtained the best score is highlighted
with the yellow diamond for each metric and tissue type. In
terms of Dice scores, out of the six models, the baseline with
augmentation and image with augmentation methods performed
best on the source domain test dataset for CSF, dGM, cerebellum
and brainstem, with no significant difference between them. For
cGM andWM, the best performance was obtained by the baseline
with augmentationmodel, while the domain adaptation methods
showed a slight decrease in performance. The three models
trained without augmentation always performed significantly
worse than their augmented counterparts.

In terms of average Hausdorff distance, both the baseline with
augmentation and image with augmentation models performed
well, while the latent without augmentation model performed
worse than all the other models for all tissue types. Highest
precision scores were obtained by the baseline with augmentation

model for both CSF and WM, the image without augmentation
method for both cGM and brainstem, the baseline without
augmentation for dGM, and the latent with augmentation model
for cerebellum. Highest recall scores were obtained by the
baseline with augmentation model for cGM and cerebellum, the
latent with augmentation model for WM, dGM and brainstem,
and the latent without augmentation model for CSF. These
results show that our trained models were able to generalize
to unseen source domain data, and that the performance on
the dHCP dataset was not compromised by using domain
adaption techniques.

3.1.2. Cortical Parcellation Network

To assess the performance of our trained cortical parcellation
network, we applied it on the source (dHCP) test dataset, where
the inputs were binary Draw-EM cortical gray matter tissue
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TABLE 3 | Dice Scores obtained on the dHCP test set for the trained cortical

parcellation network.

Tissue Min Max Mean Tissue Min Max Mean

Frontal (left) 0.98 0.99 0.99 Frontal (right) 0.98 0.99 0.99

Temporal (left) 0.96 0.99 0.98 Temporal (right) 0.97 0.98 0.98

Insula (left) 0.95 0.97 0.96 Insula (right) 0.95 0.97 0.96

Parietal (left) 0.96 0.98 0.97 Parietal (right) 0.96 0.98 0.97

Occipital (left) 0.94 0.98 0.97 Occipital (right) 0.95 0.98 0.97

Cingulate 0.93 0.97 0.96

maps. For each subject in our test dataset, the network produced
a 12-channel output, consisting of: frontal left, frontal right,
cingulate, temporal left, temporal right, insula left, insula right,
parietal left, parietal right, occipital left, occipital right, and
background, respectively. Table 3 summarizes these results in
terms of minimum, maximum and mean Dice scores for each
of the 11 cortical substructures. When compared with the Draw-
EM outputs (Makropoulos et al., 2018), the network obtained an
overall mean Dice score of 0.97.

3.2. Validation of Data Harmonization
In order to evaluate the extent to which each of the trained
models managed to harmonize the segmentation maps of the
two cohorts, we looked at tissue volumes and mean cortical
thickness measures between subsamples of the dHCP (N = 30;
median GA = 30.50 weeks; median PMA = 41.29 weeks) and
ePrime (N = 30; median GA = 30.64 weeks; median PMA
= 41.29 weeks) cohort which showed comparable GA at birth
and PMA at time of scan (see Table 1). A direct comparison
between the two cohort subsets shows that the dHCP and
ePrime neonates did not differ significantly in terms of sex
[χ2(1) < 0.001, p > 0.05], or maternal ethnicity [χ2(4) =

4.32, p > 0.05], coded as “white or white British,” “black or
black British,” “asian or asian British,” “mixed race,” and “other.”
As a proxy for socio-economic status, we derived an Index of
Multiple Deprivation (IMD) score based on parental postcode
at the time of infant birth (Department for Communities and
Local Government, 20113). This measure is based on seven
domains of deprivation within each neighborhood compared
to all others in the country: income, employment, education,
skills and training, health and disability, barriers to housing
and services, living environment and crime. Higher IMD values
therefore indicate higher deprivation. IMD score did not differ
significantly between dHCP (M = 21.4, SD = 10.7) and ePrime
(M = 18.0, SD = 11.6) subsets, suggesting that these two groups
are comparable in terms of environmental background.

For these two cohort subsamples with similar GA and PMA,
we expected both volumes and cortical thickness measures
not to differ after applying the harmonization procedures. We
also investigated the relationship between PMA and volumes
and cortical thickness respectively, before and after applying
the harmonization. Linear regressions were performed in the

3https://tools.npeu.ox.ac.uk/imd/

comparable data subsets testing the effects of PMA and cohort
on volumes (or cortical thickness), controlling for GA and sex.

3.2.1. Volumes

Figure 6 shows the tissue volumes for both the original and the
predicted segmentations. Significant volume differences between
the two subsamples (i.e., significant effect of cohort in the
regression model) are reported above each tested model. To
summarize, the image with augmentation model performed
best, by showing no significant differences in the two cohorts
for cortical gray matter, white matter, deep gray matter,
cerebellum and brainstem. The cerebrospinal fluid volumes were
significantly different between the two cohorts for all our trained
models, as well as for the original ePrime segmentation masks.

3.2.2. Cortical Thickness

Figure 7 summarizes the results of applying the cortical thickness
algorithm on the predicted segmentation maps for all six
methods. Before harmonization, the matched subsets from the
dHCP and ePrime cohorts showed a significant difference in
mean cortical thickness [dHCP: M = 1.73, SD = 0.12; ePrime:
M = 1.93, SD = 0.13; t(58) = 6.33, p < 0.001]. After
applying the harmonization to the ePrime sample, mean cortical
thickness no longer differed between the two subsamples for
four of our methods. These results are summarized in panel H
from Figure 7, where the models which obtained harmonized
values in terms of mean cortical thickness measures are shown
in bold. Figure 7 also shows the association between PMA and
mean crtical thickness before (Figure 7A) and after applying
the models (Figures 7B–G) on the matched dHCP and ePrime
subsets. A linear model regressing unharmonized mean cortical
thickness on PMA, GA, sex, and cohort revealed a significant
effect of cohort (β = 0.20; p < 0.001), consistent with a group
difference in mean cortical thickness reported above, as well as
a significant effect of PMA (β = 0.04; p < 0.001), consistent
with an increase in cortical thickness with increasing PMA. After
applying the methods, the effect of cohort was rendered non-
significant for four of the methods (see highlighted panels C, E, F,
G from Figure 7), while the effect of PMA remained stable across
all six methods.

We performed a similar analysis on thickness measures of
the cortical substructures. To obtain these measures, we used
the original and the predicted cortical gray matter segmentation
maps (obtained by applying each of our six methods) as input
to the trained cortical parcellation network to predict cortical
substructure masks. We then used these masks to calculate
local cortical thickness measures. Our results are summarized in
Figure 8.

3.2.3. Example Predictions

To further narrow down which of the four remaining methods
was best at harmonizing our ePrime neonatal dataset, we looked
at the predicted segmentations. Figure 9 shows two example
neonates from the ePrime dataset with GA = 32.9 w, PMA =

43.6 w, and with GA = 28.7 w, PMA = 44.7 w, respectively. The
first column shows T2w saggittal and axial slices, respectively,
while the following four columns show example tissue prediction
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FIGURE 6 | Comparison of volume measures for our six tissue types (CSF, cGM, WM, dGM, cerebellum, and brainstem) between original Draw-EM dHCP

segmentations and original Draw-EM ePrime segmentations (first column), or between original Draw-EM dHCP segmentations and ePrime segmentations obtained

with the six trained models (columns 2–7). Linear regressions were performed in the comparable data subsets testing the effects of cohort on volumes, controlling for

PMA, GA, and sex (volume ∼ cohort + PMA + GA + sex). The asterisks indicate a statistically significant effect of cohort in the linear regression.

maps produced by the four models: baseline with augmentation,
latent with augmentation, image, and image with augmentation,
respectively. Although all four methods performed well in terms
of harmonizing tissue segmentation volumes and global mean
cortical thickness values for the two subsamples with similar GA
and PMA, previously presented quantitative results as well as the
example above suggest that the image with augmentationmethod
was more robust.

Finally, Figure 10 shows the axial, sagittal and coronal slices
of an ePrime neonate (GA = 32.86 w and PMA = 39.86 w). The
first line shows the T2w MR image, while the second and third
lines show the CSF boundary of both the Draw-EM algorithm
and the image with augmentation method. The green arrows
point to a WM region which was misclassified by the Draw-EM

pipeline as CSF. This problem was then corrected by the image
with augmentationmethod.

3.3. Analysis of Harmonized Cortical
Substructures
In this section we analyze the harmonized cortical gray matter
segmentation maps using the image with augmentation model.
We produce tissue segmentation maps for the entire ePrime
dataset and calculate cortical thickness measures on the predicted
and Draw-EM cortical gray matter tissue maps of both cohorts.
In addition, we use the trained cortical parcellation network
to produce cortical substructure masks. We perform a term vs
preterm analysis on the harmonized cortical gray matter maps
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FIGURE 7 | The association between PMA and mean cortical thickness before (A) and after (B–G) applying the data harmonization models on the matched dHCP

and ePrime subsets. A linear model regressing mean cortical thickness measures on PMA, GA, sex, and cohort revealed a significant effect of cohort for the original

segmentations (A), and the predicted maps (B - baseline without augmentation and D - latent without augmentation). The effect of cohort was rendered

non-significant for four of the methods (C - baseline with augmentation, E - latent with augmentation, F - image without augmentation, and G - image with

augmentation). (H) summarizes cortical thickness measures before and after applying the models.

and we show the importance of harmonizing the data with
a proof-of-principle application setting where we investigate
the association between cortical thickness and a language
outcome measure.

3.3.1. Comparison of Term and Preterm Cortical Maps

Associations between cortical thickness and GA or PMA in the
full dHCP and ePrime datasets (excluding subjects with PMA >

45 weeks) for the whole cortex are depicted in Figure 11, where
we show individual regression lines for preterm-born and term-
born neonates. The first column consists of dHCP-only subjects,

while the following two columns showcase both cohorts together,
before and after harmonizing the cortical graymatter tissuemaps.

A linear model regressing dHCP-only mean cortical thickness
on PMA, GA, sex, birth weight and the interaction between
PMA and GA revealed a significant effect of PMA (β = 0.19;
p < 0.001), a significant effect of GA (β = 0.16; p = 0.002),
and a significant effect of the interaction between PMA and GA
(β = −0.004; p = 0.002), indicating that infants born at a lower
GA showed a stronger relationship between PMA and CT. When
performing the same analysis in the pooled ePrime and dHCP
data before harmonizing the maps, the effect of GA and the effect
of the interaction were rendered not significant (GA: β = 0.009;
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FIGURE 8 | Comparison of local mean cortical thickness measures between original Draw-EM dHCP segmentations and original Draw-EM ePrime segmentations

(first column), or between original Draw-EM dHCP segmentations and ePrime segmentations obtained with the six trained models (columns 2–7). Linear regressions

were performed in the comparable data subsets testing the effects of cohort on local cortical thickness measures, controlling for PMA, GA, and sex (CT ∼ cohort +

PMA + GA + sex). The asterisks indicate a statistically significant effect of cohort in the linear regression.
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FIGURE 9 | Example predicted segmentation maps for the best performing models. On the first row we show an example where three of the models (baseline with

augmentation, latent with augmentation, and image) misclassified a part of the cortex as being deep gray matter. This is more pronounced in the baseline with

augmentation model, while the latent with augmentation and image show a slight improvement. The image with augmentation model corrected the problem entirely.

On the second row the yellow arrow points to an area of CSF where the baseline with augmentation model misclassified it as dGM, while the other three models did

not have this problem. The red arrow on the other hand points to an area where the latent with augmentation model misclassified cGM as deep gray matter. This

problem does not appear in the other models.

p = 0.7 and PMA∗GA: β = −0.0006; p = 0.5, respectively). This
is corrected after harmonizing the tissue maps, where the effects
of GA (β = 0.06; p = 0.02) and the effects of the GA and PMA
interaction (β = −0.001; p = 0.02) are, again, significant.

The second and third columns of Figure 11 show that
after harmonizing the tissue segmentation maps, the ePrime
preterm-born neonates (green dots) are brought downwards
into a comparable range of values to the dHCP preterms (red
dots). Moreover, when plotting the cortical thickness measures
against PMA, after harmonizing the tissue maps, the intersection
between the two individual regression lines (term and preterm-
born neonates) happens at roughly the same age (PMA = 38.5
weeks) as in the dHCP-only dataset.

We extended the term vs preterm analysis on cortical
thickness substructures. Figure 12 shows the results of applying
a linear model regressing mean cortical thickness measures on
PMA, GA, sex, birth weight and prematurity, where significant
differences (p < 0.05) between the two cohorts (term and
preterm-born neonates) are highlighted in the image.

3.3.2. Behavioral Outcome Association

As a final proof-of-principle, we demonstrate the importance of
data harmonization in an application setting investigating the
association between neonatal cortical thickness and a behavioral
outcome measure. For this, we consider language abilities
as assessed between 18 and 24 months in both dHCP and
ePrime cohorts using the Bayley Scales of Infant and Toddler
Development (Bayley, 2006). Age-normed composite language
scores were available for 203 toddlers from the dHCP cohort
(M = 96.43; SD = 14.89) and 136 toddlers from the ePrime
cohort (M = 91.25; SD = 17.37). For the neonatal cortical

thickness measure, we focus on the left and right frontal cortex
for illustration.

Regressing composite language score against left or right
frontal cortical thickness in each cohort separately, controlling
for PMA, GA, sex and intracranial volume showed that there
was no significant association between neonatal left/right frontal
cortical thickness and language abilities at toddler age in either
of the cohorts. However, when pooling data from both cohorts
together and rerunning the same analysis (using un-harmonized
cortical thickness measures), a significant association between
left/right frontal cortical thickness and language abilities is seen
(left: β = −17.56, p < 0.05, right: β = −18.76, p <

0.05), suggesting that greater frontal cortical thickness at term-
equivalent age is associated with reduced language abilities at
toddler age.

However, as can be seen in Figure 13, this is likely a spurious
effect due to (artifactually) heightened cortical thickness values
in un-harmonized ePrime data combined with lower language
composite scores in the ePrime cohort (consistent with effects
typically observed in preterm cohorts). Indeed, when rerunning
the same analysis on harmonized data pooled across both
cohorts, the effect of cortical thickness on language ability is
rendered non-significant in both left (β = −13.99, p = 0.15) and
right (β = −16.69, p = 0.068) frontal cortex, consistent with the
ground-truth findings in each individual cohort.

4. DISCUSSION AND FUTURE WORK

In this paper we studied the application and viability of
unsupervised domain adaptation methods for harmonizing
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FIGURE 10 | Example of a neonate from the ePrime dataset with GA = 32.86 w and PMA = 39.86 w where the Draw-EM algorithm performed worse than our

proposed image with augmentation model. The green arrow points at a region which was segmented as CSF by Draw-EM, but then corrected by our model.

tissue segmentation maps of two neonatal datasets (dHCP and
ePrime). Our aim was to obtain volumetric and cortical thickness
measures that are only affected by brain anatomy and not
by the acquisition protocol or scanner, in order to improve
the statistical power of imaging or imaging-genetic studies.
We proposed an image-based domain adaptation model where
a tissue segmentation network was trained with real dHCP
and synthesized ePrime T2w 3D MRI volumes. The generator
network was trained to produce realistic images in order to fool a
domain discriminator, while also minimizing an NCC loss which
aimed to enforce image similarity between real and synthesized
images (Grigorescu et al., 2020). We trained this model using
dHCP Draw-EM segmentation maps, and we compared it with a
baseline 3D U-Net (Çiçek et al., 2016), and a latent space domain
adaptation method (Kamnitsas et al., 2017). The three methods
were trained with and without data augmentation (Pérez-García
et al., 2020).

First, we looked at the performance of each of the six
trained models on the source (dHCP) test dataset, by comparing
predicted tissue segmentation maps with the Draw-EM output
labels, with the aim of measuring fidelity of our trained
segmentation methods for the original dHCP domain. Our
results on the source (dHCP) test dataset suggest that our trained

models were able to generalize to unseen source domain data.
At the same time, Dice score results on the test set for the
proposed image with augmentation model are high and are
similar in performance when compared with the baseline with
augmentation method. This suggests that adding the contrast
transfer step does not diminish the quality of the segmentations.

We then analyzed the extent to which each of the 6 trained
models managed to harmonize the tissue segmentation maps
of our two cohorts, by looking at tissue volumes and mean
cortical thickness measures between subsamples of the dHCP
and ePrime cohorts which showed comparable GA at birth
and PMA at time of scan, as well as similar gender and
maternal ethnicity. Our results showed that our proposed model
(image with augmentation) harmonized the predicted tissue
segmentation maps in terms of cortical gray matter, white matter,
deep gray matter, cerebellum and brainstem volumes (Figure 6).
In terms of mean global cortical thickness measures, four of
the trained methods (baseline with augmentation, latent with
augmentation, image, and image with augmentation) achieved
comparable values when compared to the dHCP subset. In fact,
we hypothesize that these four methods provided the best overall
results because either they were trained using data augmentation
or they acted as a deep learning-based augmentation technique
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FIGURE 11 | Mean cortical thickness measures in our dHCP dataset (first column), and in both cohorts before (second column) and after (third column) harmonizing

the tissue segmentation maps. The first row plots the cortical thickness measures against GA, while the second row plots the cortical thickness measures against

PMA, with individual regression lines on top.

FIGURE 12 | Comparison of cortical thickness measures for the whole cortex and for each of the 11 cortical subregions between term and preterm-born neonates.

The results of the linear regression are reported in the table in terms of differences between term and preterm-born neonates.

(Sandfort et al., 2019), which made the segmentation network
more robust to the different contrast, population bias and
acquisition protocol of the ePrime dataset.

Using the cortical parcellation network, we also produced
cortical thickness measures for the 11 cortical subregions
(see Table 2). Again, the models trained with augmentation
performed better than their no augmentation counterparts (see
Figure 8). However, our proposed image with augmentation
model performed best, whereby ePrime values, tending toward

higher values before harmonization, were brought downwards
into a comparable range of values to dHCP, for 10 out of 11
cortical subregions (see Figure 8 last column). For the right
parietal lobe, our proposed method outperformed the original
segmentations and the other 5 models, but did not manage to
bring the values down to a non-significant range. One potential
reason for this is that, on a visual inspection, the ePrime
cohort appears to suffer from more partial volume artifacts
than its dHCP counterpart, which can confuse the segmentation
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FIGURE 13 | Language composite score against predicted left and right frontal cortical thickness measures before and after harmonizing the tissue segmentation

maps. Without harmonization (columns 1 and 3) there appears to be a significant association between left or right frontal cortical thickness and language abilities, but

after harmonization (columns 2 and 4) the effect of cortical thickness on language ability is rendered non-significant in both left and right frontal cortex. This

demonstrates the importance of data harmonization without which pooling images from separate datasets can lead to spurious findings that are driven by differences

in acquisitions rather than by true underlying effects.

network and can lead to overestimation of the cortical gray
matter/cerebrospinal fluid boundary.

A close inspection of the predicted tissue segmentation
maps (see Figure 9) also showed that our proposed model
(image with augmentation) corrected misclassified voxels which
were prevalent in the other 3 methods. At the same time, the
proposed image with augmentation method outperformed the
original Draw-EM segmentation by correcting a region of
WM which was wrongly classified as CSF (see Figure 10). Our
results suggest that, in terms of consistency of volumes
and regional cortical thickness measures derived from
dHCP and ePrime neonates (Figures 6, 8), as well as the
qualitative examples (Figures 9, 10), our proposed image with
augmentation model resulted in more consistent outputs than
the other methods.

We used the harmonized cortical segmentation maps to
look at differences in both global and local cortical thickness
measures between term and preterm-born neonates. We showed
in Figure 12 that our harmonized cortical gray matter maps
resulted in global thickness measures which were comparable
with the dHCP-only neonates, while also revealing a significant
effect of GA and the interaction between age at scan and at
birth. We performed a similar analysis on the local cortical
thickness measures and highlighted three regions of interest
(frontal left, frontal right, and parietal left) which showed
significant differences between the two cohorts (see Figure 12).
These regions are consistent with previous studies (Nagy et al.,
2011) where cortical thickness measures were shown to differ in
preterm-born neonates when compared to term-born neonates
in an adolescent cohort.

Finally, we showed the importance of harmonizing the
cortical tissue maps by investigating the association between
neonatal cortical thickness and a language outcome measure.
After harmonization, regressing language composite score
against predicted left or right frontal cortical thickness in the
two pooled datasets, showed no significant effect of cortical
thickness (second column of Figure 13), consistent with the
ground-truth results seen in each cohort individually. This

analysis demonstrates that without data harmonization, pooling
images from separate datasets can lead to spurious findings that
are driven by systematic differences in acquisitions rather than
by true underlying effects. Our harmonization allows for our two
datasets to be combined into joint analyses while preserving the
underlying structure of associations with real-world outcomes.

Our study was focused on single-source unsupervised domain
adaptation approaches, which might limit application in terms
of applying the method to a different neonatal dataset. However,
by utilizing reliable tissue segmentation maps from multiple
neonatal databases, the proposed model can be extended to a
multi-source domain adaptation pipeline (Mansour et al., 2008;
Xu et al., 2018). Additionally, the latent based domain adaptation
method was trained using the features at every layer of the
decoding branch, without analyzing different combinations of
the encoding-decoding layers. Future work will therefore aim to
systematically evaluate our design choices via ablation studies. At
the same time, we focused our work on investigating structural
(T2w) datasets only, and in future we aim to extend this study to
harmonize diffusion data as well.
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