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Abstract

Many studies have shown that rule-based classifica-
tion algorithms perform well in classifying categorical
and sparse high-dimensional databases. However, a
fundamental limitation with many rule-based classifiers
is that they find the classification rules in a coarse-
grained manner. They usually use heuristic methods
to prune the search space, and select the rules based
on the sequential database covering paradigm. Thus,
the so-mined rules may not be the globally best rules
for some instances in the training database. To make
worse, these algorithms fail to fully exploit some more
effective search space pruning methods in order to scale
to large databases.

In this paper we propose a new classifier, HAR-
MONY, which directly mines the final set of classifica-
tion rules. HARMONY uses an instance-centric rule-
generation approach in the sense that it can assure for
each training instance, one of the highest-confidence
rules covering this instance is included in the result set,
which helps a lot in achieving high classification ac-
curacy. By introducing several novel search strategies
and pruning methods into the traditional frequent item-
set mining framework, HARMONY also has high effi-
ciency and good scalability. Our thorough performance
study with some large text and categorical databases has
shown that HARMONY outperforms many well-known
classifiers in terms of both accuracy and efficiency, and
scales well w.r.t. the database size.

∗This work was supported in part by NSF CCR-9972519,
EIA-9986042, ACI-9982274, ACI-0133464, and ACI-0312828; the
Digital Technology Center at UMN; and by the Army HPC Re-
search Center under the auspices of the Department of the Army,
Army Research Laboratory (ARL) under Cooperative Agree-
ment number DAAD19-01-2-0014. The content of which does
not necessarily reflect the position or the policy of the govern-
ment, and no official endorsement should be inferred. Access to
research and computing facilities was provided by the Minnesota
Supercomputing Institute.

1 Introduction

As one of the most fundamental data mining tasks,
classification has been extensively studied and various
types of classification algorithms have been proposed.
Among which, one category is the rule-based classi-
fiers [?, ?, ?, ?]. They build a model from the training
database as a set of high-quality rules, which can be
used to predict the class labels of unlabeled instances.
Many studies have shown that rule-based classification
algorithms perform very well in classifying both cate-
gorical databases [?, ?, ?, ?] and databases represented
via sparse high-dimensional such as those arising in the
context of document classification [?, ?].

Some traditional rule-based algorithms like
FOIL [?], RIPPER [?], and CPAR [?] discover a set
of classification rules one-rule-at-a-time and employ
a sequential covering methodology to eliminate from
the training set the positive instances that are covered
by each newly discovered rule. This rule induction
process is done in a greedy fashion as it employs
various heuristics (e.g., information gain) to determine
how each rule would be extended. Due to this heuristic
rule-induction process and the sequential covering
framework, the final set of discovered rules are not
guaranteed to be the best possible. For example,
due to the removal of some training instances, the
information gain is computed based on the incomplete
information; thus, the variable (or literal) chosen by
these algorithms to extend the current rule will be
no longer the globally optimal one. Moreover, for
multi-class problems, these algorithms need to be
applied multiple times, each time mining the rules for
one class. If the training database is large and contains
many classes, the algorithms will be inefficient.

Since the introduction of association rule mining [?],
many association-based (or related) classifiers have
been proposed [?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Some
typical examples like CBA [?] and CMAR [?] adopt
efficient association rule mining algorithms (e.g., Apri-



ori [?] and FP-growth [?]) to first mine a large num-
ber of high-confidence rules satisfying a user-specified
minimum support and confidence thresholds and then
use various sequential-covering-based schemes to select
from them a set of high-quality rules to be used for clas-
sification. Since these schemes defer the selection step
only after a large intermediate set of high-confidence
rules have been identified, they tend to achieve some-
what better accuracy than the traditional heuristic rule
induction schemes [?]. However, the drawback of these
approaches is that the number of initial rules is usu-
ally extremely large, significantly increasing the rule
discovery and selection time.

In this paper we propose a new classification algo-
rithm, HARMONY1, which can overcome the problems
of both the rule-induction-based and the association-
rule-based algorithms. HARMONY directly mines for
each training instance one of the highest confidence
classification rules that it supports and satisfies a user-
specified minimum support constraint, and builds the
classification model from the union of these rules over
the entire set of instances. Thus HARMONY employs
an instance-centric rule generation framework and is
guaranteed to find and include the best possible rule
for each training instance. Moreover, since each train-
ing instance usually supports many of the discovered
rules, the overall classifier can better generalize to new
instances and thus achieve better classification perfor-
mance.

To achieve high computational efficiency, HAR-
MONY mines the classification rules for all the classes
simultaneously and directly mines the final set of clas-
sification rules by pushing deeply some effective prun-
ing methods into the projection-based frequent itemset
mining framework. All these pruning methods preserve
the completeness of the resulting rule-set in the sense
that they only remove from consideration rules that
are guaranteed not to be of high quality. We have
performed numerous performance studies with vari-
ous databases and shown that HARMONY can achieve
better accuracy while maintaining high efficiency.

The rest of the paper is organized as follows. Sec-
tion ?? introduces some basic definitions and notations.
Section ?? describes the problem formulation. Sec-
tion ?? introduces some related work. Section ?? dis-
cusses in detail the HARMONY algorithm and some
extensions to the algorithm. The thorough perfor-
mance study is presented in Section ??. Finally, the
paper concludes with Section ??.

1 HARMONY stands for High confidence Association Rule
Mining fOr iNstance-centric classifYing.

2 Notations and Definitions

A training database TrDB is a set of training in-
stances2, where each training instance, denoted as a
triple 〈tid, X, cid〉, contains a set of items (i.e., X) and
is associated with a unique training instance identifier
tid, and a class identifier cid ∈ {c1, c2, ..., ck} (A class
identifier is also called a class label, and we assume
there are totally k distinct class labels in TrDB). Ta-
ble ?? illustrates an example training database, which
contains totally eight instances and two classes. Let
I={i1, i2, . . . , in} be the complete set of distinct items
appearing in TrDB. An itemset Y is a non-empty sub-
set of I and is called an l-itemset if it contains l items.
An itemset {x1, . . . , xl} is also denoted by x1 · · ·xl. A
training instance 〈tid, X, cid〉 is said to contain item-
set Y if Y ⊆ X . The number of instances in TrDB
containing itemset Y is called the (absolute) support of
itemset Y , denoted by sup

Y
. The number of instances

containing itemset Y and associated with a class la-
bel ci (where i ∈ {1, 2, ..., k}) is called the support of
Y ∪ {ci}, denoted by supci

Y . A classification rule has
the form: ‘Y → ci : supci

Y , conf ci

Y ’, where Y is called
the body, ci the head, supci

Y the support, and conf ci

Y

=
sup

ci
Y

sup
Y

the confidence of the rule, respectively. In ad-

dition, we use |TrDB| to denote the number of in-
stances in database TrDB, and for brevity, we some-
times use the instance identifier tid to denote an in-
stance 〈tid, X, cid〉.

Table 1. An example training database TrDB.

Instance identifier Set of items Class identifier

01 a, c, e, g 1

02 b, d, e, f 0

03 d, e, f 0

04 a, b, c, e 1

05 a, c, e 1

06 b, d, e 0

07 a, b, e 1

08 a, b, d, e 0

Given a minimum support threshold, min sup, an
itemset Y is frequent if sup

Y
≥min sup. A fre-

quent itemset Y supported by any training instance
〈tj , Xj , ci〉 (1 ≤ j ≤ |TrDB| and 1 ≤ i ≤ k) is also
called a frequent covering itemset of instance tj , and
‘Y → ci : supci

Y , conf ci

Y ’ is called a frequent covering

2Note there may exist a test database, which is in the same
form as the training database and is used to evaluate the perfor-
mance of a classifier. We denote it by TeDB.



rule of instance tj
3. Among the frequent covering rules

of any instance tj , those with the highest confidence are
called the Highest Confidence Covering Rules w.r.t. in-
stance tj . We denote a Highest Confidence Covering
Rule w.r.t. instance tj by HCCRtj

, and use HCCRsup
tj

and HCCRconf
tj

to denote its support and confidence.

3 Problem Definition

The goal of this paper is to design an accurate
and efficient rule-based classifier with good scalabil-
ity, which should be able to overcome the problems of
both the traditional rule-based and the recently pro-
posed association-based classifiers. As mentioned in
Section ??, instead of using the sequential database
covering to select the rules, our solution mines a set
of high quality rules in an instance-centric manner and
can assure that at least one of the highest confidence
frequent covering rules (if there is any) w.r.t. any train-
ing instance is included in the final result set of classi-
fication rules.

Specifically, given a training database TrDB and a
minimum support threshold min sup, the problem of
this study is to find one of the highest confidence fre-
quent covering rules for each of the training instances
in TrDB, and build a classifier from these classifica-
tion rules. Note the input training database must be in
the form that is consistent with the corresponding def-
inition in Section ??, otherwise, the training database
should be first converted to that form. For example,
a numerical database should be first discretized into a
categorical one in order to use HARMONY to build the
model. In addition, although this study mainly focuses
on mining any one of the highest confidence frequent
covering rules for each training instance, it is straight-
forward to revise HARMONY to mine the complete set
of highest confidence frequent covering rules or K high-
est confidence frequent covering rules for each training
instance.

4 Related Work

There are two classes of algorithms that are di-
rectly related to this work. One is the traditional
rule-induction-based methods and the other is the re-
cently proposed association-rule-based methods. Both
of these classes share the same idea of trying to find

3Note in this paper by a ‘frequent rule’ we mean its rule body
is frequent. This is different from the traditional definition of an
association rule, which requires the support of the entire rule is
no lower than a minimum support. However, it is straightforward
to adapt HARMONY to the traditional definition as discussed
in Section ??.

a set of classification rules to build the model. The
rule-induction-based classifiers like C4.5 [?], FOIL [?],
RIPPER [?], and CPAR [?] use various heuristics such
as information gain (including Foil gain) and gini in-
dex to identify the best variable (or literal) by which
to grow the current rule, and many of them follow a
sequential database covering paradigm to speed up rule
induction. The association-based classifiers adopt an-
other approach to find the set of classification rules.
They first use some efficient association rule mining
algorithms to discover the complete (or a large inter-
mediate) set of association rules, from which the final
set of classification rules can be chosen based on various
types of sequential database covering techniques. Some
typical examples of association-based methods include
CBA [?], CMAR [?], and ARC-BC [?].

In contrast to the rule-induction-based algorithms,
HARMONY does not apply any heuristic pruning
methods and the sequential database covering ap-
proach. Instead, it follows an instance-centric frame-
work and mines the covering rules with the highest con-
fidence for each instance, which can achieve better ac-
curacy. At the same time, by maintaining the currently
best rules for each training instance and pushing deeply
several effective pruning methods into the projection-
based frequent itemset mining framework [?, ?, ?],
HARMONY directly mines the final set of classification
rules, which avoids the time consuming rule generation
and selection process used in several association-based
classifiers [?, ?, ?].

The idea of directly mining a set of high confidence
classification rules is similar to those in [?, ?]. The
author of [?] investigated a brute-force technique for
mining the set of high-confidence classification rules,
and proposed several effective pruning strategies to
control the combinatorial explosion in the number of
rule candidates. The FARMER algorithm [?] finds the
interesting rule groups for microarray databases. It
mines the rules in a row enumeration space, and fully
exploits some effective pruning methods to prune the
search space based on the user-specified constraints like
minimum support, confidence, and chi-square. Unlike
[?, ?], HARMONY does not need the user to specify
the minimum confidence and/or chi-square. Instead,
it mines for each training instance one of the highest
confidence frequent rules that it covers. In addition, by
maintaining the currently best classification rules for
each instance, HARMONY is able to incorporate some
new pruning methods under the unpromising item
(or conditional database) pruning framework, which
has been proven very effective in pushing deeply the
length-decreasing support constraint or tough block
constraints into closed itemset mining [?, ?].



Contributions. We summarize the contributions of
this paper as follows.

1. We proposed an instance-centric paradigm in min-
ing the highest confidence covering rules for each
training instance, which can be used to build an
accurate classification model.

2. We explored new search strategies and pruning
methods to effectively reduce the search space.

3. A new classifier, HARMONY, was designed, and
a thorough performance study with various large
text and categorical databases has shown that
HARMONY is very accurate and efficient com-
pared to many well-known classifiers.

5 HARMONY: An Instance-Centric

Classifier

In this section, we will describe in detail the HAR-
MONY algorithm. We first elaborate on how to adapt
the traditional projection-based frequent itemset min-
ing framework to efficiently enumerate the classifica-
tion rules, then we focus on how to push deeply some
effective pruning methods into the rule enumeration
framework. Finally we will give the whole algorithm.

5.1 ClassificationRule Enumeration

The projection-based itemset enumeration frame-
work has been widely used in many frequent itemset
mining algorithms [?, ?, ?], and will be used by HAR-
MONY as the basis in enumerating the classification
rules. Given a training database TrDB and a mini-
mum support min sup, HARMONY first computes the
frequent items by scanning TrDB once, and sorts them
to get a list of frequent items (denoted by f list) accord-
ing to a certain ordering scheme. Assume the min sup
is 3 and the lexicographical ordering is the default or-
dering scheme, the f list computed from Table ?? is {a,
b, c, d, e}. HARMONY applies the divide-and-conquer
method plus the depth-first search strategy. In our ex-
ample, HARMONY first mines the rules whose body
contains item ‘a’, then mines the rules whose body con-
tains ‘b’ but no ‘a’, ..., and finally mines the rules whose
body contains only ‘e’. In mining the rules with item
‘a’, item ‘a’ is treated as the current prefix, and its con-
ditional database (denoted by TrDB|a) is built and the
divide-and-conquer method is applied recursively with
the depth-first search strategy. To build conditional
database TrDB|a, HARMONY first identifies the in-
stances in TrDB containing ‘a’ and removes the infre-
quent items, then sorts the left items in each instance

according to the f list order, finally TrDB|a is built as
{〈01, ce, 1〉, 〈04, bce, 1〉, 〈05, ce, 1〉, 〈07, be, 1〉, 〈08, be, 0〉
} (infrequent items ‘d’ and ‘g’ are removed). Follow-
ing the divide-and-conquer method, HARMONY first
mines the rules with prefix ‘ab’, then mines rules with
prefix ‘ac’ but no ‘b’, and finally mines rules with prefix
‘ae’ but no ‘b’ nor ‘c’.

During the mining process, when HARMONY gets
a new prefix, it will generate a set of classification rules
w.r.t. the training instances covered by the prefix. For
each training instance, it always maintains one of its
currently highest confidence rules mined so far. As-
sume the current prefix P is ‘a’ (i.e., P=‘a’). As shown
in the above example, P covers five instances with tids
01, 04, 05, 07, and 08. HARMONY computes the cov-
ering rules according to the class distribution w.r.t. the
prefix P . In this example, sup

P
=5, sup0

P =1, sup1
P =4,

and HARMONY generates two classification rules:

Rule 1: a → 0 : 1, 1
5

Rule 2: a → 1 : 4, 4
5

Rule 1 covers the instance with tid 08, while Rule 2
covers the instances with tids 01, 04, 05 and 07. Up to
this point, we have HCCR01 = HCCR04 = HCCR05

= HCCR07 = Rule 2, and HCCR08 = Rule 1.

5.1.1 Ordering of the Local Items

In the above rule enumeration process, we used the
lexicographical ordering as an illustration to sort the
set of local frequent items in order to get the f list.
Many frequent itemset mining algorithms either adopt
item support descending order [?] or support ascending
order [?] as the ordering scheme. However, because we
are interested in the highest confidence rules w.r.t. the
training instances, both the support descending order
and ascending order may not be the most efficient and
effective ways. As a result, we propose the following
three new ordering schemes as the alternatives.

Let the current prefix be P , its support be sup
P
, the

support and confidence of the classification rule w.r.t.
prefix P and class label ci, ‘P → ci’, be supci

P and
conf ci

P , respectively, the set of local frequent items be
{x1, x2, ..., xm}, the number of prefix P ’s conditional
instances containing item xj (1 ≤ j ≤ m) and associ-
ated with class label ci (1 ≤ i ≤ k) be supci

P∪{xj}
, and

the support of P∪{xj} be sup
P∪{xj}

=
∑k

i=1 supci

P∪{xj}
.

Maximum confidence descending order. Given
a local item xj (1 ≤ j ≤ m) w.r.t. P , we can compute
k rules with body P ∪{xj}, among which, the i-th rule
with rule head ci is:

P ∪ {xj} → ci : supci

P∪{xj}
,

sup
ci
P∪{xj}

sup
P∪{xj}



The highest confidence among the k rules with body
P∪{xj} is called the maximum confidence of local item
xj , and is defined as the following:

max
∀i,1≤i≤k

supci

P∪{xj}

sup
P∪{xj}

(1)

To mine the highest confidence covering rules as
quickly as possible, a good heuristic is to sort the local
frequent items in their maximum confidence descend-
ing order.
Entropy ascending order. The widely used en-
tropy to some extent measures the purity of a cluster
of instances. If the entropy of the set of instances con-
taining P ∪ {xj} (1 ≤ j ≤ m) is small, it is highly
possible to generate some high confidence rules with
body P ∪ {xj}. Thus another good ordering heuristic
is to rank the set of local frequent items in their en-
tropy ascending order, and the entropy w.r.t. item xj

is defined as follows [?]:

−
1

log k

k
∑

i=1

(
supci

P∪{xj}

sup
P∪{xj}

) log(
supci

P∪{xj}

sup
P∪{xj}

) (2)

Correlation coefficient ascending order. Both
the maximum confidence descending order and entropy
ascending order do not consider the class distribution
of the conditional database w.r.t. prefix P , which
may cause some problems in some cases. Let us see
an example. Assume the number of class labels k=2,
supc1

P = 12, and supc2

P = 6, then we can get two rules
with body P as follows:

Rule 3: P → c1 : 12, 12
18

Rule 4: P → c2 : 6, 6
18

Suppose there are two local items, x1 and x2,
and supc1

P∪{x1}
=2, supc2

P∪{x1}
=1, supc1

P∪{x2}
=1, and

supc2

P∪{x2}
=2. According to Equation ?? and Equa-

tion ??, the maximum confidence and entropy w.r.t.
item x1 are equal to the corresponding maximum con-
fidence and entropy w.r.t. x2. Thus we cannot de-
termine which one of x1 and x2 should be ranked
higher. However, because the conditional database
TrDB|P∪{x1} has the same class distribution as con-
ditional database TrDB|P , we cannot generate rules
with body P ∪{x1} and a confidence higher than those
with body P (i.e., Rule 3 and Rule 4). The two rules
with body P ∪ {x1} are shown as the following.

Rule 5: P ∪ {x1} → c1 : 2, 2
3

Rule 6: P ∪ {x1} → c2 : 1, 1
3

If we examine the rules generated from prefix item-
set P ∪ {x2} as shown in Rule 7 and Rule 8, we can
see Rule 8 has higher confidence than Rule 4, and can
be used to replace Rule 4 for the instances covered by

Rule 8. In this case , item x2 should be ranked before
item x1.

Rule 7: P ∪ {x2} → c1 : 1, 1
3

Rule 8: P ∪ {x2} → c2 : 2, 2
3

This example suggests that the more similar
the class distribution between conditional databases
TrDB|P and TrDB|P∪{xj} (1 ≤ j ≤ m), the lower is
the possibility to generate higher confidence rules from
TrDB|P∪{xj}. Because the correlation coefficient is a
good metric in measuring the similarity between two
vectors (the larger the coefficient, the more similar the
two vectors), it can be used to rank the local items. In
HARMONY, the correlation coefficient ascending or-
der is adopted to sort the local items.

Let sup
P

be 1
k

∑k
i=1 supci

P , supP∪{xj} be

1
k

∑k
i=1 supci

P∪{xj}
, σ

P
be

√

1
k

∑k
i=1(supci

P )2 − sup
P

2,

σ
P∪{xj}

be
√

1
k

∑k
i=1(supci

P∪{xj}
)2 − supP∪{xj}

2, the

correlation coefficient between prefix P and P ∪ {xj}
(1 ≤ j ≤ m) is defined as follows.

1
k

∑k
i=1(supci

P × supci

P∪{xj}
− sup

P
× supP∪{xj})

σ
P
× σ

P∪{xj}

(3)

5.2 Search SpacePruning

Unlike the association-based algorithms, HAR-
MONY directly mines the final set of classification
rules. By maintaining the current highest confidence
among the covering rules for each training instance dur-
ing the mining process, some effective pruning methods
can be proposed to improve the algorithm efficiency.

5.2.1 Support Equivalence Item Elimination

Given the current prefix P , among its set of local fre-
quent items {x1, x2, ..., xm}, some may have the same
support as P . We call them support equivalence items
and can be safely pruned according to the following
Lemma ??.

Lemma 1 (Support equivalence item pruning)
Any local item xj w.r.t. prefix P can be safely pruned
if it satisfies sup

P∪{xj}
= sup

P
.

Proof. Because sup
P∪{xj}

= sup
P

holds, TrDB|P and

TrDB|P∪{xj} contain the same set of conditional in-
stances; thus, their class distributions are also the same
and the following equation must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}
= supci

P



Given any itemset, Y , which can be used to extend P
(Y can be empty), can also be used to extend P ∪{xj},
and the following must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}∪Y
= supci

P∪Y

We can further have the following equation:

∀i, 1 ≤ i ≤ k,
sup

ci
P∪{xj}∪Y

sup
P∪{xj}∪Y

=
sup

ci
P∪Y

sup
P ∪Y

This means the confidence of the rule ‘P∪{xj}∪Y →
ci’ is equal to the confidence of the rule ‘P ∪ Y → ci’,
and we cannot generate higher confidence rules from
prefix P ∪ {xj} ∪ Y in comparison with the rules with
body P ∪ Y . Thus item xj can be safely pruned. �

Note P ∪ Y is a subset of P ∪ {xj} ∪ Y , by pruning
item xj , we prefer the more generic classification rules.
A similar strategy was adopted in [?, ?].

5.2.2 Unpromising Item Elimination

Given the current prefix P , any one of its local frequent
items, xj (1 ≤ j ≤ m), any itemset Y that can be
used to extend P ∪ {xj} (where Y can be empty and
P ∪ {xj} ∪ Y is frequent), and any class label ci (1 ≤
i ≤ k), the following equation must hold:

conf ci

P∪{xj}∪Y
=

supci

P∪{xj}∪Y

sup
P∪{xj}∪Y

≤
supci

P∪{xj}∪Y

min sup

≤
supci

P∪{xj}

min sup

Because conf ci

P∪{xj}∪Y
≤ 1 also holds, we have the

following equation:

conf ci

P∪{xj}∪Y
≤ min{1,

supci

P∪{xj}

min sup
} (4)

Lemma 2 (Unpromising item pruning) For any
conditional instance 〈tl, Xl, ci〉 ∈ TrDB|P∪{xj} ( ∀l,
1 ≤ l ≤ |TrDB|P∪{xj}|, and 1 ≤ i ≤ k), if the follow-
ing always holds, item xj is called an unpromising item
and can be safely pruned.

HCCRconf
tl

≥ min{1,
supci

P∪{xj}

min sup
} (5)

Proof. By combining Equation ?? and Equation ??
we get that for any itemset Y (Y can be empty) the
following must hold:

conf ci

P∪{xj}∪Y
≤ HCCRconf

tl

This means that any rule mined by growing pre-
fix P ∪ {xj} will have a confidence that is no greater
than the current highest confidence covering rules (with
the same rule head) of any conditional instance in
TrDB|P∪{xj}; thus, item xj can be safely pruned. �

5.2.3 Unpromising Conditional Database
Elimination

Given the current prefix P , any itemset Y (where Y
can be empty and P ∪ Y is frequent), any class label
ci (1 ≤ i ≤ k), the confidence of rule ‘P ∪ Y → ci’,
conf ci

P∪Y , must satisfy the following equation:

conf ci

P∪Y =
supci

P∪Y

sup
P∪Y

≤
supci

P∪Y

min sup
≤

supci

P

min sup

In addition, because conf ci

P∪Y ≤ 1 also holds, we
have the following equation:

conf ci

P∪Y ≤ min{1,
supci

P

min sup
} (6)

Lemma 3 (Unpromising conditional database

pruning) For any conditional instance 〈tl, Xl, ci〉 ∈
TrDB|P ( ∀l, 1 ≤ l ≤ |TrDB|P |, and 1 ≤ i ≤ k),
if the following always holds, the conditional database
TrDB|P can be safely pruned.

HCCRconf
tl

≥ min{1,
supci

P

min sup
} (7)

Proof. By combining Equation ?? and Equation ?? we
can get that for any itemset Y (Y can be empty) and
∀l, 1 ≤ l ≤ |TrDB|P |, 〈tl, Xl, ci〉 ∈ TrDB|P (1 ≤ i ≤
k), the following must hold:

conf ci

P∪Y ≤ HCCRconf
tl

This means that any rule mined by growing prefix
P will have a confidence that is no greater than the
current highest confidence rules (with the same rule
head) of any conditional instance in TrDB|P ; thus,
the whole conditional database TrDB|P can be safely
pruned. �

ALGORITHM 1: HARMONY(TrDB, min sup, ti)

INPUT: (1) TrDB : a training database, (2) min sup: a minimum
support threshold, and (3) ti: a new test instance.
OUTPUT: (1) HCCR: the set of the highest confidence frequent cov-
ering rules w.r.t. each instance in TrDB, (2) CM : a classification
model, (3) PCL: the predicted class label(s) w.r.t. test instance ti.

01. HCCR ← RuleMiner(TrDB, min sup);
02. CM ← BuildModel(HCCR);
03. PCL ← NewInstanceClassification(CM, ti).

5.3 The algorithm

After we described how to enumerate the classifica-
tion rules, and how to design the local item ordering
scheme and some effective search space pruning meth-
ods in order to accelerate the mining of the highest



confidence covering rules in terms of each training in-
stance, we introduce the integrated HARMONY algo-
rithm in this section.

The HARMONY algorithm is shown in ALGO-
RITHM 1. It consists of three sub-algorithms:
RuleMiner() takes as input the training database
TrDB and the minimum support min sup, and out-
puts the set of highest confidence covering classifica-
tion rules, HCCR; BuildModel() takes HCCR as
input and outputs a classification model, CM ; NewIn-
stanceClassification() classifies a new test instance
ti using the model CM .

5.3.1 Classification Rule Generation

In Section ?? and Section ?? we introduced how to ef-
ficiently enumerate the classification rules under the
divide-and-conquer and depth-first search paradigm,
and proposed several pruning methods to speed up the
enumeration of the highest confidence covering rules.
By integrating the pruning methods with the rule enu-
meration, we get the classification rule generation al-
gorithm, as shown in the RuleMiner() algorithm.

The RuleMiner() algorithm first initializes the
highest confidence classification rules w.r.t. each train-
ing instance to empty (lines 01-02), then enumerates
the classification rules by calling subroutine rulem-
iner(∅, TrDB) (line 03). Subroutine ruleminer() takes
as input a prefix itemset pi and its corresponding con-
ditional database cdb. For each conditional instance,
it checks if a classification rule with higher confidence
can be computed from the current prefix pi, if so, it
replaces the corresponding instance’s current highest
confidence rule with the new rule (lines 04-07). It then
finds the frequent local items by scanning cdb (line 08),
prunes invalid items based on the support equivalence
item pruning method and the unpromising item prun-
ing method (lines 09-10). If the set of valid local items
is empty or the whole conditional database cdb can be
pruned based on the unpromising conditional database
pruning method, it returns directly (lines 11-13). Oth-
erwise, it sorts the left frequent local items according
to the correlation coefficient ascending order (line 14),
and grows the current prefix (line 16), builds the condi-
tional database for the new prefix (line 17), and recur-
sively calls itself to mine the highest confidence rules
from the new prefix (line 18).

5.3.2 Building the Classification Model

After the set of highest confidence covering rules have
been mined, it will be straightforward to build the clas-
sification model. HARMONY first groups the set of

highest confidence covering rules into k groups accord-
ing to their rule heads (i.e., class labels), where k is
the total number of distinct class labels in the train-
ing database. Within the same group of rules, HAR-
MONY sorts the rules in their confidence descending
order, and for the rules with the same confidence, sorts
them in support descending order. In this way, HAR-
MONY prefers the rules with higher confidence, and
the rules with higher support if the confidence is the
same. The BuildModel algorithm is shown in AL-
GORITHM 1.2.

ALGORITHM 1.1: RuleMiner(TrDB, min sup)

INPUT: (1) TrDB : a training database, and (2) min sup: a mini-
mum support threshold.

OUTPUT: (1) HCCR: the set of the highest confidence frequent
covering rules w.r.t. each instance in TrDB.

01. for all ti ∈ TDB

02. HCCRti
← ∅;

03. call ruleminer(∅, TrDB).

SUBROUTINE 1.1 : ruleminer(pi, cdb)

INPUT: (1) pi: a prefix itemset, and (2) cdb: the conditional
database w.r.t. prefix pi.

04. if(pi 6= ∅)
05. for all 〈tl, Xl, cj〉 ∈ cdb

06. if(HCCR
conf
tl

<
sup

cj
pi

suppi
)

07. HCCRtl
← rule ‘pi→ cj ’;

08. I ← find frequent items(cdb,min sup);

09. S ← support equivalence item pruning(I); I ← I - S;
10. S ← unpromising item pruning(I, cdb); I ← I - S;

11. if(I 6= ∅)
12. if(unpromising conditional database pruning(I,pi,cdb))

13. return;
14. correlation coefficient asscending ordering(I);

15. for all x ∈I do

16. pi
′
← pi ∪ {x};

17. cdb
′
← build cond database(pi

′
, cdb);

18. call ruleminer(pi
′
, cdb

′
);

ALGORITHM 1.2: BuildModel(HCCR)

INPUT: (1) HCCR: the set of highest confidence covering rules.
OUTPUT: (1) CM : the classification model (i.e., k groups of ranked
rules).

01. Cluster rules into k groups(HCCR);//according to class label

02. for each group of rules
03. Sort rules();//in confidence and support descending order

ALGORITHM 1.3: NewInstanceClassification(CM, ti)

INPUT: (1) CM : the classification model, (2) ti: a test instance.

OUTPUT: (1) PCL: a predicted class label (or a set of class labels).

01. for j=1 to k //CMj : the j-th group of rules in CM

//SCRj : the score for ti computed from CMj

02. SCRj ←ComputeScore(CMj, ti);

03. PCL ← PredictClassLabel(SCR).



5.3.3 New Instance Classification

After the classification model, CM, has been built, it
can be used to classify a new test instance, ti, using
ALGORITHM 1.3. HARMONY first computes a
score w.r.t. ti for each group of rules in CM (lines
01-02), and predicts for ti a class label or a set of class
labels if the underlying classification is a multi-class
multi-label problem (i.e., each instance can be asso-
ciated with several class labels). In HARMONY, the
score for a certain group of rules is defined as the sum
of the confidences of the covering rules w.r.t. ti (by
a ‘covering rule’, we mean its rule body is a subset of
ti). For a multi-class single-label classification prob-
lem, HARMONY simply chooses the class label with
the highest score as the predicted class label. While for
a multi-class multi-label problem, a dominant factor -
based method [?] can be used to predict the class labels
and works as follows. Given a user-specified dominant
factor γ, let the class label with the highest score be
cmax and the corresponding highest score w.r.t. test
instance ti be SCOREcmax

ti , then any class label whose
corresponding score is no smaller than SCOREcmax

ti ×γ
is a predicted class label for ti.

Although the dominant factor -based method works
well in many cases, if the distribution of the class la-
bels in the training database is imbalanced, the aver-
age confidence of each group of classification rules may
be quite different from each other, this uniform dom-
inant factor -based method will have some problems.
A large dominant factor may lead to low recalls (i.e.,
the percentage of the total test instances for the given
class label that are correctly classified) for the classes
with low average rule confidences, while a small dom-
inant factor can lead to low precisions (i.e., the per-
centage of predicted instances for the given class label
that are correctly classified) for the classes with high
average rule confidences. To overcome this problem,
HARMONY adopts a weighted dominant factor -based
method. Let the average confidence of the group of
classification rules w.r.t. class label ck be confavg

ck
, the

score w.r.t. instance ti and class label ck be SCOREck

ti .
Instance ti is predicted to belong to class ck if it satis-
fies the following equation:

SCOREck

ti ≥ SCOREcmax

ti × γ × (
confavg

ck

confavg
cmax

)δ

Here, δ (δ ≥ 0) is called the score differentia fac-
tor and the larger the δ, the more the difference of

the weighted dominant factors (i.e., γ × (
confavg

ck

conf
avg
cmax

)δ)

among different class labels. It is set to 1 by default in
HARMONY.

5.4 Extensions

5.4.1 Varying Support Threshold

The classification rule enumeration algorithm de-
scribed in Section ?? assumes a uniform minimum sup-
port as an input, which may cause some problems for
the unbalanced training databases. By an unbalanced
training database, we mean the class distribution is not
balanced, that is, some classes may contain a much
larger number of instances than the other classes. If a
large minimum support is used as input, the algorithm
will encounter difficulties in mining high confidence
rules for the small classes, while a small minimum sup-
port will lead to the overfitting problem for some large
classes. This intuition suggests we should use different
minimum supports for different size classes.

HARMONY provides two ways in specifying varying
minimum supports for different classes. The first way
allows the user to directly specify a minimum support
for each class (in the following we will use min supi to
denote the minimum support of the i-th class). How-
ever, when there exist a lot of classes in the database,
to specify a proper minimum support for each class is
not an easy task. As a result, in the second option,
HARMONY requires the user to provide a minimum
support, min sup, which corresponds to the minimum
support of the smallest class, and it will automati-
cally compute a minimum support for each class from
min sup and the class distribution. Let the number of
training instances w.r.t. class ci be |ci|, then min supi

is computed as follows:

min supi = min sup × (
|ci|

min
∀j,1≤j≤k

|cj |
)ξ

Here, ξ (ξ ≥ 0) is called the support differentia fac-
tor. In HARMONY, ξ is set to 0 by default, which can
be used to compute a uniform minimum support for all
the classes.

By using varying minimum support, Lemma ?? and
Lemma ?? still applies, but we need to replace min sup
with min supi in Equation ?? and Equation ??. For
example, Equation ?? should be changed to the follow-
ing form:

HCCRconf
tl

≥ min{1,
supci

P∪{xj}

min supi

}

In addition, to make the algorithm work, we also
need to require the line 06 of SUBROUTINE 1.1 sat-
isfy suppi ≥ min supj.



5.4.2 Mining K-Rules for Each Instance

A training instance may support multiple highest-
confidence classification rules, but the above classifi-
cation rule enumeration algorithm described in Sec-
tion ?? only reports the first discovered one. Usu-
ally this arrangement can assure the set of final rules
is large enough to build an accurate classifier in the
case that the training database contains a large num-
ber of training instances. However, the set of final
rules generated in this way may not be sufficient if
the database is small. To overcome this problem,
HARMONY provides an option to mine K highest-
confidence rules w.r.t. a training instance if it sup-
ports multiple highest-confidence rules, where K is a
user-specified parameter.

In order to mine K-rules for each instance, Equa-
tion ?? needs to be changed to the following form:

(HCCRconf
tl

> min{1,
supci

P∪{xj}

min sup
})∨

(HCCRconf
tl

= min{1,
supci

P∪{xj}

min sup
}) ∧ (n >= K)

Here, n is the number of highest confidence classifi-
cation rules discovered so far w.r.t. tl.

Similarly, Equation ?? should have the following
form:

(HCCRconf
tl

> min{1,
supci

P

min sup
})∨

(HCCRconf
tl

= min{1,
supci

P

min sup
}) ∧ (n >= K)

In addition, it is evident that the condition of line
06 in SUBROUTINE 1.1 should be rewritten to the
following form:

(HCCRconf
tl

<
sup

cj

pi

suppi

)∨(HCCRconf
tl

=
sup

cj

pi

suppi

)∧(n < K)

5.4.3 Traditional Definition of a Frequent Rule

The above classification rule enumeration algorithm
described in Section ?? can also be adapted to accord
with the more traditional definition of an association
rule, that is, instead of only requiring the rule body be
frequent, it requires the entire rule be frequent. To sim-
ply achieve this goal, we also need to require the line
06 of SUBROUTINE 1.1 satisfy sup

cj

pi ≥ min sup

(or sup
cj

pi ≥ min supj in the case of applying varying
support threshold).

Adapting the algorithm to the traditional definition
of a classification rule also enables us to design some

search space pruning methods. Let the current prefix
be P , a local item of P , xj , is called infrequent and can
be safely pruned according to Lemma ??.

Lemma 4 (Infrequent item pruning) Item xj is
called an infrequent item w.r.t. prefix P and can be
safely pruned from P ’s conditional database if it satis-
fies the following equation:

max
∀i,1≤i≤k

supci

P∪{xj}
< min sup (8)

Proof. Follows easily from the traditional definition of
a classification rule. �

5.4.4 Maximum Support Threshold

Some dense databases contain some highly frequent
items, which appear in almost all the training in-
stances. From the classification point of view, these
items are indifferentiable and cannot be used to gen-
erate high quality classification rules. Removing these
items usually does not hurt the classification accuracy,
but it can significantly improve the algorithm efficiency.
Thus, in HARMONY there is an option for the user to
specify a maximum support threshold, max sup, in or-
der to remove the overly frequent items.

6 Empirical Results

6.1 TestEnvir onmentand Databases

We implemented the HARMONY algorithm in C
and performed a thorough experimental study. We
first evaluated HARMONY as a frequent itemset min-
ing algorithm to show the effectiveness of the pruning
methods, the algorithm efficiency and scalability. Then
we compared HARMONY with some well-known clas-
sifiers on both categorical and text databases. All the
experiments were performed on a 1.8GHz Linux ma-
chine with 1GB memory.

The UCI Databases. Many previous studies used
some small databases to evaluate both the accuracy
and efficiency of a classifier. For example, most of the
26 databases used in [?, ?, ?] only contain several hun-
dred instances, which means the test databases contain
too few test instances (i.e., only a few tens) if the 10-
fold cross validation is adopted to evaluate the clas-
sification accuracy. In this paper, we mainly focus
on relatively large databases (by large, we mean the
database should contain no fewer than 1000 instances),
although we also report the comparison results for some
small databases.



Table 2. Large UCI database characteristics.
Database # instances # items # classes

adult 48842 131 2

chess 28056 66 18

connect 67557 66 3

led7 3200 24 10

letRegcog 20000 106 26

mushroom 8124 127 2

nursery 12960 32 5

pageBlocks 5473 55 5

penDigits 10992 90 10

waveform 5000 108 3

Table 3. Small UCI database characteristics.
Database # instances # items # classes

anneal 798 106 6

auto 205 142 7

breast 699 48 2

glass 214 52 7

heart 303 53 5

hepatitus 155 58 2

horseColic 368 94 2

ionosphere 351 104/173 2

iris 150 23 3

pimaIndians 768 42 2

ticTacToe 958 29 2

wine 178 68 3

zoo 101 43 7

In [?], the author used 23 UCI databases to com-
pare FOIL and CPAR algorithms 4. Among these 23
databases, 10 of them are large databases and the left
13 databases are small ones. The characteristics of
these two classes of databases are summarized in Ta-
ble ?? and Table ??, respectively. All the 23 databases
were obtained from the author of [?] and the 10-fold
cross validation is used for comparison with FOIL and
CPAR. Among these databases, database ionosphere
was discretized into two versions, one with 104 dis-
tinct items (denoted by ionosphere104 ) and another
with 173 distinct items (denoted by ionosphere173 ).
Because databases connect and ionosphere104 are too
dense, during the 10-fold cross validation in our ex-
periments HARMONY only used the items whose sup-
ports are no greater than 20,000 and 190 for connect
and ionosphere104 respectively, to generate classifica-
tion rules (i.e., max sup=20,000 and max sup=190 for

4The numerical attributes in these databases have been dis-
cretized by the author, and the discretization technique is differ-
ent from those used in [?, ?, ?]; thus, the performance reported
here may be different from the previous studies even for the same
algorithm and the same database.

these two databases respectively).

Table 4. Top 10 topics in reuter s-21578.
Category Name # train labels # test labels

acq 1650 719

corn 181 56

crude 389 189

earn 2877 1087

grain 433 149

interest 347 131

money-fx 538 179

ship 197 89

trade 369 118

wheat 212 71

total 7193 2787

Table 5. Class distrib ution in sports database .

Class Name Number of labels

baseball 3412

basketball 1410

football 2346

hockey 809

boxing 122

bicycle 145

golf 336

total 8580

Text Databases. We also used two text databases
in our empirical evaluation. The first database is the
popularly used ‘ModeApte’ split version of the reuters-
21578 collection, which was preprocessed and provided
by the authors of [?], and both the database and its
description are available at [?]. After preprocessing,
it contains totally 8575 distinct terms, 9603 training
documents, and 3299 test documents. Like many other
studies [?, ?, ?, ?], we are more interested in the top
10 most common categories (i.e., topics). These ten
largest categories form 6488 training documents and
2545 test documents. A small portion of the train-
ing and test documents are associated with multiple
category labels (that is, reuter-21578 is a multi-class
multi-label database). In our experiments, we treated
each one of the training documents with multiple la-
bels as multiple documents, each one with a distinct
label. The top 10 categories and their corresponding
number of labels in the training and test databases
are described in Table ??. The second text database
is sports, which was obtained from San Jose Mercury
(TREC). In our experiments, we removed some highly
frequent terms, and finally it contains totally 8580 doc-



uments, 7 classes, and about 1748 distinct terms. The
seven classes and their corresponding number of docu-
ments are shown in Table ??.

6.2 Experimental Results

6.2.1 Evaluate HARMONY as a Frequent
Itemset Mining Algorithm

To mine the highest confidence covering rule(s) for each
instance, a näıve method is like the association-based
classifiers: first use an efficient association rule mining
algorithm to compute the complete set of classification
rules, from which the set of the highest confidence cov-
ering rules w.r.t. each instance can be selected. Our
empirical results show that this method is usually inef-
ficient if the database is large and a more efficient way
is to push some effective pruning methods into the fre-
quent itemset mining framework and to directly mine
the final set of classification rules.
Effectiveness of the pruning methods. We first
evaluated the effectiveness of the pruning methods.
Figure ??a shows the results for database penDigits
with absolute support threshold varying from 512 to
8. At first glance of Equation ?? and Equation ??,
the unpromising item and conditional database prun-
ing methods seem to be less effective at lower support,
however this is not the case when considering more cov-
ering rules with higher confidence can be found at lower
support and can be used to more quickly raise the cur-
rently maintained highest confidences. As we can see
from Figure ??a, if we turn off the pruning methods
used in HARMONY (denoted by ‘without pruning’),
it can become over an order of magnitude slower at
low support.
Scalability test. Figure ??b shows the scalability
test result for databases letRecog, waveform, and mush-
room with relative support set at 0.5%. In the experi-
ments, we replicated the instances from 2 to 16 times.
We can see that HARMONY has linear scalability in
the runtime with increasing number of instances.
Efficiency test. As we mentioned above, the tradi-
tional frequent (closed) itemset mining algorithms can
be revised to mine the complete set of high confidence
classification rules, from which a subset of high quality
rules can be further identified. Our efficiency tests for
HARMONY in comparison with FPgrowth* and FP-
close, two recently developed efficient frequent/closed
itemset mining algorithms [?], show that such a method
is not realistic at low support, while our experiments
demonstrate that the classification accuracy is usually
higher at lower support.

Figure ?? shows the comparison results for database
sports. As we can see, although at high support, both
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Figure 1. Pruning and scalability test.
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Figure 2. Efficienc y test (sports).
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Figure 3. Efficienc y test (mushroom).

FPgrowth* and FPclose are faster than HARMONY,
once we continue to lower the support, they will be
much slower. For example, at absolute support of 100,
HARMONY is several orders of magnitude faster than
FPgrowth* and FPclose. Figure ??b shows the classi-
fication accuracy at different support thresholds using
the 10-fold cross validation. We can see that HAR-
MONY can achieve higher accuracy at lower support
like 100. It is also interesting to see that the accuracy
at a too low support 50 is worse than that at support
100 for this database, due to the ‘overfitting’ problem.

Figure ??a shows similar comparison results for cat-
egorical database mushroom. HARMONY is faster



than both FPgrowth* and FPclose at absolute support
lower than 32. Figure ??b shows that HARMONY has
better accuracy at lower support threshold.

6.2.2 Classification Evaluation

The reuters–21578 (ModApte) text database.
For a multi-class multi-label database like reuters-
21578, most previous studies used the breakeven point
of precision and recall to measure the classifier per-
formance [?, ?, ?, ?, ?, ?, ?], which is defined as the
point at which precision is equal to the recall. To our
best knowledge, the best breakeven performance for the
reuters-21578 database is the linear SVM [?]. For com-
parison with earlier results, we first found the overall
breakeven point in terms of all the top 10 categories by
adjusting the dominant factor γ, then reported the av-
erage of precision and recall for each category as their
corresponding breakeven performance [?].

Table ?? shows the comparison results with some
previous results. The results for Findsim (i.e., Find-
Similar), NBayes (i.e., Näıve-Bayes), Bayes-Nets, Trees
(i.e., Decision-Trees), and LinearSVM were obtained
from [?]. The micro-avg is the overall breakeven per-
formance over all 10 categories. For HARMONY, we
used three different uniform absolute support thresh-
olds, 60, 70, and 80, respectively. From Table ?? we
can see that both HARMONY and LinearSVM have
similar breakeven performance and perform much bet-
ter than all the other classifiers, including Find-Similar,
Näıve-Bayes, Bayes-Nets, and Decision-Trees. Among
the 10 categories, HARMONY achieves the best per-
formance at support of 60 for five categories, acq, earn,
money-fx, ship, and trade. While LinearSVM performs
best for another three categories, crude, grain, and in-
terest. Decision-Trees also performs good and has the
best performance for two small categories, corn and
wheat. SVM is very well known for classifying high di-
mensional text databases. Our results show that HAR-
MONY can achieve similar performance to SVM. Ta-
ble ?? shows the runtime in seconds for HARMONY
at three different support thresholds. We can see that
HARMONY is very efficient in classifying the reuters–
21578 text database. For example, at absolute support
of 60, it takes 72.6 seconds to build the model from 7193
training documents, and 0.363 seconds to classify 2545
test documents.

The micro-avg values for HARMONY in Table ??
were computed by using a uniform minimum support
for all 10 categories. If we choose some proper vary-
ing support thresholds for different categories, HAR-
MONY can achieve better performance. In Table ??,
the second row shows the corresponding minimum sup-

port chosen for the 10 categories, while the third row
shows the breakeven performance. From the results
we can see that with these varying support thresholds,
HARMONY achieves a better micro-avg value, 92.4.
This example illustrates that adopting different sup-
port thresholds for different classes does achieve better
results.

The micro-avg values for HARMONY in Table ??
and Table ?? were computed by setting the score dif-
ferentia factor at its default value 1. By choosing dif-
ferent differentia factor values, HARMONY may have
different micro-avg performance. Table ?? shows the
micro-avg performance and the corresponding domi-
nant factor γ for HARMONY with the varying sup-
port thresholds shown in Table ?? and by varying the
parameter of score differentia factor δ from 0 to 1.2.
δ = 0 means the weighted dominant factor-based scor-
ing method degenerates to the dominant factor-based
method used in [?]. By adopting a proper value of
δ, the weighted dominant factor-based scoring method
can achieve a better micro-avg performance. For ex-
ample, by setting δ at 0.9, the overall precision equals
the overall recall at γ = 0.544, and the corresponding
micro-avg breakeven performance for HARMONY is
92.4, which is higher than the corresponding micro-avg
at δ = 0 (i.e., 91.2).

The UCI databases. We evaluated HARMONY
on the UCI databases in comparison with FOIL and
CPAR, which are two well-known algorithms for clas-
sifying categorical data. The results in [?] show that
CPAR has comparable accuracy to the association-
based algorithms CMAR and CBA, but is more effi-
cient; thus, we will do not compare HARMONY with
the association-based algorithms. The results for FOIL
and CPAR were provided by Frans Coenen and are
available at [?]. All the results including the accuracy,
runtime, and the number of rules are computed using
the 10-fold cross validation. The reported accuracy and
number of rules are the corresponding average value of
the 10-fold cross validation results, while the runtime is
the total runtime of the 10-fold cross validation, includ-
ing both training and testing time. In the experiments,
we fixed the absolute support threshold at 50 for HAR-
MONY with all 10 large UCI databases, and at 10 for
all 13 small UCI databases.

Table ?? shows the comparison results in terms of
the 10-fold cross validation accuracy for 10 large UCI
databases. These results show that HARMONY has
better accuracy than both FOIL and CPAR for most
of 10 large UCI databases, and has comparable accu-
racy with FOIL for databases adult, mushroom, and
pageBlocks. On average, HARMONY has significantly
better accuracy than both FOIL and CPAR: its average



Table 6. Breake ven perf ormance on the Reuters-21578 database with some well-kno wn classifier s.
Categories HARMONY HARMONY HARMONY Findsim NBayes BayesNets Trees SVM

min sup=60 min sup=70 min sup=80 (linear)

acq 95.3 95.3 95.3 64.7 87.8 88.3 89.7 93.6
corn 78.2 78.6 75.2 48.2 65.3 76.4 91.8 90.3
crude 85.7 85.0 88.0 70.1 79.5 79.6 85.0 88.9

earn 98.1 98.2 97.6 92.9 95.9 95.8 97.8 98.0
grain 91.8 90.4 90.1 67.5 78.8 81.4 85.0 94.6

interest 77.3 76.6 75.1 63.4 64.9 71.3 67.1 77.7

money-fx 80.5 81.9 82.1 46.7 56.6 58.8 66.2 74.5
ship 86.9 82.9 82.8 49.2 85.4 84.4 74.2 85.6
trade 88.4 88.0 86.1 65.1 63.9 69.0 72.5 75.9
wheat 62.8 60.6 58.7 68.9 69.7 82.7 92.5 91.8

micro-avg 92.0 91.7 91.4 64.6 81.5 85.0 88.4 92.0

Table 7. Breake ven perf ormance on the Reuters-21578 database with varying min sup.
Categories acq corn crude earn grain interest money-fx ship trade wheat micro-avg
min sup 55 60 60 75 60 55 70 50 60 45 -

Breakeven 95.6 78.2 86.6 97.9 90.7 76.8 83.5 88.5 89.3 68.1 92.4

accuracy over all 10 large UCI databases is about 5%
higher than FOIL, and 10% higher than CPAR. Note
in the experiments we fixed the minimum support at
50 for all 10 large UCI databases, if we choose a lower
(or higher) supports for some databases, HARMONY
can achieve much better performance than what we
reported here. For example, if we choose the mini-
mum support at 5 for chess database, HARMONY has
a classification accuracy 58.43%, which is more than
13% higher that the accuracy at support 50, while it
only becomes about two times slower.

Table 8. Runtime on reuters-21578 database .
Runtime HARMONY HARMONY HARMONY

(min sup=60 ) (min sup=70 ) (min sup=80 )

training 72.6 51.1 37.6
testing 0.363 0.337 0.309

Table 9. Effectiveness of the score differentia
factor δ (varying min sup, reuters-21578 ).

δ 0 0.3 0.6 0.9 1.2

γ 0.4987 0.5029 0.517 0.544 0.569
micro-avg 91.2 91.6 92.2 92.4 92.1

Table ?? compares the runtime (in seconds) of the
three algorithms on 10 large UCI databases. Note that
FOIL and CPAR were implemented in java and were
tested on a different machine from that of HARMONY.
As a result, these times cannot be directly compared
to the times reported for HARMONY but they only
provide an overall idea on the relative computational
requirements of the various schemes. Table ?? shows

Table 10. Accurac y comparison on 10 large
UCI databases (min sup=50 for HARMONY).

Database FOIL CPAR HARMONY

adult 82.5 76.7 81.9

chess 42.6 32.8 44.87

connect 65.7 54.3 68.05

led7 62.3 71.2 74.56

letRecog 57.5 59.9 76.81

mushroom 99.5 98.8 99.94

nursery 91.3 78.5 92.83

pageBlocks 91.6 76.2 91.6

penDigits 88.0 83.0 96.23

waveform 75.6 75.4 80.46

average 75.66 70.68 80.725

that on average the runtime of HARMONY is over an
order of magnitude smaller than those of FOIL and
CPAR. For some large databases like chess, the run-
time of HARMONY can be over two orders of magni-
tude smaller than those of FOIL and CPAR. Table ??
compares the number of rules discovered by three algo-
rithms. We can see that on average, HARMONY finds
many more rules than both FOIL and CPAR. The rea-
son why HARMONY finds more rules is that it mines
classification rules in an instance-centric manner: it
mines at least one highest confidence covering rule for
each instance.

Table ?? depicts the accuracy comparison among
FOIL, CPAR, and HARMONY on 13 small UCI
databases, from which we can see that on average
HARMONY and FOIL have similar classification ac-
curacy and both perform a little better than CPAR. In



Table 11. Runtime comparison on 10 large
UCI databases (min sup=50 for HARMONY).

Database FOIL CPAR HARMONY

adult 10251.0 809.0 1395.5

chess 10122.8 1736.0 11.34

connect 35572.5 24047.1 85.44

led7 11.5 5.7 1.29

letRecog 4365.6 764.0 778.91

mushroom 38.3 15.4 8.78

nursery 73.1 51.7 6.21

pageBlocks 43.1 15.5 2.5

penDigits 821.1 101.9 82.6

waveform 295.3 38.1 130.0

total 61594.3 27584.4 2502.57

Table 12. Comparison of # rules on 10 large
UCI databases (min sup=50 for HARMONY).

Database FOIL CPAR HARMONY

adult 331.8 183.1 6431.3

chess 1116.7 1504.8 2881.5

connect 285.8 816.1 6664.0

led7 80.6 31.4 268.7

letRecog 560.9 643.0 2255.8

mushroom 16.2 30.8 95.9

nursery 57.4 83.6 391.64

pageBlocks 123.1 56.2 78.1

penDigits 204.6 166.9 1434.5

waveform 159.7 114.3 958.6

average 293.68 363.02 2146.0

the experiments we fixed the minimum absolute sup-
port at 10 on all 13 small UCI databases for HAR-
MONY, if we use tuned minimum support, HAR-
MONY can achieve better accuracy for most databases.
In addition, because these databases contain a small
number of training instances, the number of classifi-
cation rules mined by HARMONY may not be suf-
ficient to build an accurate classification model; thus,
we implemented a variant of HARMONY, which mines
K highest confidence frequent covering rules for each
training instance if it supports no fewer than K such
rules. By varying K parameter from 1 to 5, and choos-
ing the minimum absolute support from {5, 10, 15},
we got a set of classification results, among which the
best results for 13 small UCI databases are shown
in Table ??. We can see that with tuned parame-
ters, HARMONY achieves better classification accu-
racy than both FOIL and CPAR.

We also evaluated the effectiveness of the sup-
port differentia factor ξ using one unbalanced UCI
database, hepatitus. In Table ??, we set min sup at
10 and varied ξ from 0 to 1. We can see that the sup-
port differentia factor based varying support threshold
method is very effective in improving the accuracy for
this database. For example, with ξ = 1, HARMONY
has an accuracy 84.84, which is much higher than that
at ξ = 0.

Table 13. Accurac y comparison on 13 small
UCI databases (min sup=10 for HARMONY).

Database FOIL CPAR HARMONY

anneal 96.9 90.2 91.51

auto 46.1 48.0 61

breast 94.4 94.8 92.42

glass 49.3 48.0 49.8

heart 57.4 51.1 56.46

hepatitus 77.5 76.5 78

horseColic 83.5 82.3 82.53

ionosphere 89.5 92.9 92.03/88.31

iris 94.0 94.7 93.32

pimaIndians 73.8 75.6 72.34

ticTacToe 96.0 72.2 92.29

wine 86.4 92.5 91.94

zoo 96.0 96.0 93.0

average 80.06 78.06 80.43/80.14

7 Conclusion

Designing accurate, efficient, and scalable classifiers
is an important research topic in data mining. In many
applications, the databases are high-dimensional. Due
to the curse of dimensionality, some traditional clas-
sification algorithms may not work well for this type
of data. The rule-based classifiers provide a promising
approach to tackle this problem. However, to achieve
high accuracy, a good rule-based classifier needs to find
a sufficient number of high quality classification rules
and use them to build the model.

In this paper, we proposed an instance-centric clas-
sification rule mining paradigm and designed an ac-
curate classifier, HARMONY. Several effective search
space pruning methods have also been proposed, which
can be pushed deeply into the projection-based fre-
quent itemset enumeration framework. Our perfor-
mance study shows that HARMONY has high accuracy
and efficiency in comparison with many well known
classifiers for both categorical data and high dimen-
sional text data. It also has good scalability in terms



Table 14. Tuned accurac y on 13 small UCI
databases for HARMONY.

Database min sup K rules HARMONY
∈ {5, 10, 15} ∈ [1, 5]

anneal 5 4 95.65

auto 10 1 61.5

breast 15 2 96.14

glass 10 1 49.8

heart 15 1 58.4

hepatitus 15 5 84.41

horseColic 5 4 84.64

ionosphere 10/15 2/3 93.45/88.85
(104/173)

iris 5 5 95.99

pimaIndians 5 5 73.79

ticTacToe 10 4 94.09

wine 10 5 94.9

zoo 5 1 96

average 82.98/82.62

Table 15. Effectiveness of the support differen-
tia factor ξ (min sup=10, hepatitus).

ξ 0 0.2 0.4 0.6 0.8 1

accuracy 78 83.34 84 81.5 83 84.84

of database size.
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