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Abstract. In order to overcome the drawbacks of mathematical optimization 
techniques, soft computing algorithms have been vigorously introduced during 
the past decade. However, there are still some possibilities of devising new al-
gorithms based on analogies with natural phenomena. A nature-inspired algo-
rithm, mimicking the improvisation process of music players, has been recently 
developed and named Harmony Search (HS). The algorithm has been success-
fully applied to various engineering optimization problems. In this paper, the 
HS was applied to a TSP-like NP-hard Generalized Orienteering Problem 
(GOP) which is to find the utmost route under the total distance limit while sat-
isfying multiple goals. Example area of the GOP is eastern part of China. The 
results of HS showed that the algorithm could find good solutions when com-
pared to those of artificial neural network. 

1   Introduction 

Over the several decades, optimization techniques such as linear programming (LP), 
non-linear programming (NLP), and dynamic programming (DP) have gathered atten-
tion among engineers. However, the mathematical techniques can excellently perform 
mostly in simple and ideal models. 

In order to overcome the shortcomings of mathematical techniques, nature-inspired 
soft computing algorithms have been introduced. Many evolutionary or meta-heuristic 
algorithms have been developed that combine rules and randomness mimicking natu-
ral phenomenon [1-8]. 

The purpose of this paper is to introduce a recently-developed nature-inspired algo-
rithm, Harmony Search, and to apply the algorithm to a TSP-like NP-hard General-
ized Orienteering Problem (GOP), proposed by Wang et al. [9]. 
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2   Harmony Search Algorithm 

Harmony Search (HS) algorithm was recently developed in an analogy with music 
improvisation process where music players improvise the pitches of their instruments 
to obtain better harmony [10]. 

The HS algorithm has been successfully applied to various benchmarking and real-
world problems including traveling salesperson problem [10], parameter optimization 
of river flood model [11], design of pipeline network [12], and design of truss struc-
tures [13]. Consequently, the HS algorithm provides a possibility of success in a TSP-
like NP-hard problem. 

As existing soft computing algorithms are found in the paradigm of natural proc-
esses, a new algorithm can be conceptualized from a musical performance process 
(for example, a jazz trio) involving searching for a better harmony. Musical perform-
ance seeks a best state (fantastic harmony) determined by aesthetic estimation, as the 
optimization process seeks a best state (global optimum: minimum cost; minimum 
error; maximum benefit; or maximum efficiency) determined by objective function 
evaluation. Aesthetic estimation is done by the set of the pitches sounded by joined 
instruments, as objective function evaluation is done by the set of the values produced 
by composed variables; the aesthetic sounds can be improved practice after practice, 
as the objective function values can be improved iteration by iteration. 

 

Fig. 1. Structure of Harmony Memory 

Figure 1 shows the structure of the Harmony Memory (HM) that is the core part of 
the HS algorithm. Consider a jazz trio composed of saxophone, double bass, and 
guitar. There exist certain amount of preferable pitches in each musician's memory: 
saxophonist, {Do, Fa, Mi, Sol, Re}; double bassist, {Si, Do, Si, Re, Sol}; and guitar-
ist, {La, Sol, Fa, Mi, Do}. If saxophonist randomly plays Sol out of its memory {Do, 
Fa, Mi, Sol, Re}, double bassist Si out of {Si, Do, Si, Re, Sol}, and guitarist Do out of 
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{La, Sol, Fa, Mi, Do}, the new harmony (Sol, Si, Do) becomes another harmony 
(musically C-7 chord). And if this new harmony is better than existing worst harmony 
in the HM, the new harmony is included in the HM and the worst harmony is ex-
cluded from the HM. This procedure is repeated until fantastic harmony is found. 

In real optimization, each musician can be replaced with each decision variable, 
and its preferred sound pitches can be replaced with each variable's preferred values. 
Let us set that each decision variable represents pipe diameter between two nodes and 
the music pitches {Do, Re, Mi, Fa, Sol, La, Si} correspond to pipe diameters 
{100mm, 200mm, 300mm, 400mm, 500mm, 600mm, 700mm}, respectively. And if 
first variable chooses 500mm out of {100mm, 400mm, 300mm, 500mm, 200mm}, 
second one {700mm} out of {700mm, 100mm, 700mm, 200mm, 500mm}, and third 
one {100mm} out of  {600mm, 500mm, 400mm, 300mm, 100mm}, those values 
(500mm, 700mm, 100mm) make another solution vector. And if this new vector is 
better than existing worst vector in the HM, the new vector is included in the HM and 
the worst vector is excluded from the HM. This procedure is repeated until certain 
stopping criterion is satisfied. 

According to the above algorithm concept, the steps of HS for the generalized ori-
enteering problem are as follows: 

Step 1. Initialize the Parameters for Problem and Algorithm. 

Step 2. Initialize the Harmony Memory (HM). 

Step 3. Improvise a New Harmony. 

Step 4. Update the Harmony Memory. 

Step 5. Check the stopping criterion. 

2.1   Initialize Parameters 

In Step 1, the optimization problem is specified as follows: 

                                                          Minimize )(xf .         (1) 

                                      Subject to Nix ii ,...,2,1, =∈ X .         (2) 

where )(xf  is an objective function; x  is the set of each decision variable ix ; iX  is 

the set of possible range of values for each decision variable, that is, 
{ })(),...,2(),1( Kxxx iiii =X  for discrete decision variables ( ))(...)2()1( Kxxx iii <<< ; 

N  is the number of decision variables (number of music instruments); and K  is the 
number of possible values for the discrete variables (pitch range of each instrument). 

For the GOP, the objective function becomes the total score of individual goals, as 
shown in Equation 7; and each decision variable represents each city, having the 
value of next city number to move. 

The HS algorithm parameters are also specified in this step: Harmony Memory 
Size (HMS) (= number of solution vectors), Harmony Memory Considering Rate 
(HMCR), Pitch Adjusting Rate (PAR), and Stopping Criteria (= number of improvisa-
tion). Here, HMCR and PAR are the parameters of HS algorithm explained in Step 3. 
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2.2   Initialize Harmony Memory 

In Step 2, the Harmony Memory (HM) matrix, as shown in Equation 3, is filled with 
as many randomly generated solution vectors as the size of the HM (HMS). 
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2.3   Improvise New Harmony 

A new harmony vector, ),...,,( 21 Nxxx ′′′=′x  is generated by following three rules: 

HM consideration; Pitch adjustment; or totally random generation. For instance, the 
value of the first decision variable ( 1x′ ) for the new vector can be chosen from values 

stored in HM ( HMSxx 1
1
1 ~ ). Value of other variables ( ix′ ) can be chosen in the same 

style. There is also a possibility that totally random value can be chosen. HMCR pa-
rameter, which varies between 0 and 1, sets the rate whether a value stored in HM is 
chosen or a random value is chosen, as follows: 
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The HMCR is the rate of choosing one value from historical values stored in HM 
while (1-HMCR) is the rate of randomly choosing one value from the possible value 
range. 

After choosing the new harmony vector ),...,,( 21 Nxxx ′′′=′x , pitch-adjusting deci-

sion is examined for each component of the new vector. This procedure uses the PAR 
parameter to set the rate of pitch adjustment as follows: 

                         
⎩
⎨
⎧

−
←′

)1(w.p.Nothing Doing

w.p.Pitch Adjusting

PAR

PAR
xi          (5) 

In the pitch adjusting process, a value moves to its neighboring value with prob-
ability of PAR, or just stays in its original value with probability (1-PAR). If the pitch 
adjustment for ix′  is determined, its position in the value range iX  is identified in the 

form of )(kxi   (the kth element in iX ), and the pitch-adjusted value for )(kxi  be-

comes 

                                                     )( mkxx ii +←′ .          (6) 

where ...},2,1,1,2{..., −−∈m  is a neighboring index used for discrete-type decision 

variables.  
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The HMCR and PAR parameters in Harmony Search help the algorithm find glob-
ally and locally improved solution, respectively. 

2.4   Update Harmony Memory 

If the new harmony vector, ),...,,( 21 Nxxx ′′′=′x   is better than the worst harmony in 

the HM, judged in terms of the objective function value, the new harmony is included 
in the HM and the existing worst harmony is excluded from the HM. 

2.5   Check Stopping Criterion 

If the stopping criterion (maximum number of improvisations) is satisfied, computa-
tion is terminated. Otherwise, Steps 3 and 4 are repeated. 

3   Generalized Orienteering Problem 

In this study, HS is applied to generalized orienteering problem (GOP). The objective 
of GOP is to find the optimal tour under the constraint of total distance limit while 
satisfying multiple goals. 

 

Fig. 2. Map of 27 cities in eastern part of China 
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If a traveler visits eastern part of China, as shown in Figure 2, and he/she wants to 
travel as many cities as possible with the purpose of best fulfilling multiple factors such 
as 1) natural beauty, 2) historical interest, 3) cultural event, and 4) business opportuni-
ties under the limited total moving distance, his/her travel can become generalized ori-
enteering problem where each city has certain quantified scores for all factors and the 
estimation of a tour is performed based on the summation of those scores in the tour. 

The GOP is a generalization of the orienteering problem (OP) and the main differ-
ence between the two is that each city in GOP has multiple scores while each city in 
OP has only one score [14-16]. 

Table 1. Physical location and score vector for each city 

No. Name Longitude Latitude 1S  2S  3S  4S  

1 Beijing 116.40 39.91 8 10 10 7 
2 Tianjin 117.18 39.16 6 5 8 8 
3 Jinan 117.00 36.67 7 7 5 6 
4 Qingdao 120.33 36.06 7 4 5 7 
5 Shijiazhuang 114.50 38.05 5 4 5 5 
6 Taiyuan 112.58 37.87 5 6 5 5 
7 Huhehaote 111.70 40.87 6 6 5 5 
8 Zhengzhou 113.60 34.75 5 6 5 5 
9 Huangshan 118.29 29.73 9 3 2 2 

10 Nanjing 118.75 32.04 7 8 8 6 
11 Shanghai 121.45 31.22 5 4 9 9 
12 Hangzhou 120.15 30.25 9 8 7 6 
13 Nanchang 115.88 28.35 7 6 5 5 
14 Fuzhou 119.30 26.10 6 5 5 7 
15 Wuhan 114.30 30.55 6 6 8 6 
16 Changsha 113.00 28.20 6 6 6 5 
17 Guangzhou 113.15 23.15 6 6 5 10 
18 Haikou 110.35 20.02 7 3 4 8 
19 Guilin 110.29 25.28 10 4 4 4 
20 Xi’an 108.92 34.28 5 9 8 6 
21 Yinchuan 106.27 38.48 5 7 5 5 
22 Lanzhou 103.80 36.03 7 6 5 6 
23 Chengdo 104.07 30.66 6 7 6 5 
24 Guiyang 106.00 26.59 8 5 4 5 
25 Kunming 102.80 25.05 9 7 7 6 
26 Shenyang 123.40 41.80 5 8 5 6 
27 Dalian 121.60 38.92 7 5 6 7 

Let V be the set of N points and E the set of edges between points in V. G = {V, E} 
is a complete graph. Each edge in E has a symmetric, non-negative cost d(i, j) which 
becomes the distance or travel time between point i and j. Assume the starting point is 
point 1 and the end point is point N. Each point i in V has a non-negative score vector 

T
m iSiSiSiS ))(,),(),(()( 21 K= , where m is the number of individual goals, and 

)(iSg  is the score of point i with respect to goal g. 
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A differentiable objective function that defines total score of a path P, which starts 
at point 1 and ends at point N can be formulated as follows: 

                                        [ ]∑ ∑
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where gW  is the weight of goal g, and the exponent k  is set to 5 in this problem. 

Table 1 presents city data such as city number, longitude, latitude, and score vec-
tor. 1S , 2S , 3S , and 4S  are the scores approximately scaled from 1 to 10 in the as-

pects of natural beauty, historical interest, cultural event, and business opportunities, 
proposed by Wang et al. [9]. 

4   Computation and Results 

For applying HS to GOP, the values of algorithm parameters such as number of music 
instruments (= number of decision variables), number of improvisations (= number of 
function evaluations), HMCR, PAR, and HMS are specified. 

In GOP, number of music instruments (= 27) is substituted with the number of de-
cision variables that represent every city, and the value of each decision variable 
represents its next assigned city; Number of improvisations (= 50,000) stands for the 
number of maximum iterations or objective function evaluations. 

HMCR is the rate of choosing any one value from the HM, and thus (1 - HMCR) is 
the rate of choosing any value from all the possible range of each decision variable. 
For the computation, various HMCR's are used. 

PAR is originally the rate of moving to a neighboring value from one value in HM, 
but this parameter is modified for GOP. In this computation, PAR becomes the rate of 
moving to the nearest city from one city. There are total three PAR's (PAR1 = 0.35, 
PAR2 = 0.105, and PAR3 = 0.045) that are the rates of moving to nearest, second 
nearest, and third nearest cities, respectively. 

HMS is the number of harmony vectors simultaneously stored in HM. For this 
computation, various HMS's are used. 

In this computation, a tour starts from city 1, and next city is assigned based on the 
following three rules: 

Rule 1. Choose any city stored in HM as a next city with probability HMCR × (1-
PAR), where PAR = PAR1 + PAR2 + PAR3. 
Rule 2. Choose the nearest city as a next city with probability HMCR × PAR1; Or 
choose the second nearest city with probability HMCR × PAR2; Or choose the third 
nearest city with probability HMCR × PAR3. 

Rule 3. Choose next city randomly with probability (1-HMCR). 

Whenever the HS visits new city, the scores of four goals in the city are added us-
ing Equation 7 and the distance up to the city is also added using trigonometric for-
mulas on spherical surface (average earth radius, r  = 6,371 km) using Equation 8. 
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where )(⋅d  is a function calculating the distance (in kilometer) between two cities ( x  

and y ); 1a  is longitude of city x ; 1b  is latitude of city x ; 2a  is longitude of city y ; 

and 2b  is latitude of city y . 

If the total distance of a tour is over the distance limit (5,000 km in the problem), 
penalty (the absolute difference between computed distance and limit distance) is also 
taxed to the original summarized score. 

There are five different weight vectors including  0W  = (0.25, 0.25, 0.25, 0.25), 

1W  = (1, 0, 0, 0), 2W  = (0, 1, 0, 0), 3W  = (0, 0, 1, 0), and 4W  = (0, 0, 0, 1). The first 

weight gives equal weight to each of the four goals. The four other weight vectors 
stress one goal and ignore the other three. And, each weight case runs 45 times with 
different HMS's and HMCR's. 

Table 2. Comparison of GOP results from HS and ANN 

Weight Method Score Distance Tour 

HS 12.38 4993.4 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 
0W  

ANN 12.38 4993.4 1-2-3-10-11-12-9-13-17-19-16-20-6-5-1 

HS 13.08 4985.4 1-2-3-15-24-19-13-9-12-10-4-27-1 
1W  

ANN 13.05 4987.7 1-2-3-4-10-11-12-9-13-16-19-24-20-6-5-1 

HS 12.56 4910.6 1-26-27-4-10-12-9-13-16-15-20-8-3-2-1 
2W  

ANN 12.51 4875.1 1-2-26-27-3-10-11-12-9-13-15-20-6-5-1 

HS 12.78 4987.5 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 
3W  

ANN 12.78 4987.5 1-2-3-5-6-20-8-15-16-13-9-12-11-10-4-27-1 

HS 12.40 4845.2 1-2-27-4-10-11-12-14-17-16-15-3-1 
4W  

ANN 12.36 4989.8 1-2-3-10-9-13-16-17-14-12-11-4-27-1 
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Table 2 represents the best tours in five different weight vector cases and compares 
them with the tours obtained using artificial neural network (ANN) approach [9]. 
Compared to the results of ANN, HS could find better score solutions in cases of 1W , 

2W , and 4W  while find same score solutions in cases of 0W  and 3W : With the 

weight vector 0W , HS found 12.38 as the best score with the score range between 

11.95 ~ 12.38; with the weight vector 1W , HS found 13.08 as the best score with the 

score range between 12.58 ~ 13.08; with the weight vector 2W , HS found 12.56 as 

the best score with the score range between 12.34 ~ 12.56; with the weight vector 

3W , HS found 12.78 as the best score with the score range between 12.50 ~ 12.78; 

with the weight vector 4W , HS found 12.40 as the best score with the score range 

between 12.14 ~ 12.40. 

5   Conclusions 

In this study, a recently-developed nature-inspired algorithm, HS, has been introduced 
and applied to an NP-hard GOP whose objective is to find the best tour in eastern part 
of China. The algorithm, HS, mimics three major behaviors of music players: 1) 
memory consideration; 2) pitch adjustment; and 3) random choice. These behaviors 
can be successfully translated in GOP: ‘memory consideration’ becomes that HS 
chooses any one city from the cities stored in HM; ‘pitch adjustment’ is that HS 
chooses the nearest city as next city; and ‘random choice’ is that HS chooses any one 
city from all the possible cities. 

After applied to GOP, HS could find equal or better solutions when compared with 
those of ANN. In order for HS to obtain better results in GOP in the future, some 
additional operators especially for GOP might be implemented along with existing 
memory consideration and pitch adjustment operators. Also, it is expected that HS, as 
a nature-inspired algorithm, can be applied to other optimization problems in various 
fields. 
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