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SUMMARY 

Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype (hereafter, GB), is an aggressive brain 

malignancy associated with a dismal prognosis and poor quality of life. Single-cell RNA 

sequencing has helped to grasp the complexity of the cell states and dynamic changes in GB. 

Large-scale data integration can help to uncover unexplored tumor pathobiology. Here, we 

resolved the composition of the tumor milieu and created a cellular map of GB (‘GBmap’), a 

curated resource that harmonizes 26 datasets gathering 240 patients and spanning over 1.1 

million cells. We showcase the applications of our resource for reference mapping, transfer 

learning, and biological discoveries. Our results uncover the sources of pro-angiogenic 

signaling and the multifaceted role of mesenchymal-like cancer cells. Reconstructing the tumor 

architecture using spatially resolved transcriptomics unveiled a high level of well-structured 

neoplastic niches. The GBmap represents a framework that allows the streamlined integration 

and interpretation of new data and provides a platform for exploratory analysis, hypothesis 

generation and testing. 

 

Keywords: Glioblastoma, single-cell RNA sequencing, reference mapping, transfer learning, 

spatial transcriptomics, in situ sequencing, tumor organization 

 

INTRODUCTION 

GB is the most common malignant brain neoplasm in adults and continues to have a poor 

prognosis despite developments in multimodal therapy (Miller et al., 2021). Recent advances 

in the molecular profiling of individual cells have unraveled a remarkable cell heterogeneity of 

the neoplastic cells and the tumor microenvironment (TME), especially the immune 

compartment (Andersen et al., 2021; Cordell et al., 2022; Suva and Tirosh, 2020). Our current 

understanding of the complexity, particularly at the gene expression level, points toward a 

dynamic process where cells transit among different states in a continuous spectrum rather than 

fitting unique delineated categories (Couturier et al., 2020; Garofano et al., 2021; Johnson et 

al., 2021; Neftel et al., 2019; Richards et al., 2021).  

To better capture the molecular underpinnings of transcriptomic variation between different 

tumor samples, it is necessary to gather and integrate large cohorts that can empower 

understanding of the disease mechanisms and capture the phenotypic features of GB. Single-

cell RNA sequencing (scRNA-seq) has been the leading method to characterize the tumor 

cellular makeup, and its adoption to study gliomas has led to the generation of a plethora of 
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datasets that vary in size, sequencing protocols, cell enrichment, and regional sampling, 

amongst others (Hernandez Martinez et al., 2022). Successful harmonization of such diverse 

datasets can help to chart with precision the TME at single-cell resolution. Integrating scRNA-

seq data has been one of the main challenges in the field, and reducing the technical variance 

is paramount in generating a high-quality reference map (Argelaguet et al., 2021; Luecken et 

al., 2022). Recent developments in computational methods have addressed these issues and 

allowed the generation of large-scale reference atlases in health and disease of several tissues 

and organs (Emont et al., 2022; Litviňuková et al., 2020; Sikkema et al., 2022). 

 

Various studies have featured the potential of scRNA-seq to model intercellular 

communication by measuring the expression of ligands and receptors (L-R) in multiple cell 

types and disentangle communication networks (Efremova et al., 2020; Jin et al., 2021). 

Attempts have been made to model the cell-cell interactions in GB (Caruso et al., 2020; Hara 

et al., 2021; Xiao et al., 2022; Yu et al., 2020). However, they were either limited to small 

sample size or did not provide a holistic overview of the GB cellular composition to construct 

the tumor interactome. Additionally, despite current technological advances, transcriptomic 

profiling in a spatially resolved manner has only lately been used to explore GB (Ravi et al., 

2021; Ravi et al., 2022).  

 

We set out to build the ‘GBmap’ (Fig. 1a). At its core, it integrates multiple scRNA-seq 

datasets, providing a harmonized annotation at different levels. We demonstrate the 

applicability of the GBmap to annotate newly generated data robustly. Through transfer 

learning, we gathered more than 1.1 million cells, which increased the likelihood of identifying 

under-represented cell (sub)types. The GBmap facilitates the construction of a global network 

of cell-cell interactions. In addition, it assisted in the fine mapping of cell types and states in 

low-resolution spatially resolved transcriptomics (ST) data to chart the architecture of GB. 

Finally, in situ sequencing unveiled the territorial organization of the neoplastic cells at single-

cell resolution. Delving into the disposition of the different cell (sub)types within the TME will 

deepen our knowledge of cellular neighboring patterns and crosstalk in proximal cell 

subpopulations. 
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RESULTS 

Creation of a harmonized single-cell GB core reference 

To establish a GB core reference, we initially gathered scRNA-seq profiles from 16 studies 

across multiple platforms and diverse sample preparation strategies (Fig. 1a; Table S1), 

obtaining over 330,000 cells from 110 patients. As a first step, we performed an independent 

automated cell annotation using a cataloged list of markers (Table S2), unsupervised manual 

assignment, and curation of broad cell types (Clarke et al., 2021). For datasets where whole-

tumor profiling was performed, inference of copy number variation was assessed individually, 

distinguishing cells with aneuploid changes to assign non-neoplastic and neoplastic cells (Fig. 

S1a). To overcome the technical challenge of data integration, we employed a semi-supervised 

neural network model (scANVI) (Xu et al., 2021) implemented in the transfer-learning 

framework of the scArches algorithm (Lotfollahi et al., 2021), which takes advantage of the 

uniform prior cell type labeling to harmonize the datasets while preserving cell biodiversity. 

After co-embedding all cells in a dimensionality reduction space, we reconstructed a detailed 

TME cell map broadly divided into neoplastic and non-neoplastic cells (neuronal/glial, 

myeloid, lymphoid, and vascular) (Fig. 1b). We kept all clinical (e.g., sex, age, tumor location) 

and diagnostic (e.g., EGFR and MGMT status, TP53 mutation) information whenever available 

(Fig. S1a and S1b). 

 

To systematically segregate the major populations, we initially characterized the cell identity 

at a low granularity level (level-2 and -3 annotation, Fig. 1b and S1c). Neoplastic cells (38%), 

recognized by the overall presence of (inferred) copy number variation (iCNV), globally 

converged into two central cellular phenotypes:  stem/progenitor- and differentiated-like cancer 

cells. The innate immune compartment (39%) could be broadly divided into dendritic cells 

(DC) and tumor-associated macrophages (TAMs), the latter divided by the closest 

transcriptomic cell ontogeny into blood-derived monocytes/macrophages (BDM) and 

microglia (MG) populations. Tumor infiltrative lymphocytes (TILs) (17%) were mainly 

constituted of T CD4+/CD8+ and natural killer (NK) cells, and to a lesser extent, B/plasma and 

mast cells. Non-neoplastic neuronal/glial (5%) and vascular cells (1%) embedded in the tumor 

were assigned based on their distinctive transcriptomic profile and the lack of iCNV (Fig. 1b 

and S1a). 

 

Next, we identified gene modules (programs) to define representative phenotypes for each 

category in greater detail (Table S3). The gene modules detected in neoplastic cells were 
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consistent with cellular states that mimic astrocyte (AC)-like, neural precursor cell (NPC)-like, 

oligodendrocyte percussor cell (OPC)-like, and mesenchymal (MES)-like states (Neftel et al., 

2019) (Fig. 2a and S2a). Additional cellular (sub)programs within the cancer phenotypes 

included hypoxia and major histocompatibility complex class (MHC)-II/cytokine modules, 

particularly enriched in MES-like cells as described in published studies (Hara et al., 2021; 

Neftel et al., 2019) (Fig. S2b). Enhanced cell proliferation was primarily seen with the 

OPC/NPC- and AC-like cells (Fig. S2b). 

 

Within the TAMs, the BDM-enriched ontogeny displayed up-regulation of gene programs 

associated with classical monocytes (Pombo Antunes et al., 2021), interferon (INF)-induced 

genes, pro-inflammatory cytokines, and tumor-supportive chemokines (Fig. 2a and S2c). A 

BDM subset characterized by the inclusion of MES-like genes (e.g., VIM, CSTB) matched the 

recently recognized MES-like myeloid phenotype (Hara et al., 2021) (Fig. S2c and d). 

Additional gene modules, such as a hypoxia-responsive program, were also enriched in the 

MES-like BDM subtype (Fig. S2c). Cells with higher expression of canonical microglial genes 

were divided into three principal categories: MG-like phenotypical signature with up-

regulation of pro-inflammatory genes, INF response and immune activation program, and 

lastly, aging-like transcriptional pattern with high expression of SPP1, APOE/C, and BIN1 

(Sankowski et al., 2019) (Fig. 2a and S2c,d). Exploration of the lymphoid territory revealed 

CD4+ T cells falling into the category of regulatory (Tregs), INF signature, and effector 

memory cells in a polarization-state (Poch et al., 2021) (Fig. 2a and S2e). CD8+ T cells 

expressed high levels of genes associated with cytotoxicity, effector memory-associated 

programs, and cell proliferation. In addition, we also detected the recently discovered CD8+ 

NK-associated signature (Mathewson et al., 2021) defined by enrichment of FCGR3A, GZMB, 

and KLRB1 (Fig. S2e and f). A stress signature enriched in heat-shock protein (HSP) genes 

was discernable, previously described as a genuine T cell phenotype in glioma-infiltrating T 

cells (Mathewson et al., 2021) (Fig. S2e and f). 

  

On the vasculature, we defined cell (sub)types reported as being part of the brain blood vessels 

(Yang et al., 2022) as well as previously undescribed phenotypes (Fig. 2a,b and S2g). 

Endothelial cells (ECs) could be classified into tip-, capillary- and arterial-like cells based on 

the expression of classical zonation markers. Our large-scale analysis accurately determined 

that PLVAP, a marker consistent with fenestrated morphology typically seen in high-permeable 

capillaries and venous vessels, was upregulated by arterial-like GB ECs (Fig. 2b). PLVAPhi 
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arterial-like ECs suggest a novel pathological subtype in brain tumors. Mural cells consisted 

of smooth muscle cells (SMCs), pericytes, perivascular fibroblasts, and vascular 

leptomeningeal cells (Fig. 2b and S2g,h). Upregulation of vascular membrane remodeling 

(collagen and metalloproteinases), pro-angiogenic genes (e.g., TNC) (Rupp et al., 2016), and 

proliferative markers were associated with two different subpopulations of SMCs. These 

phenotypes have not been reported and are consistent with the enhanced microvascular 

proliferation in GB (Fig. 2b). We also identified an unconventional phenotype featured by 

immune activation and antigen presentation (Fig. 2b). The presence of an immune-enriched 

signature was recently discovered in a single-cell analysis of ECs in GB (Xie et al., 2021). The 

integrated GBmap helped to recognize a subcluster of pericytes that also has a so-called 

scavenging signature, which has not been described elsewhere. As suggested in other tumor 

types, these scavenging cells might be induced by tumor-secreted cytokines (Goveia et al., 

2020).   

 

In summary, we created GBmap, a robust core reference atlas that delineates cell types and 

states. We also provide a systematic annotation at different levels of granularity, from coarse 

to refined cell identity (Fig. 2c and Table S4).  

 

Reference mapping and large-scale integration by transfer learning  

One of the main goals of building a detailed GBmap is to provide a resource for the community 

to project unannotated ‘query’ datasets onto a harmonized reference. To test the ability of our 

GBmap to recognize each cell (sub)type accurately, we generated single-nuclei RNA-seq from 

11 GB cases (Fig. 3a, Table S5), obtaining 39,355 high-quality cells. We compared the manual 

annotation of our de novo dataset with the label transfer upon reference mapping (Fig. 3b and 

S3a,b). The GBmap not only allowed the unsupervised reiteration of the major cell types but 

also resolved the difference between non-neoplastic and neoplastic cell types in one step 

(presence/absence of iCNV) (Fig. S3c). This is particularly important when distinguishing 

between states that share common gene signatures (e.g., normal OPC vs. OPC-like malignant). 

 

The GBmap also transferred the information of fine cell subtypes to uncover phenotypes that 

otherwise would have remained hidden. We could identify TIL subsets in our 11 GB sample 

set with an expression pattern of regulatory T cells, typified by the high expression of CTLA4 

and IKZF2 (Fig. 3c). This population was not detected without the label transfer provided by 

the GBmap, not even by sub-setting and re-clustering (Fig. S3d). Likewise, other cell subtypes 
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that could not be confidently classified in the standalone analysis of our 11-sample cohort could 

now be correctly recognized, including anti-inflammatory monocytes, hypoxia/MES-like 

TAM-BDM, and perivascular fibroblasts (Fig. 3c). Taken together, the GBmap reference 

facilitated robust identification of the cellular composition in newly generated data. 

 

It is anticipated that the GBmap will ‘grow’ over time as new studies will capture cell 

(sub)types that are not well or at all represented in the core GBmap reference. Projecting new 

datasets on a predetermined reference map, although practical for fast evaluation and 

interpretation, has the disadvantage of forcing the queried cells to the reference and hiding 

novel findings. The transfer-learning method developed in the scArches pipeline instead 

updates and extends a trained model overcoming the limitation of forced cell mapping. To 

exemplify the integration of newly generated single-cell datasets into the core GBmap, we 

‘upgraded’ it with new datasets that became available after the construction of our trained 

model, including our own profiled GB tissues (Table S1) (Fig. 3d). The outcome generated a 

joint embedding resulting in the extended GBmap (>1.1 million cells) (Fig. 3e). Our model 

recapitulated the major cell groups when comparing the label transfer from the core reference 

(predicted cell type) to the newly mapped datasets (original annotation) enabling consensual 

annotation across studies (Fig. S3f). Of note, after large-scale integration, we detected a cluster 

with a high expression of neutrophil markers (e.g., FCGR3B, CXCR2, FPR2) (Fig. 3f). 

Importantly, tumor-associated neutrophils were absent in the core GBmap reference and could 

now be retrieved in the queried datasets.  

 

Comparing the TAM-MG cells in the core GBmap (Fig. 3g), we found a subset of MG cells in 

the extended GBmap that expressed higher levels of bona fide markers of a core transcriptional 

microglial signature (e.g., CX3CR1, P2RY13) and lower expression of catabolic (e.g., GPX1) 

or cell activation (e.g., CCL3L3) processes (Fig. 3h). These cells mainly belonged to the 

integrated Xie2021 dataset (Fig. 3g and S3g). The multi-sector biopsy performed by Xie et al. 

showed that the histological assessment of the neighboring tumor tissue largely concurred with 

normal brain microanatomy. In our analysis of the extended GBmap, we could determine that 

in the peripheral area, their data was enriched for homeostatic resident MG cells. Due to the 

higher number of cells profiled by Xie et al. compared to previous multi-sector biopsy studies 

included in the core reference (Darmanis et al., 2017; Wu et al., 2020; Yu et al., 2020) (Fig. 

S3h), the divergence between ‘naïve’ resident microglia and TAM-MG was drawn out during 

the transfer learning process.  
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These results show the utility of the GBmap in adding depth to hidden or overlooked findings 

of cell phenotypes. It provides a framework that enables the discovery of (disease) specific cell 

states and can ‘learn’ when new data is added. Of note, all subsequent analyses were carried 

out on the extended GBmap. 

 

GB interactome uncovers signaling implicated in phenotypic turnover, 

immunomodulation, and angiogenesis 

The crosstalk between neoplastic and non-neoplastic cells in the TME is thought to be pivotal 

in preserving cellular plasticity and impacting tumor growth and progression. We used the 

extended GBmap to build a comprehensive cell-cell communication network based on the 

weighted expression of L-R pairs in each cell type. To identify which interaction pathways are 

likely to change upon neoplastic transformation, we compared the inferred in silico crosstalk 

of the extended GBmap with a curated spatiotemporal cell atlas of the human brain (Song et 

al., 2021) (Fig. S4a).  

 

Following L-R pairs inference in each condition, we analyzed them together via joint manifold 

learning and performed a classification of the detected networks based on their communication 

similarity. In total, 110 pathways encompassing 1041 significant L-R pairs were detected, 

sorted into six main groups, and projected onto a shared two-dimensional space (Fig. 4a). Four 

of the six groups shared pathways between healthy and tumor. GB-only communication 

pathways uniquely formed groups 2 and 4. The spectrum of signaling networks linked to GB 

involved immune chemoattraction, vascular proliferation, and tumor maintenance (Fig. 4a; 

S4b). By computing the Euclidean distance between the shared signaling patterns (58/110 

pathways), we observed a considerable distance for pathways that, under non-pathological 

conditions, support cell functions of resident brain cells such as NOTCH (Ables et al., 2011), 

junctional adhesion molecules (JAM) (Ebnet, 2017), and apolipoprotein E (APOE) (Flowers 

and Rebeck, 2020) (Fig. 4b). Increased pathway distances point toward changes in how sender 

and receiver cells handle a given signaling pathway. This might suggest that cancer cells hijack 

and reprogram homeostatic cellular brain processes to boost tumor growth and development.  

 

Our interactome robustly recovered well-established GB-specific signaling patterns, including 

signaling networks among cancer cells associated with tumor growth, adaptive mechanisms of 

resistance, and glioma stem cell maintenance (Han et al., 2019; López-Valero et al., 2020; 

Osuka et al., 2021; Shi et al., 2017) (EGF, PTN, CDH, MK). Among immune cells, the inferred 
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L-R pairs belong primarily to chemokine/cytokine families (e.g., CXCR-CXCXL families), 

complement system, antigen presentation (e.g., MHC genes), and adhesion molecules (e.g., 

ICAM and ALCAM) (Fig. 4b and S4c). In addition, our L-R predictions hint at novel players, 

such as neutrophils, that could mold the TME and communication networks covering distinct 

biological and histological features (e.g., microvascular proliferation). A recent study 

illustrated that the (mal)functional interaction between TAMs and cancer cells through the 

oncostatin M (OSM) pathway could shape the malignant phenotype towards an MES-like state 

(Hara et al., 2021). We found that interactions involved in the OSM pathway were not limited 

to TAMs. To a large extent, neutrophils express OSM (Fig. 4c), which is further up-regulated 

in the presence of TAMs (Zhou et al., 2021). Neutrophils account for up to 20% of the immune 

cells in GB (Klemm et al., 2020) and hence could potentially impact cellular communication 

within the tumor (Fig. 4c and S4c).  

 

The inferred interplay between MES-like neoplastic cells (and, to a lesser extent, vascular cells) 

with TAMs via PROS pathway (PROS1-AXL) suggests a potential mechanism by which tumor 

cells may inhibit pro-inflammatory TAMs polarization (Ubil et al., 2018) (Fig. 4c). 

Predominant expression of NECTIN3 by the MES-like cells can sustain an exhausted T-cell 

phenotype upon binding to TIGIT (Reches et al., 2020) (Fig. 4c), an immunoglobulin inhibitory 

receptor expressed in TILs. In line with a recent investigation (Xiao et al., 2022), MES-like 

cancer cells are dominant mediators of signaling growth factors that stimulate 

neovascularization (VEGF, ANGPTL, CALCR), with more discrete participation of monocyte-

/TAM-BDM-hypoxia-associated cells (Fig. 4c; S4c). Their pro-angiogenic role is likely a 

feedforward mechanism to hypoxic metabolic cues (Fig. S4d and S4e).  

 

Our in silico communication modeling hints at additional pro-angiogenic signaling influx 

through non-conventional pathways. TAM-BDM selectively expresses wingless-related 

integration site family member 5A (WNT5A), which upon interaction with Frizzled family 

receptors and CD146 (MCAM), can trigger new blood vessel sprouting (Chen et al., 2021) (Fig. 

4c). In addition, we found that neutrophils are the primary source of NAMPT, part of the 

VISFATIN pathway (Fig. 4c), which is critical for the pro-angiogenic activity in other solid 

tumors (Pylaeva et al., 2019) and could also be an essential vascular mediator in GB.  

 

Overall, the GBmap provided the structural basis to create the signaling network within the 

TME. The analysis provides support for signaling events of well-established as well as new 
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roles in GB. We highlight the inferred influence of MES-like cancer cells in 

immunomodulation and neovascularization. We find that the roots of pro-angiogenic crosstalk 

in the TME are not limited to MES-like neoplastic cells but are also reinforced by 

TAMs/neutrophils.   

 

Regional organization of the GB TME 

Tissue organization and architecture influence cell behavior, and cell-cell interactions can 

impact tumor pathogenesis. Our findings on the communication network highlight that 

properties of the GB micro-ecosystem, such as restricted oxygen access, can trigger signaling 

in response to environmental cues. This likely reflects how cells are arranged within the tumor 

and who their neighbors are. Recent spatial scrutiny of GB tissues deciphered distinct 

transcriptional states, ranging from progenitor/development-like to reactive immune- and 

hypoxia-related programs (Ravi et al., 2022). Precise mapping of the cellular localization of 

the TME components using the GBmap could help to refine the tumor structure and delineate 

cellular crosstalk between tissue neighborhoods (Fig. 5a). Employing a Bayesian model for 

spatial multi-resolution mapping (Cell2location) (Kleshchevnikov et al., 2022), we determined 

the cell-type frequency in each capture area and charted the global architecture of GB in 

publicly available ST datasets (STAR Methods). 

 

The distribution of the cancer cell states revealed regionally conserved consistencies across 

multiple samples. AC- and NPC/OPC-like states showed extensive co-localization in several 

areas, whereas the MES-like phenotype formed demarcated ‘patches’ (Fig. 5b and S5a). MES-

like areas were mainly populated by this phenotype, with fewer cells sharing the same space 

(low cell diversity) and a lack of co-localization with the other cancer phenotypes (Fig, S5b). 

We noticed that tumor samples containing regions with large, immersed blood vessels depicted 

a structured patterning. It appears that AC-/OPC-like cancer cells surround the main tumor 

blood vessels, followed by an adjacent neighborhood populated by MES-like phenotype (Fig. 

5c). Furthermore, transition areas between AC/OPC- and MES-like resemble cancer cells from 

the MES-like hypoxia-independent phenotype, which later transit to a hypoxia-associated state 

(Fig. S5c). Hypoxia may be a critical metabolic determinant of the distribution of cancer states 

within the tumor; however, the distinctive disposition of MES-like cancer cells might also 

reflect higher cell interconnectivity. We employed a recent transcriptomic connectivity 

signature established using a xenografted mouse model and validated in an independent cohort 

of primary human GB (Hai et al., 2021). We found a high connectivity score and upregulation 
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of the molecular connectivity marker CHI3L1 in regions dominated by MES-like malignant 

cells (Fig. 5d).   

 

Considering the estimated cell-type abundance in each spot, we randomly screened all different 

tumor samples and regions and applied a non-negative matrix factorization (NMF) to delve 

into the spatial co-occurrence of cells that determine ’compartments' within the TME. Factor 5 

was composed mainly of normal glial and neuronal cells and usually found in areas adjoining 

non-tumoral tissue (Fig. 5e). Factors 2 and 3 were enriched with different immune populations 

suggesting that some regions within the tumor may facilitate immune-immune crosstalk (Fig. 

5e). Factor 4 corroborated the AC/OPC-like co-localization, and factor 1 the zonal disposition 

of MES-like across GB samples (Fig. 5e). The later compartments suggest different 

associations with specific immune cells. MES-like cancer cells shared neighborhoods with 

monocytes/TAM-BDM and, to a lesser extent, TILs, corroborating previous reports (Hara et 

al., 2021; Mathewson et al., 2021) (Fig. 5e). Our analysis unveiled a modest enrichment of 

neutrophils and mast cells in MES-like dominated regions (Fig. 5e). A recent study reported 

an association between neutrophils and MES-like GB tumors in a mouse model (Magod et al., 

2021). Our analysis indicates such a partnership also occurs in primary human GB. The AC-

/OPC-like compartment (factor 4) was associated with a ‘colder’ immune environment with 

the contribution of NK and TAM-MG (Fig. 5e). 

 

Investigating the spatial communication between neighborhoods, we found that several 

inferred L-R pairs were driven by MES-like dominated areas, in line with our in silico inference 

of the GB interactome (Fig. S5e). This suggests a prominent role of MES-like regions in 

supporting pro-angiogenic signaling (Fig. S5e). Our spatial cell-cell interaction network further 

indicated crosstalk of MES-like cancer cells with TAM through the osteopontin pathway (e.g., 

SPP1-CD44) as well as interactions with the extracellular matrix (ECM) via tenascin C (TNC) 

(Fig. 5f). These signaling networks could well be essential to sustain and support the well-

delimited architecture displayed by the MES-like cancer phenotype (Chen et al., 2019; Sun et 

al., 2018; Xia et al., 2015).  

 

Collectively, our results provide insights into the architecture of GB and illustrate global 

spatiotemporal patterning, with co-localization of AC- and OPC-like and a predilected self-

neighboring disposition of MES-like cancer cells. 
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Tumor vasculature delineates territorial allocation of cancer states 

Our observations on the coarse ST data prompted us to resolve cell (co)localization at high 

resolution. We employed a targeted hybridization-based in situ sequencing (HybISS) (Gyllborg 

et al., 2020) that reads out the sequences of preselected transcripts within the intact tissue at 

single-cell resolution. We explored two GB tissues from the 11 patients profiled in our study 

(NH17-2680 and NH19-565) and generated padlock probes against 194 genes (Table S6) 

specific for neoplastic (four malignant states) and non-neoplastic cell types (lymphoid, 

myeloid, and vascular). We mapped the cell types that compose the TME and assigned 

transcripts to cells through a probabilistic method for cell typing by in situ sequencing (pciSeq) 

(Qian et al., 2020) (Fig. S6a,b and c). The tissue sections corroborated and significantly 

extended the phenotypic patterning uncovered by the low granularity ST data (Fig. 6a; S6d). 

Unique patches dominated by MES-like cells or mixed AC/OPC/NPC-like were seen 

throughout the section (Fig. 6a, boxes I, II). Notably, the GB cancer phenotypes showed a 

layered distribution relative to the endothelial and mural cells (Fig. 6a, boxes II, III, IV). AC-

like cells were primarily enriched near the endothelium, whereas MES-like cells were often 

layered further away and characterized by high expression of hypoxia and pro-angiogenic 

genes (e.g., VEGFA, HILPDA) (Fig. 6b). The OPC/NPC layer near the blood vessels (Fig. 6a, 

boxes I, II) is in accordance with the published description of a perivascular niche that is 

enriched for cancer stem-like cells (Adjei-Sowah et al., 2022; Jung et al., 2021). 

 

To gain further insight into the cellular patches, we performed a neighborhood enrichment 

analysis and clustered the cells based on their nearest neighbors within a 50 µm radius (Fig. 

6c). The organization of the neoplastic cells appears to follow specific state-dominated 

domains. We observed several neighborhood patterns; firstly, HybISS revealed an extensive 

intra-co-localization of MES-like cells. Secondly a frequent association between MES-like and 

TAM-BDM as well as AC-like with TAM-MG (Fig. 6c and d). Both patterns align with our 

findings on the Visium datasets (Fig. 5e). Thirdly, there are shared neighborhoods between 

ECs with mural cells and NPC-like with OPC-like. Cluster analysis of the neighbors showed 

areas of gradual connectivity between OPC-like to AC-like-enriched domains and, to a lesser 

extent, MES-like and NPC-like-dominated domains (Fig. 6d). Neftel et al. showed that cancer 

cells could intricately transit among multiple cellular states (Neftel et al., 2019). Other studies 

performing trajectory inference proposed an inclination of progenitor-like OPC/NPC 

malignant cells to shift towards differentiated inflammatory-related AC/MES phenotype (Liu 

et al., 2020; Ravi et al., 2021; Wang et al., 2019). Our findings suggest that within the tumor, 
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the plasticity of the cancer cells might allow specific phenotypes transitions (e.g., OPC- to AC-

like rather than to the other two states), likely favored by their surrounding habitat, which may 

act as the driving force of cell state commitment. Performing cluster detection of the 

neighboring features, our spatial analysis uncovered distinct cancer state sub-niches suggesting 

further diversity based on their preferential nearest neighbors and presumptively additional 

environmental cues within the GB ecosystem (Fig. 6e, boxes I, II and S6e). Taken together, 

the disposition of neoplastic cells alongside the ECs/mural cells suggests that the blood vessels 

may act as one of the factors that lead to the zoned territorial organization.   

 

We provide the first single-cell resolution map of the spatial organization of GB and offer a 

detailed view of the TME architecture. Our work is an essential step toward a better 

understanding of the relationship between cell plasticity and tumor micro-ecosystems.  

 

DISCUSSION 

To tackle the challenge of confidently identifying and assigning cell identities, we gathered 

numerous published cohorts of patients and cells to capture the entire spectrum of cellular states 

in GB as much as possible. We created an integrated compendium of GB using scANVI (Xu 

et al., 2021), effectively reducing the batch effect between datasets while retaining biological 

information. Beyond well-recognized and recently discovered cell states, we could pinpoint 

scarce cell populations, such as normal neurons (0,00006498%), and novel phenotypes, such 

as PLVAPhi arterial-like ECs and immune-associated scavenging pericytes. Considering 

previous studies and the findings of our independent analysis, we propose a harmonized 

annotation for the different cells in a structured and comprehensive manner (Fig 2c and Table 

S4). 

 

We showcase how the GBmap can accurately transfer the cell’s identity to new GB datasets 

and uncover phenotypes that would have remained hidden without the atlas (e.g., Tregs). We 

could also accurately designate which cells are neoplastic in one step, including hard-to-discern 

types such as non-neoplastic OPC and OPC-like tumor cells. The GBmap is an ‘ever-evolving’ 

platform that can continuously be improved when new information is fed into it. We 

demonstrated that cell types (e.g., neutrophils) and under-represented phenotypic states (e.g., 

naïve MG) became discernible by updating the core reference with additional datasets. New 

studies focusing on specific cell types/states could help fill in missing pieces of the puzzle, for 

instance, other granulocytes or lymphatic vessel cells that could play a role in the TME. 
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Additional extensions of the GBmap or data exploration from a different perspective will offer 

complementary information to improve our understanding of tumor pathobiology.  

 

On the analytical side, we exploited the GBmap to infer the cell-cell interaction panorama of 

GB. By comparing the inferred crosstalk between cells in the healthy brain and gliomas, we 

found that the tumor might subvert the ‘normal’ signaling in the brain environment to favor 

tumor growth. An excellent example of such a ‘hijack’ was recently discovered via a glioma-

neuronal network that promotes gliomagenesis (Venkataramani et al., 2019; Venkatesh et al., 

2019). Our findings suggest a role of MES-like cancer cells in ‘training’ infiltrating immune 

cells to acquire immunosuppressive traits (e.g., NECTIN, PROS pathways) and enhance 

neovascularization. The failure of anti-angiogenic therapies may be due to the monomodal 

targeting (anti-VEGF agents) of the tumor neoangiogenesis. Our results hint that the pro-

angiogenic signaling may not solely depend on VEGF but on multiple redundant pathways 

(e.g., CALCR, ANGPTL). Skewing the cancer cells towards an MES-like phenotype (e.g., by 

employing OSM or functional analogs) (Hara et al., 2021), followed by targeted elimination, 

might decrease tumor-supporting activities of the immune cells and the pro-vascularization 

signaling. Successful hampering of the angiogenic signaling will require additional targeting 

of other components of the TME (e.g., TAMs, neutrophils) that further support this process. 

 

Integrating single-cell and spatially resolved transcriptomics (Visium), we uncovered an 

unprecedented territorial organization of the GB TME. We could corroborate and extend the 

spatial disposition of the cancer cell states at single-cell resolution using HybISS. The 

exceptional ‘patches’ formed by MES-like malignant cells alongside a neighboring preference 

of AC- with OPC-like indicate possible environmental cues necessary to preserve its 

architecture. GB patterning appears intricately defined by landmark anatomical structures 

inside the tumor, in this case, the tumor vasculature. We observed an ‘anatomical’ allocation 

of the neoplastic states alongside blood vessels. Because of their considerable distance to the 

tumor vessel, the oxygen surrounding MES-like hubs is likely limited and may impact cell-cell 

communication. Hypoxia can activate signaling pathways that regulate epithelial to 

mesenchymal transition (Hapke and Haake, 2020). Whether hypoxia induces a ‘glial-to-

mesenchymal’ shift or cancer cells' fast growth and energy consumption cause hypoxia and 

subsequent upregulation of pro-angiogenic signaling, followed by microvascular proliferation, 

need to be addressed. Lastly, HybISS disclosed a propensity of the AC-like cells to surround 
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the blood vessels, which could be either a feature of its astrocyte commitment (Hösli et al., 

2022) or part of a blood-tumor barrier.  

 

In agreement with Gangoso and colleagues, who recently showed how epigenetic changes in 

MES-like cells favor the recruitment of circulating myeloid cells (Gangoso et al., 2021), we 

found that the MES-like compartment co-localizes with monocytes/TAM-BDM. This preferred 

‘partnership’ could result from tumor habitat conditions, as demonstrated recently by specific 

spatiotemporal patterns of GB TAMs driven by vascular alterations and tumor hypoxia 

(Sattiraju et al., 2022). The spatial co-occurrence of certain cancer states and immune 

populations is a feature of the TME that requires further investigation and could impact the 

development of new drugs, particularly immunotherapies. Spatial profiling of an increasing 

number of tissues will pave the way toward a better understanding of the GB dynamics and 

advance our knowledge for developing successful therapies with a future vision of personalized 

treatments.  

 

The GBmap is a dynamic framework combining the single-cell transcriptomics of over 1 

million cells that will benefit the scientific community by providing the opportunity to map 

new data, update the current model, scrutinize novel concepts, and generate hypotheses that 

can be explored experimentally. 
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FIGURE LEGENDS 

 

Figure 1. Construction of the core GBmap reference. 

(a) Study design and computational analysis summary.  

(b) UMAP representation of the GB atlas (core GBmap) over ~330,000 cells after data 

integration and batch correction using SCANVI (Xu et al., 2021). The corner insets and 

colored radial tracks depict the author, sequencing platform, patient, and marker-gene 

expression. The axis outside the circular plot shows the log scale of the total cell number 

for each cell type (level-3 annotation). See also S1. 

 

Figure 2. Categorization of cell states in the GBmap. 

(a) UMAP and cell annotation of sub-clustered neoplastic, myeloid, lymphoid, and vascular 

territories (level-4 annotation, detailed cell states). 

(b) Expression of representative genes (left) of the different cell (sub)types part of the tumor 

vasculature. On the right-hand side, enrichment scores of selected gene modules show 

signatures associated with tip-like cell formation (module 4), cell cycle (module 6), and 

immune activation (module 1). The minimum and maximum module scores are shown in 

the bottom right of each panel. 

(c) Overview of the GBmap cell type/state composition from coarse (level 1) to fine (level 4). 

See also S2. 

 

Figure 3. Mapping and transfer learning capabilities of the GBmap. 

(a) Schematic outlines the experimental and in silico pipeline. 

(b) Sankey plot comparing manual cell labeling and predicted cell types using the GBmap from 

11 de novo GB patients (this study) using an anchoring method for reference mapping  

(Azimuth) (Hao et al., 2021). 

(c) Projection and cell type prediction of detailed cell states of de novo mapped query cells 

(this study) onto the GBmap UMAP. On the right, expression of gene markers from 

selected cell states. 

(d) Diagram of comparison and machine-learning process applied to public and our own 

dataset.  

(e) Updated UMAP of the integrated GBmap and query datasets (extended GBmap). Cells 

from the integrated studies are colored gray using the neural network model developed in 
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scArches (Lotfollahi et al., 2021). Cells from the GBmap core reference are colored by 

level-3 annotation.  

(f) Close-up of UMAP region identifying a neutrophil cluster not present in the core GBmap. 

Below is the expression of classical neutrophil gene markers. The minimum and maximum 

normalized gene expression values are shown in the top left of each panel. 

(g) Projection of multi-sector biopsy datasets onto the extended GBmap, colored by region 

(core or periphery).  

(h) Expression of selected phenotypical microglia (CX3CR1, P2RY13) and tumor-induced 

genes (GPX1, CCL3L3) contrasting TAM-MG from the core GBmap and the predicted 

microglial cells on the Xie2021 dataset. See also S3. 

 

Figure 4. GB interactome.  

(a) Shared two-dimensional manifold of jointly projected and clustered signaling pathways 

from healthy brain and GB according to their structural similarity.  

(b) Bar plot of the significant signaling pathways ranked based on their differences in overall 

information flow within the inferred networks between healthy brain (Song et al., 2021) 

and GB. Pairwise Euclidean distance in the shared two-dimensional manifold and pathway 

category are shown above for each communication network. The signaling pathways 

colored green are more enriched in the healthy brain, the ones colored black are equally 

enriched in the healthy brain and GB, and the ones colored red are more enriched in GB. 

(c) Circos plots depict the inferred signaling network interaction among neoplastic, immune, 

and vascular cells. Circle sizes are proportional to the number of cells in each cell cluster 

(level-3 annotation) on the extended GBmap, and edge width represents the communication 

probability. On the bottom, scaled gene expression of ligand (blue) and receptor (red) pairs 

of each selected communication pathway. See also S4. 

 

Figure 5. Spatial mapping and cell signaling of GB cancer cells and the TME.  

(a) Schematic view of the in silico deconvolution pipeline. 

(b) Estimated cell abundance (color intensity) of the four main cancer cell states is shown over 

the H&E image of three primary GB. The minimum and maximum cell abundances are 

shown in the bottom right of each panel. 

(c) Estimated cell abundance (color intensity) of the AC-, OPC- and MES-like cancer cell 

states and vascular cells are shown over the H&E image of two primary GB.  Boxes 
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highlight the areas shown in the inset panels. The left boxes show the estimated cell 

abundance, and the right boxes depict the H&E staining. Black arrowheads point to blood 

vessels embedded within the tumor. The minimum and maximum cell abundances are 

shown in the bottom left of each panel. 

(d) Spatial connectivity score and expression of the key connectivity gene CHI3L1 of different 

GB samples are shown in Fig 5a. The minimum and maximum connectivity score and 

normalized gene expression are shown in the bottom right of each panel. 

(e) Dot plot of the estimated NMF weights of cell groups (columns - level-3 annotation) across 

NMF components (rows), which corresponds to cellular compartments. Colored by relative 

weights, normalized across components for each cell cluster.  

(f) Spatial maps of co-localized gene expression of key L-R pairs. Bottom panels show the 

expression of each L-R separately. The minimum and maximum L-R co-localization score 

and imputed gene expression are shown in the bottom right of each panel.  See also S5. 

 

Figure 6. Reconstruction of the GB architecture at single-cell resolution. 

(a) pciSeq analysis of GB tissue (NH17-2680) showing the distribution of cell types and states, 

colored according to cell identity. Boxes I-IV shows regions of interest, identifying areas 

of specific cellular architecture (I-IV).  

(b) Distribution of distances (x-axis) and neighborhood enrichment (y-axis) of malignant 

phenotypes to endothelial cells expressing VEGFA, and HILPDA. Neighborhood 

enrichment (y-axis) is the probability of finding a spatial signal for gene/cell type A when 

cell type B is present at X distance (x-axis). 

(c) Heatmap of clustering of neighborhood enrichment among cell types within a 50μm radius 

from each cell.  

(d) On the left-hand side, UMAP clustering of spatial analysis of the composition of the 

neighboring pattern identified within the range of 50 μm from each cell, colored by cell 

type. On the right, the distribution of the malignant states and TAMs across the range of 

cellular niches, colored by cell density. Arrows depict preferential spatial transitions among 

cancer states. The dotted line highlights the areas of myeloid enrichment (TAM-BDM and 

TAM-MG). 

(e) Spatial map of preferential nearest neighbors of the neoplastic cells (see Methods), colored 

by sub-niches. Boxes I and II show zoomed-in areas on two areas covering the range of 

malignant sub-niches from perivascular to areas distant from the vasculature. See also S6. 
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METHODS 

 

RESOURCE AVAILABILITY  

Lead Contact  

Further information and resource requests should be directed to and will be fulfilled by the 

Lead Contact, Hendrik G. Stunnenberg. 

 

Materials Availability  

This study did not generate new unique reagents. 

 

Data and Code Availability  

The newly generated snRNA-seq data (processed and filtered) have been deposited in GEO 

under accession number GSE211376. The core and extended GBmap (raw and normalized 

counts, integrated embedding, cell type annotations, technical and clinical metadata) is publicly 

available and can be downloaded via cellxgene at 

https://cellxgene.cziscience.com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c. Files 

for reference mapping (Azimuth), transfer learning (core reference model - scArches), and cell-

cell interactions (CellChat) were made available at https://doi.org/10.5281/zenodo.6962901.  

 

The published datasets that were included in the core GBmap can be accessed under 

GEO/EGA/SRA accession numbers: GSE103224, GSE131928, GSE138794 

(EGAS00001002185, EGAS00001001900, and EGAS00001003845), GSE148842, 

GSE139448, EGAS00001004422, PRJNA579593, GSE117891, GSE157424, 

EGAS00001004656, EGAS00001005300, GSE84465, PRJNA588461, GSE135437, 

GSE163108, and GSE163120. Datasets included in the extended GBmap can be accessed 

under GEO/links: GSE141946, GSE166418, GSE162631, GSE154795, GSE141383, 

GSE182109, GSE173278, https://portal.gdc.cancer.gov/projects/CPTAC-3, and 

https://doi.org/10.17605/OSF.IO/4Q32E. Expression and metadata of the healthy brain dataset 

used for comparison with the GBmap are publicly available at http://stab.comp-sysbio.org.  

 

Published spatially resolved transcriptomics datasets (Visium) analyzed in this study can be 

downloaded at Datadryad: https://doi.org/10.5061/dryad.h70rxwdmj. The expression maps and 

identity of each cell generated in this study using HybISS can be found at 

https://doi.org/10.5281/zenodo.6954130.  
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Details of the code and parameters used to create the core and extended GBmap, including 

downstream analyses (cell-cell interactions, spatial transcriptomics deconvolution), will be 

made available at https://github.com/ccruizm/GBmap. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Human samples and tumor tissue sectioning 

GB tissue sections from primary resections of adult patient tumors were obtained via Dr. 

Sebastian Brandner as part of the UK Brain Archive Information Network (BRAIN UK), 

funded by the Medical Research Council. Relevant ethical consent was provided by BRAIN 

UK (Ref:19/005). Fresh tumor tissue was collected and frozen immediately. After embedding 

in OCT, 20 µm sections were cut from the OCT blocks and mounted on positively charged 

slides (VWR superfrost Plus slides). The slides were then stored at -80° C until use. 

 

METHOD DETAILS 

 

Single-nuclei RNA sequencing 

Nuclei isolation was performed on 10-20µm cryosections for each specimen. The tissue slices 

were placed on 500µl of Nonidet P40 with salts and Tris (NST) lysis buffer1 and homogenized 

on ice using a glass-on-glass Dounce homogenizer with ten strokes using the loose pestle, 

followed by 15 strokes of the tight pestle and incubated for 5 min on ice.  Nuclear homogenates 

were filtered through a 70µm Flowmi cell strainer (Bel-Art) and centrifuged for 5 min at 500g, 

at 4 °C. The pellet was resuspended in wash buffer1 and filtered with a 40µm Flowmi cell 

strainer (Bel-Art). Nuclei were stained with DAPI 1:200 dilution (2µg/ml stock concentration; 

Sigma-Aldrich) 5min at room temperature (RT) before sorting. FANS was done on a Sony 

SH800 cell sorter (Sony Biotechnology) using a 100µm nozzle. Single Cell Gene Expression 

3' v3 (10x Genomics) was used for single-cell/nuclei capturing and library construction, as 

described in the Genomics Single Cell RNA Reagent Kits User Guide. Briefly, 15,000 single 

sorted nuclei were loaded into a channel of a Chromium Single Cell Gene Expression 3' Chip. 

Single nuclei were partitioned into droplets with gel beads in the Chromium, followed by 

barcoded reverse transcription of RNA, cDNA amplification, fragmentation, and sample index 

ligation. The quality of the libraries was assessed on a 2100 Bioanalyzer (Agilent) and 

sequenced on a NovaSeq (Illumina). 
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Gene Selection for HybISS 

Gene panels were curated manually and computationally. The panels were based on snRNA-

seq data from 11 GB patients. Gene selection was first established on differential expression 

between respective cell types, followed by manual filtering of genes with likely high 

background expression levels being strongly expressed in all cell types and favoring genes 

established as cell type markers in classical immunohistochemistry. A total of 954 individual 

probes were designed from a selection of 194 genes encompassing malignant (OPC-like, AC-

like, NPC-like, and MES-like) and non-malignant cells (microglia, macrophages, 

oligodendrocytes, astrocytes, neurons, endothelial cells, T cells, dendritic cells, and mural 

cells), as well as signaling markers of interest. Malignant cell type definitions were defined 

using snRNA-seq datasets via copy-number variation (CNV) inference for cells that saw 

chromosome 7 gain and 10 loss. In contrast, non-malignant cell type definitions were defined 

from the same dataset with no chromosomal aberrations. 

 

Probe Design for HybISS 

Padlock probes were designed for the selected genes, each containing two arms matching a 40-

base-pair (bp) sequence on the cDNA, a 4-bp barcode, an 'anchor sequence' allowing all 

amplicons to be labeled simultaneously, and a 20-bp hybridization sequence for additional 

readouts. Target sequences for the selected genes were obtained using in house Python padlock 

design software package that utilizes ClustalW and BLAST+ 

(https://github.com/Moldia/multi_padlock_design) with these parameters: arm length, 15; Tm, 

low 65, high 75; space between targets, 15. After target sequences were obtained, five targets 

were selected randomly per gene. If fewer targets were found, then only those were selected. 

The backbone of the padlock probes (PLPs) includes a 20 nucleotide (nt) ID sequence and a 

20 nt sequence 'anchor' that is common among subsets of PLPs (Note: In this study, the anchor 

sequences were not used and served only as linker sequences.)  

 

Hybridization-based In Situ Sequencing (HybISS) 

HybISS was performed as described previously(Gyllborg et al., 2020). Briefly, after fixation 

with 3% PFA for 30 min, the sections were then permeabilized with 0.1 M HCl and washed 

with PBS. After being rehydrated for 1 minute in 100% ethanol, 1 minute in 75% ethanol, and 

1 minute in PBS. cDNA synthesis was run via reverse transcription overnight with reverse 

transcriptase (BLIRT), RNase inhibitor, and priming with random decamers. Sections were 

then post-fixed before PLP hybridization and ligation at a final concentration of 10 nM/PLP., 
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with Tth Ligase and RNaseH (BLIRT). This was run at 37°C for 30 minutes and then moved 

to 45°C for 1 hour. Sections were washed with PBS, and rolling circle amplification (RCA) 

was performed with phi29 polymerase (Monserate) and Exonuclease I (Thermo Scientific) 

overnight at 30°C. The designed bridge probes (10 nM) were hybridized at RT for 1 h in the 

hybridization buffer (2XSSC, 20% formamide), followed by the hybridization of readout 

detection probes (100 nM) and DAPI (Biotium) in the hybridization buffer for 1h at RTThe 

sections were washed with PBS and mounted with SlowFade Gold Antifade Mountant (Thermo 

Fisher Scientific). After each imaging cycle, the coverslips were removed, and sections were 

washed 5 times with 2XSSC, and then bridge probe/detection oligonucleotides were stripped 

with 65% formamide and 2XSSC for 60 min at 30°C. This was followed by 5 washes with 

2XSSC. Then the above procedure was repeated for cycles 1 through 5, with each cycle 

consisting of cycle-specific individual bridge probes to be hybridized as above. 

 

Imaging 

Imaging was performed using a standard epifluorescence microscope (Zeiss Axio Imager.Z2) 

connected to an external LED source (Lumencor® SPECTRA X light engine). The light engine 

was set up with filter paddles (395/25, 438/29, 470/24, 555/28, 635/22, 730/40). Images were 

obtained with an sCMOS camera (2048 × 2048, 16-bit, ORCAFlash4.0 LT Plus, Hamamatsu), 

automatic multi-slide stage (PILine, M-686K011), and Zeiss Plan-Apochromat objectives 20x 

(0.8 NA, air, 420650-9901), 40× (1.4 NA, oil, 420762–9900). Filter cubes for wavelength 

separation included quad band Chroma 89402 (DAPI, Cy3, Cy5), quad-band Chroma 89403 

(Atto425, TexasRed, AlexaFluor750), and single band Zeiss 38HE (AlexaFluor488). Each 

field-of-view (FOV) was imaged with 21 z-stack planes with 0.5 μm spacing and 10% overlap 

between FOVs. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Processing of published data and construction of the core GBmap reference 

For the construction of the core GBmap, only samples confirmed to be GB IDH wild-type 

(based on the clinical metadata provided in each study) and containing at least 1000 cells were 

included. Transcriptomic data coming from nuclei were not considered for the training of the 

reference model. The 16 datasets collected in the core GBmap (Table S1) were obtained either 

as raw or TPM normalized (for Smart-seq2 studies) count matrices. In studies where raw count 

matrices were unavailable (Couturier2020, Bhaduri2020), BAM files were converted to 
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FASTQ files and re-aligned to GRCh38 using CellRanger v3.1/4.0. All gene names were 

updated to the latest HUGO nomenclature using HGNChelper (Oh et al., 2020). All 

clinical/diagnostic metadata was harmonized and preserved.  

 

Before integrating the datasets, we applied homogeneous filtering parameters to include high-

quality cells, excluding cells that expressed fewer than 500 genes, 1000 UMI counts (for 

datasets where applicable), and more than 30% mitochondrial reads. We estimated and 

discarded potential doublets for each droplet-based dataset using DoubletFinder (McGinnis et 

al., 2019). To reduce the batch effects among datasets, we used a semi-supervised neural 

network model of probabilistic harmonization denominated single-cell ANnotation using 

Variational Inference (Xu et al., 2021) (scANVI) under the transfer-learning model 

implemented in the single-cell architectural surgery algorithm (Lotfollahi et al., 2021) 

(scArches). As a semi-supervised model, scArches-SCANVI requires prior knowledge of the 

cell types/labels when creating the reference map. To harmonize cell type labels from different 

sources, we annotated each dataset using automated and manual methods (Clarke et al., 2021). 

For the automatic cell annotation, we compiled a curated gene marker list from different studies 

(Table S6), providing a signature for cell types part of the GB TME and used it as input for the 

Cell-ID algorithm (Cortal et al., 2021). After, for the manual assignation of cell identity, we 

considered the results from the automatic cell annotation, the original cell label (when 

available), and cell-type annotation available on the TISCH website (Sun et al., 2021) (when 

available), and the expression of cell type-specific marker genes identified using the Wilcoxon 

rank-sum test by comparing all cells within a specific cluster to all cells outside said cluster. 

Particularly for the accurate identification and annotation of neoplastic cells, for all datasets 

but immune enriched, CNV inference was carried out using the CopyKAT package (Gao et al., 

2021), classifying cells that were either diploid or aneuploid. This preliminary coarse cell type 

labeling was used for the model training and integration via scANVI-scArches. The pipeline 

was run on the raw counts of the 5000 most highly variable genes (HVGs), using studies as the 

batch variable and the recommended parameters of the tool. The pipeline output is the latent 

representation of the integrated data that serves as input for clustering and dimensional 

reduction visualization. We used a k-nearest neighbor graph (k-NNG)-based Leiden clustering 

(Traag et al., 2019) to detect the distinct cell populations and Uniform Manifold Approximation 

and Projection (UMAP) (Becht et al., 2019) for data embedding and two-dimensional 

reduction. UMAP visualization of the core GBmap (Figure 1b) was generated using the 

plot1cell package (Wu et al., 2022). Total count normalization was done by initially dividing 
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each count by the total count per cell and multiplying by 10,000, followed by log 

transformation using a natural log(X +1). 

 

After co-embedding all cells, we refined the cell annotation by manually assigning a cell 

identity to each cluster, considering our unified preliminary cell annotation and the expression 

of specific marker genes that correctly defined each broad cell type/state (level-1, -2, and -3 

annotation). To determine the next level of cell identity (level-4 annotation), we sub-selected, 

re-clustered, and identified the primary axes of transcriptional variation on each cell territory of 

interest (malignant, lymphoid, myeloid, and vascular) using Hotspot (DeTomaso and Yosef, 

2021), which allowed the identification of genes that vary in a contextualized fashion. The 

output is the organization of the genes of each territory into co-varying groups 

(module/program). We ran the tool using the latent space as inferred by scVI (Lopez et al., 

2018) to build the k-NNG and used it as input of the source of cell-cell distances to compute 

the Euclidean distance in the low-scVI-dimensional space. Hotspot employs a negative 

binomial distribution to compute pair-wise local correlations between the top500 lineage 

autocorrelated genes and group them into correlated modules. Each gene module was matched 

with a thorough literature search of specific phenotypes that delineated a given cell state. These 

included findings made by previous studies in high-grade gliomas or extended to other cancer 

types if there was no match in other brain-related pathologies. After calculating the enrichment 

of each cell for every module, the phenotype assignment was performed based on the highest 

score of a cell for a given gene program. 

 

Data processing of de novo GB samples 

Raw BCL files generated by the sequencer were demultiplexed using Cell Ranger mkfastq 

(v3.1.0) to generate the FASTQ files. Each sample was mapped to the human reference genome 

(GRCh38 v3.0.0) provided by 10x Genomics using the Cell Ranger count with default 

parameters to obtain the gene count matrix. For single nuclei samples, the reference for pre-

mRNA was created using the manufacturer's guidelines 

(https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/advanced/references). 

 

Query projection onto the GBmap core 

For the projection and annotation of external data sets onto the GBmap, we first created an 

object that could be manipulated and utilized by the Azimuth algorithm part of the Seurat 
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package (Hao et al., 2021). We imported the Anndata object into R and created a Seurat object 

that contained the raw and normalized count matrix, cell metadata, and UMAP embedding. 

The Azimuth label-transferring method uses the low-dimensional structure of the reference and 

finds 'anchor' genes on the query dataset that enables the projection and transfer of the cell 

annotations between data sets. For the eleven patients profiled by snRNA-seq in our study, we 

used unsupervised anchoring based on the first 50 principal components and the log normalized 

matrices. Each cell in the query dataset gets a prediction probability, and the cell assignment is 

performed based on the highest score for a given cell type/state. To confirm the correct 

assignment of neoplastic and non-neoplastic cells, we used the inferCNV package (Tickle et 

al., 2019) placing as reference cells that were not expected to carry any CNV, such as immune 

and vascular cells. Detection of marker genes among predicted cell types and states was done 

using a Wilcoxon rank-sum test. 

 

Expansion of the GBmap by transfer learning  

To extend the GBmap, we gathered raw count matrices from newly generated public datasets 

available after the curation of the core reference atlas (April 2021) (Table S1). By using the 

deep learning scArches algorithm (Lotfollahi et al., 2021), the core GBmap cannot only allow 

re-annotation of queried cells but also update the currently trained model and capture 

differences that could represent new cell types or states. In short, scArches trains adaptors that 

are added to the reference embedding model, which facilitates the creation of a de novo joint 

embedding between the new datasets and the core GBmap, enabling the generation of a new 

dimensional reduction and clustering and re-analysis of the extended reference. The new 

datasets were QC filtered using the same parameters previously established for constructing 

the core GBmap. We merged the data matrices of the different studies and selected the same 

5000 HVGs employed for the training of the reference model. Raw counts were used as input 

for scArches. The integration pipeline was run to 're-train' adapter weights, thus enabling the 

mapping of new query data into the core GBmap dimensional embedding. To find DEGs 

between cell types, we used a Wilcoxon rank-sum test comparing cells in the core reference 

with a specific cluster from the updated version of the GBmap. 

 

Cell-cell interaction analysis in the GBmap 

To infer the cell-cell communication among the cell types in the GB TME, we utilized the 

CellChat package (Jin et al., 2021). We created a custom L-R database (DB) by merging the 

'CellChatDB.human' L-R interaction default DB and FANTOM5 resource (Ramilowski et al., 
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2015), increasing the amount of curated L-R interactions and grouping them in meaningful 

biological pathways, broadly divided into 'Secreted Signaling', ' ECM-Receptor' and 'Cell-Cell 

Contact' interactions. The custom DB was used to compute the communication probabilities 

among the cell types in the healthy brain and extended GBmap (level-3 annotation) datasets 

individually. Intercellular communication networks are weighted directed graphs composed of 

significant interactions among cell populations, where the interaction strength is defined as the 

communication probability of the computed communication pathways. Differential 

interactions between both conditions were calculated following the recommended comparison 

analysis of multiple datasets with different cell type compositions. Due to the vastly distinct 

cell composition between healthy and brain tumors, pair-wise similarity analysis can be done 

only by assessing the differences and changes in the structural network topology. The 

information flow displays the overall communication probability results of the probability 

among all pairs of cell groups in the inferred network, and pathway distances were determined 

by computing the Euclidean distance between the pairs of the shared signaling networks across 

the two conditions (normal brain vs. GB). We provide a CellChat object of the GBmap 

interactome that can be explored interactively using the CellChat R package. 

 

Pathway activity and gene set enrichment analysis (GSEA) 

Inference of pathway activity was performed with PROGENy, using the implementation to 

analyze single-cell RNA-seq data (Holland et al., 2020). PROGENy infers pathway activity for 

14 signaling pathways (Androgen, Estrogen, EGFR, Hypoxia, JAK-STAT, MAPK, NFkB, 

PI3K, p53, TGFb, TNFa, Trail, VEGF, and WNT) on matrices of single cells containing 

normalized gene expression values. By default, pathway activity inference is based on gene 

sets comprising responsive genes for a specific pathway. The result is a pathway score based 

on the strength of pathway regulation and gene expression. GSEA was performed using the R 

package fgsea (Korotkevich et al., 2021) (MsigDB hallmark gene set collection) on the gene 

expression signatures of each cluster resulting from the Wilcoxon test.  

 

Deconvolution of cell types and analyses of Visium data 

We downloaded from the 10x Genomics website a publicly available GB sample profiled using 

the Visium ST platform (https://www.10xgenomics.com/resources/datasets/human-

glioblastoma-whole-transcriptome-analysis-1-standard-1-2-0), as well as nine high-quality GB 

tissues profiled on the Visium platform (Ravi et al., 2022). Data importing, basic filtering of 

spots based on total counts and expressed genes, normalization, dimensional reduction, 
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clustering, and detection of spatially variable features were performed in Python using the 

Scanpy package (Wolf et al., 2018). Histopathological evaluation of the H&E staining to 

delineate key anatomical features on the tumor sections were made by M.K. 

 

To spatially map cell types defined in the GBmap and determine the cell abundances in each 

capture area of the Visium ST data, we used a Bayesian model implemented in the cell2location 

tool (Kleshchevnikov et al., 2022) that decomposes coarse ST data into cell-type abundance 

estimates in a spatially resolved manner. cell2location derives expression signatures of cell 

types in the scRNA-seq reference. In the case of the GBmap, we extracted the expression 

signatures on the extended GBmap (level-3 and -4 annotation) using the negative binomial 

regression model implemented in the tool that allows a robust integration of expression profiles 

across technologies and batches. To obtain cell-type distributions, cell2location performs a 

non-negative decomposition of the gene signatures in every spot and matches the cell type 

profiles defined in the reference. Each ST section was analyzed independently. Cell2location 

parameters were set to default values. The spatial maps show the estimated cell abundance (5% 

quantile, representing confident assignment to each cell type) of each GBmap population in 

each spot.  

 

To define spatial compartments, we applied a non-negative matrix factorization (NMF) of the 

absolute cell type abundance estimates per spot obtained from cell2location, considering all 

analyzed Visium samples. To estimate diversity in each capture location on the Visium slides, 

we employed the stLearn package (Pham et al., 2020), which takes the estimated cell 

abundances derived from cell2location to calculate the cell mixture of each spot. Spatial L-R 

interaction analysis was carried out through the Squidpy tool (Palla et al., 2022) and the 

NICHES package (Raredon et al., 2022), employing the extended and curated Omnipath L-R 

DB (Ceccarelli et al., 2020).  

 

Image processing and decoding of HybISS data 

Each FOV image was maximum intensity projected to obtain flattened two-dimensional 

images. These images were then analyzed with in-house custom software. Each two-

dimensional FOV was exported, aligned between cycles, and stitched together using the MIST 

algorithm. Stitching was followed by retiling to create smaller non-overlapping 6000x6000 

pixel images that were then used for decoding. The decoding pipeline can be found on the 

Moldia GitHub page (https://github.com/Moldia/iss_starfish/). Using Starfish, images were 
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initially filtered by applying a white top hat filter. The filtered images were subsequently 

normalized, and spots were then detected using the FindSpots module from Starfish, which 

were then decoded using the MetricDistance module. Finally, the resulting spots were filtered 

based on the distance to the closest expected barcode in the reference codebook.  

 

Cell typing and spatial statistical analysis of HybISS 

Probabilistic Cell Typing (pciSeq) (Qian et al., 2020) was used to identify the cellular identity 

of both malignant and nonmalignant cells based on the prior expression signatures of each of 

the cell types detected on each sample. Using this approach, each cell was given a probability 

of belonging to each pre-defined cell type, including a signature for cells with too low counts, 

which were then excluded from the analysis. Spatial statistics, including neighborhood 

enrichment, were generated using Squidpy (Palla et al., 2022). In short, the neighborhood 

enrichment between cell type A and B represents the probability of assigning a cell-to-cell type 

A given the presence of a second cell of cell type B within a certain distance (d) divided by the 

probability of assigning a random cell to cell type A. To explore the enrichment of specific cell 

types close to areas with cells expressing genes of interest (VEGFA, HIPLDA), the same 

algorithm was applied, computing the neighborhood enrichment of particular cell types and 

gene reads with a certain identity. In order to represent the effect of d, we represented the 

changes in neighborhood enrichment scores of certain pairs (y-axis) when modifying the 

distance (x-axis). To explore the cellular environment of each cell and define cellular niches, 

each cell was re-defined based on the identity of the cells situated within 50um close to itself, 

creating a Cell-by-neighboring cell types matrix. After normalizing and log-transforming the 

counts, UMAP and Leiden clustering were performed to identify cellular niches.  

 

Statistical analysis 

The statistical analyses were performed using R, Python, and MatLab. 

 

 

 

 

 

 

 

 



 30 

SUPPLEMENTAL INFORMATION 

 

Supplemental Figure Legends 

 

Supplemental Figure 1. Construction of the GB TME landscape, related to Figure 1. 

(a) UMAP of the GB atlas colored by iCNV and clinical features. 

(b) Bar plot of cell distribution, cell count, study, platform, and genomic features reported per 

patient. 

(c) Gene expression of top5 genes from the level-3 annotation resolved on the GBmap. 

 

Supplemental Figure 2. Definition of cell states in the GB TME, related to Figure 2. 

(a, c, e, and g) Heatmap of gene pairwise local correlation of the top 500 genes detected in 

neoplastic cells, TAMs, TILs, and vascular cells, grouped into gene modules. 

(b, d, f, and h) UMAP of sub-clustered neoplastic cells, TAMs, TILs, and vascular cells, and 

gene module’s enrichment score. The minimum and maximum scores of each module are 

shown in the bottom right of each panel. 

 

Supplemental Figure 3. Projection and integration of query datasets onto the GB atlas, 

related to Figure 3. 

(a) UMAP is colored by patient, Leiden clustering, manual, and predicted cell annotation from 

the GBmap (11 samples processed in this study), using an anchoring method for reference 

mapping  (Azimuth).  

(b) Projection of cell types (level-3 annotation) of de novo mapped query cells (11 samples 

processed in this study) onto the core GBmap UMAP and respective prediction scores. 

(c) Heatmap of iCNV profiles of the query dataset (this study). Color bar shows the predicted 

cell type signature for each cell. Green dotted line emphasizes neuronal/glial cells lacking 

iCNV.  

(d) UMAP of reclustered TILs from de novo GB dataset (11 samples processed in this study) 

and top gene expression for each subcluster. 

(e) UMAP of integrated public datasets and our own cohort. Colored by cohort and dotted lines 

enclose the main cell territories. 

(f) Comparison of original annotation with predicted cell types (level-3 annotation) after label 

transfer from the GBmap core. 

(g) UMAP of the extended GBmap colored and split by queried studies. 
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(h) UMAP displays the distinction between core and periphery regions of multi-sector biopsy 

studies included in the GBmap. The dashed line indicates the estimated boundary between 

the TAM-BDM and TAM-MG territories.  

 

Supplemental Figure 4. Cell-cell interaction network in GB, related to Figure 4. 

(a) Chord diagrams of statistically significant pathways (ligand-receptor) interactions among 

cell types in healthy brain and GB. 

(b) Magnified view of each pathway group from the shared two-dimensional manifold of 

healthy and tumor brain tissue signaling networks. 

(c) Heatmap of aggregated outgoing or incoming signaling of the cell-cell communication 

network from the GB signaling pathways. Bars display relative contribution per cell type 

and pathway. 

(d) UMAP of pathway activity prediction by PROGENY in the extended GBmap. The dashed 

line highlights the MES-like malignant area. 

(e) GSEA analysis revealing a hypoxia enrichment score for MES-like malignant cells. 

 

Supplemental Figure 5. Spatial deconvolution and intercellular communication of NGS-

based GB datasets, related to Figure 5. 

(a) Estimated cell abundance per spot (color intensity) of the four main cancer cell states shown 

over the H&E image of four additional primary GB Visium samples.  

(b) Cell type diversity within spots based on inferred cell type abundances per location.  

(c) Estimated cell-type proportions (color intensity) of selected cancer subtypes on two GB. 

Boxes highlight the areas shown in the inset panels. Dashed blue line depicts localization 

of the tumor vasculature.  

(d) Spatial plots depicting enrichment of the NMF compartments (factor 1 and 4; color 

intensity) in two GB samples. Boxes highlight the areas shown in inset panels and are 

colored by the estimated cell abundance (color intensity) of selected cancer states and 

immune cells. 

(e) Inferred R-L interactions from gene expression among defined spatial cell types, clustered 

by interacting clusters on NGS-based datasets. 

 

Supplemental Figure 6. pciSeq of GB samples, related to Figure 6. 

(a) Spatial map of individual gene signals across sample NH17-2680. Genes are represented 

by designated colors and shapes. The dotted line in the right-hand image represents a 
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structure of interest denoted by vascularized areas consisting of pericytes and endothelial 

cells. 

(b) Reads are assigned to cells and cells to classes using a pciSeq. Images show the distribution 

and assignment of reads for thirteen example cells. Colored symbols indicate reads per each 

assessed gene. Grayscale background image indicates DAPI stain. Straight lines join reads 

to the cell, which are assigned based on the highest probability. The pie charts show the 

probability distribution of each class. Colors indicate broad cell types; segments show 

probabilities for individual scRNA-seq clusters (with the two most dominant named 

underneath each image). 

(c) Confusion matrix of pciSeq of cell type scores for GB biopsy section (NH17-2680). Colors 

represent the mean probability assigned to a cell when a specific cell type is predicted.  

(d) pciSeq analysis of GB tissue (NH19-565), outlining the distribution of cell types and states, 

colored by cell identity. 

(e) UMAP of spatial analysis of the composition of the neighboring cells identified within the 

range of 50 μm (see Methods), colored by sub-niches. 

 

Supplemental Tables 

 

Supplemental Table 1: Features of datasets included in the core and extended GBmap. 

Supplemental Table 2: Gene signatures employed to perform automated cell typing using 

CellID. 

Supplemental Table 3: Gene modules of each main cell territory obtained with HotSpot. 

Supplemental Table 4: Differentially expressed genes for each annotation level (1 to 4) of the 

core GBmap. 

Supplemental Table 5: Patient metadata of newly profiled GB. 

Supplemental Table 6: Sequences of the padlock probes (PLPs) designed for in situ 

sequencing experiments. 
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