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�e Harmony Search (HS) method is an emerging metaheuristic optimization algorithm, which has been employed to cope with
numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are
	rst described and reviewed. Several typical variants of the original HS are next brie
y explained. As an example of case study, a
modi	ed HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a
practical wind generator optimal design problem.

1. Introduction

Firstly proposed by Geem et al. in 2001 [1], the Harmony
Search (HS) method is inspired by the underlying principles
of the musicians’ improvisation of the harmony. �e HS has
the distinguishing features of algorithm simplicity and search
e�ciency. During the recent years, it has been successfully
used in areas such as function optimization [2], mechanical
structure design [3], pipe network optimization [4], and
optimization of data classi	cation systems [5]. In this paper,
we 	rst introduce the underlying inspiration and principles
of the basic HS method in Section 2. Some representative
modi	ed HS algorithms are next explained in Section 3.
�e applications of the HS in various real-world areas are
surveyed and reviewed in the following section. In Section 4,
to demonstrate an illustrative example, we present and
discuss a new HS method for the constrained optimization
with application in the wind generator design. Finally, in
Section 5, the paper is concluded with some remarks and
conclusions.

2. Harmony Search Method

As we know, when musicians compose the harmony, they
usually try various possible combinations of themusic pitches

stored in their memory. �is search for the perfect harmony
is indeed analogous to the procedure of 	nding the optimal
solutions to engineering problems.�eHSmethod is actually
inspired by the working principles of the harmony impro-
visation [1]. Figure 1 shows the 
owchart of the basic HS
method, in which there are four principal steps involved.�e
pseudocode of the HS is given in Algorithm 1.

Step 1. Initialize the HS Memory (HM). �e initial HM
consists of a certain number of randomly generated solutions
to the optimization problems under consideration. For an�-dimension problem, an HM with the size of � can be
represented as follows:

HM =
[[[[[[[
[

�11, �12, . . . , �1�
�21, �22, . . . , �2�...

�HMS
1 , �HMS

2 , . . . , �HMS
�

]]]]]]]
]
, (1)

where [��1, ��2, . . . , ���] (� = 1, 2, . . . ,HMS) is a solution candi-
date. HMS is typically set to be between 50 and 100.

Step 2. Improvise a new solution [��1, ��2, . . . , ���] from the

HM. Each component of this solution, ���, is obtained based
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Figure 1: Harmony Search (HS) method.

on the Harmony Memory Considering Rate (HMCR). �e
HMCR is de	ned as the probability of selecting a component
from the HM members, and 1-HMCR is, therefore, the
probability of generating it randomly. If ��� comes from the

HM, it is chosen from the �th dimension of a random HM
member and is further mutated according to the Pitching
Adjust Rate (PAR). �e PAR determines the probability of
a candidate from the HM to be mutated. As we can see,
the improvisation of [��1, ��2, . . . , ���] is rather similar to the
production of o�spring in the Genetic Algorithms (GAs) [6]
with the mutation and crossover operations. However, the
GA creates new chromosomes using only one (mutation) or
two (simple crossover) existing ones, while the generation of
new solutions in the HS method makes full use of all the HM
members.

Step 3. Update the HM. �e new solution from Step 2 is
evaluated. If it yields a better 	tness than that of the worst
member in the HM, it will replace that one. Otherwise, it is
eliminated.

Step 4. Repeat Step 2 to Step 3 until a preset termination
criterion, for example, the maximal number of iterations, is
met.

Similar to the GA and swarm intelligence algorithms [7],
the HS method is a random search technique. It does not
require any prior domain knowledge, such as the gradient
information of the objective functions. However, di�erent
from those population-based approaches, it only utilizes a
single search memory to evolve. �erefore, the HS method
has the distinguishing feature of computational simplicity.

3. Variants of HS Method

A lot of modi	ed HS algorithms have been studied in the
past decade so as to enhance the performances of the original
version. As a matter of fact, a special discrete variation of
the HS is proposed by Geem on the basis of introducing the
stochastic derivatives for the discrete variables involved [8].
�e stochastic derivatives give the selection probabilities of
certain discrete variables during the evolution procedure of
the HS. It is e�cient at manipulating discrete optimization
problems and has been employed in the optimal design of

uid-transport networks. Omran and Mahdavi embed the
ideas borrowed from swarm intelligence into the regular
HS and develop a new variant: global-best HS (GHS) [9].
In the GHS, the adjustment of new solutions improvised
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/∗ HM initialization ∗/
for (� = 1; � ≤ HMS; �++)

for (� = 1; � ≤ �; �++)
Randomly initialize ��� in HM.

endfor

endfor

/∗ End of HM initialization ∗/
Repeat

/∗ Construction and evaluation of new solution candidate x ∗/
for (� = 1; � ≤ �; �++)
if (rand(0, 1) <HMCR)
Let �� in x be the jth dimension of a randomly selected HMmember.

if (rand(0, 1) < PAR)
Apply pitch adjustment distance bw to mutate ��:�� = �� ± rand(0, 1) × bw.

endif

else

Let �� in x be a random value.

endif

endfor

Evaluate the 	tness of x: �(x).
/∗ End of construction and evaluation of new solution candidate x ∗/
/∗ HM update ∗/
if (�(x) is better than the 	tness of the worst HMmember)

Replace the worst HMmember with x.
else

Disregard x.
endif

/∗ End of HM update ∗/
Until a preset termination criterion is met.

Algorithm 1: Pseudocode of HS method.

is only based on the best harmony selected from the HM
without the involvement of the distance bandwidth (bw).
�is interesting approach adds the unique social learning
capability to the GHS. �e investigation experiments of
ten benchmark functions prove that the GHS can generally
outperform the original HS. Inspired by the local versions
of the Particle-Swarm Optimization (PSO) [10] and GHS,
Pan et al. propose a local-best variant of the HS method
with dynamic subpopulation: DLHS [11]. In the DLHS, the
whole HM is divided into multiple sub-HMs, each of which
can evolve independently. However, these sub-HMs will
form the HM again a�er searching for the optimal solutions
in their own regions. With this subpopulation policy and
a simple local search strategy, the DLHS is capable of
achieving a satisfactory compromise between the exploration
and exploitation in search. It has been successfully applied
to attack the di�cult lot-streaming 
ow shop scheduling
problem. Inspired by the GHS and DLHS, Geem further
develops the Particle-Swarm Harmony Search (PSHS) [12],
which has been validated to be better than the original HS
algorithm for small-size problems but worse in case of large-
scale one. A few novel HSmethods have also been introduced
by the authors of the present paper [13–17].

�e parameters of HMCR and PAR usually play a
critical role in the optimization performance of the HS

method. Unfortunately, properly choosing the appropriate
values for them is always a challenging topic. Mahdavi
et al. study an adaptive strategy for adjusting PAR and bw
in the Improved HS (IHS) algorithm [18]. �e values of
PAR and bw dynamically increase and decrease with the
growth of HS iterations, respectively, so as to enhance the
performance of the IHS. �e IHS has been demonstrated to
achieve comparable performances with other evolutionary
and mathematical programming techniques in dealing with
several test problems in terms of both the number of the
	tness function evaluations required and the quality of the
solutions found. Unfortunately, the lower and upper limits
for the update of PAR and bw are o�en case dependent
and are therefore di�cult to determine. In [19], another
adaptive HS method is proposed and explored. It takes
advantage of two varying control parameters, � and �, to
generate new harmony vectors. Both of these parameters are
selected from the average values that are observed within the
current harmony memory matrix using a given probability
density function. �is adaptive HS algorithm has found
great successes in handling large steel structure optimization
problems. Wang and Huang propose a new self-adaptive HS
technique in [20]. �eir almost parameter-free HS uses the
information stored in the HM (self-consciousness), that is,
the minimum and maximum of the present HM members,
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to automatically control the pitch adjustment step. �e low-
discrepancy sequences are also utilized to initialize the HM.
It has been compared with the aforementioned IHS and GHS
and can o�er superior performances on four optimization
problems tested. Geem and Sim introduce the Parameter-
Setting-Free (PSF) technique to eliminate the common di�-
culty of selecting suitable HS parameters [21]. �e developed
PSF-HS has a new operation step, namely, rehearsal, in which
certain numbers of new solutions are generated with the
initial HMCR and PAR. �e adaptive HMCR and PAR are
then calculated based on the rehearsal results evaluated.
�e PSF-HS has been shown to be more robust than the
original HS method, although its computational complexity
is moderately high. �e authors of the present paper also
study a fusion of the HS and Cultural Algorithm (CA),
HS-CA, in which the search knowledge stored in the CA
is utilized to guide the mutation direction and size of the
HS. �is HS-CA is further used to e�ectively cope with
an optimal wind generator design problem [15]. In [16], a
hybrid HSmethod inspired by the opposition-based learning
is proposed by the same authors. �e HS method is merged
with the Population-Based Incremental Learning (PBIL) for
the optimal design of electrical machines in [17].

�eoretical research on theworking principles and search
mechanism of the HS method has been reported in the
recent literature, which can provide a useful guideline for
users to design this algorithm in practice. Das et al. discuss
the exploratory power of the HS by analyzing the evolution
of the population variance over successive generations of
the HM [22]. Based on their analysis work, they further
propose a modi	ed HS algorithm, Exploratory HS (EHS), in
which bw for the pitch adjustment is set to be proportional
to the standard deviation of the HM population. In the
simulation study, the EHS can not only outperform three
existing HS variants, IHS, GHS, and MHS [23], over all the
test functions, but also yield better or at least comparable
results when compared with a few state-of-the-art swarm
intelligence techniques. Unfortunately, how to choose the
optimal proportional gain � for bw in the EHS is still an open
issue.

4. Applications of HS Method

In the real world, modern science and industry are indeed
rich in the problems of optimization. Since the HS has
been originally proposed by Geem and applied to solve the
optimization problemofwater distribution networks in 2000,
the applications of the HS have covered numerous areas
including industry, optimization benchmarks, power sys-
tems, medical science, control systems, construction design,
and information technology [24].

4.1. Optimization Benchmarks. Optimization benchmarks
for the hybridization of theHSmethodwith other approaches
are one principal application area. Di�erent variants based
on the HS have demonstrated their improvement and e�-
ciency through various benchmark functions. Combined

with semantic genetic operators, a Geometric Selective Har-
mony Search (GSHS) method was proposed by Castelli et
al. with three main di�erences from the original HS: (1) the
memory consideration process involves the presence of a
selection procedure, (2) the algorithm integrates a particular
recombination operator that combines the information of
two harmonies, and (3) the algorithm utilizes a mutation
operation that uses the PAR parameter. �erefore, geometric
semantic crossover produces o�spring that is not worse than
the worst of its parents, and geometric semantic mutation
causes a perturbation on the semantics of solutions, whose
magnitude is controlled by a parameter. Five di�erent HS
algorithms have been compared using 20 benchmark prob-
lems, and the GSHS outperforms the others with statistically
signi	cant enhancement in almost all the cases [25].

4.2. Industry. Industry is a prominent area full of various
multimodal, constrained, nonlinear, and dynamical opti-
mization problems. �e HS algorithm proposed by Saka
[26] determines the optimal steel section designations from
the available British steel section table and implements the
design constraints from BS5950. Recently, an Enhanced
Harmony Search (EHS) in [27] is developed enabling the
HS algorithm to quickly escape from local optima. �e
proposed EHS algorithm is utilized to solve four classical
weight minimization problems of steel frames including two-
bay, three-storey planar frame subject to a single-load case,
one-bay, ten-storey planar frame consisting of 30 members,
three-bay, twenty-four-storey planar frame, and spatial 744-
member steel frame. In [28], the HS is used to select the
optimal parameters in the tuned mass dampers. Fesanghary
et al. propose a hybrid optimization method based on the
global sensitivity analysis and HS for the optimal design of
shell and tube heat exchangers [29].

4.3. Power Systems. �ere is a lot of work focused on the
optimization issues concerning power systems, such as cost
minimization. A modi	ed HS algorithm is proposed to
handle nonconvex economic load dispatch of real-world
power systems. �e economic load dispatch and combined
economic and emission load dispatch problems can be
converted into the minimization of the cost function [30].
Sinsuphan et al. combine the HS with sequential quadratic
programming and GA to solve the optimal power 
ow
problems. �e objective function to be optimized is the total
generator fuel costs in the entire system [31]. �e chaotic
self-adaptive di�erential HS algorithm, proposed by Arul et
al., is employed to deal with the dynamic economic dispatch
problem [32].

4.4. Signal and Image Processing. Li and Duan modify the
HS by adding a Gaussian factor to adjust the bw. With this
modi	ed HS, they develop a pretraining process to select the
weights used in the combining of feature maps to make the
target more conspicuous in the saliency map [33]. In their
method based on the HS, Fourie et al. design a harmony 	lter
using the Improved HS algorithm for a robust visual tracking
system [34].
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4.5. Others. In addition to the aforementioned applications,
the HS has also been widely employed in a large variety
of 	elds, including transportation, manufacturing, robotics,
control, and medical science [24]. Xu et al. explore the
applications of the HS in the prototype optimization and
selection of the recon	gurable mobile robots in the sandy
terrain [35, 36]. Many tra�c modeling so�ware packages
are capable of 	nding the optimal or near-optimal signal
timings using di�erent optimization algorithms. For exam-
ple, Ceylan proposes a modi	ed HS with embedded hill
climbing algorithm for further tuning the solutions in the
stochastic equilibrium network design [37].�emodi	ed HS
algorithm is also used in parameter identi	cation of the solar
cell mathematical models [38]. Miguel et al. employ the HS
method in damage detection under the ambient vibration
[39].

5. A Modified HS Method for Constrained
Optimization: A Case Study

5.1. ConstrainedOptimization Problems. Most of the practical
optimization problems are indeed constrained optimization
problems, whose goal is to 	nd the optimal solution that
satis	es a set of given constraints. In general, a constrained
optimization problem is described as follows.

Find �⃗ = (�1, �2, . . . , ��) to minimize �(�⃗), subject to��(�⃗) ≤ 0, � = 1, 2, . . . ,�, and ℎ�(�⃗) = 0, � = 1, 2, . . . , �,

where �(�⃗) is the objective function and ��(�⃗) and ℎ�(�⃗) are
the inequality and equality constraint functions, respectively.
As a matter of fact, the equality constraint functions can be
transformed into the inequality constraint functions:

�����ℎ� (�⃗)����� − � ≤ 0, (2)

where � is a small enough tolerance parameter. �erefore, we
only consider the inequality constraint functions ��(�⃗) ≤ 0,� = 1, 2, . . . ,�, here.

�e constrained optimization problems are generally
di�cult to deal with, because the constraint functions can
divide the whole search space into some disjoint islands.
Numerous constraint-handling techniques have been pro-
posed and investigated during the past decades [40–44].
One popular solution is to de	ne a new 	tness function�(�⃗) to be optimized [41]. �(�⃗) is the combination of the
objective function �(�⃗) and weighted penalty terms ��(�⃗),� = 1, 2, . . . ,�, which re
ect the violation of the constraint
functions:

� (�⃗) = � (�⃗) + �∑
�=1
���� (�⃗) , (3)

where �� (� = 1, 2, . . . ,�) are the preset weights. �e
overall optimization performance depends on the penalty
terms and their weights and may signi	cantly deteriorate
with inappropriately chosen ones. Unfortunately, there is no
analytic way yet to 	nd the best ��(�⃗) and ��. In this section,
on the basis of the Pareto-dominance, we present a modi	ed
HS method for the direct handling of these constraints.

New HM

members

Satisfy all
constraints?

No

Yes

Figure 2: Generation of newHMmembers satisfying constraints in
HS method.

5.2. A Modi
ed HS Method for Constrained Optimization.
It is well known that the regular HS method is not e�-
cient in attacking the constrained optimization problems.
As aforementioned, the HM only stores the feasible solution
candidates. �e new HMmembers are generated either from
the existing HMmembers or in a random way. Nevertheless,
they are not guaranteed to always meet all the constraints.
Figure 2 shows that, in theHSmethod, the newHMmembers
satisfying the constraints can be obtained based on only trial
and error, which may lead to a time consuming procedure,
especially in case of complex constraint functions.

In our modi	ed HS method [14], we make full use of
those HM members that do not even meet the constraints.
�e key issue is how to rank the HM members according
to their objective as well as constraint function values. Here,
the values of the constraint functions of all the HMmembers
are stored together with their objective function values in the
HM. �e HM members are divided into two di�erent parts:
feasible members and infeasible members, as illustrated in
Figure 3.�e former satisfy all the constraint functions, while
the latter do not. �us, the ranking of the HM members is
separated into two consecutive stages: ranking of the feasible
HMmembers and ranking of the infeasible ones.�e ranking
of the feasible HM members is straightforward: they can
be sorted using their objective function values. However,
for the infeasible ones, the ranking is based on the Pareto-
dominance of these HM members [42]. An infeasible HM
member dominates another, if none of its constraint function
values is larger and at least one is smaller. Formally, the
Pareto-dominance is de	ned as follows. Suppose there are
two infeasible HMmembers, �⃗1 and �⃗2. If

∀� ∈ {1, 2, . . . ,�} : �� (�⃗1) ≤ �� (�⃗2)
∧ ∃� ∈ {1, 2, . . . ,�} : �� (�⃗1) < �� (�⃗2) ,

(4)
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Figure 3: Harmony memory with feasible and infeasible members.

we conclude that �⃗1 dominates �⃗2. For each infeasible HM
member, we can calculate the number of the others that
dominate it, which implies its relative degree of violation of
the constraint functions.�at is, the rank of an infeasible HM
member is determined by the number of other infeasible HM
members by which it is dominated.

A�er the HM has been ranked, the worst HM member�⃗# can be selected and compared with the new solution
candidate �⃗∗. Note that �⃗∗ does not need to be feasible.When�⃗# is compared with �⃗∗, �⃗∗ will replace �⃗# only in one of the
following three cases:

(1) �⃗∗ is feasible, and �⃗# is infeasible,
(2) both �⃗∗ and �⃗# are feasible, and �(�⃗∗) < �(�⃗#),
(3) both �⃗∗ and �⃗# are infeasible, and �⃗∗ dominates �⃗#.

More precisely, �⃗∗ replaces �⃗# on the condition that

{{{{{{{{{

∀� ∈ {1, 2, . . . ,�} : �� (�⃗∗) ≤ 0
∧

∃� ∈ {1, 2, . . . ,�} : �� (�⃗#) > 0
∨

{{{{{{{{{{{{{{{{{{{{{

∀� ∈ {1, 2, . . . ,�} : �� (�⃗∗) ≤ 0
∧

∀� ∈ {1, 2, . . . ,�} : �� (�⃗#) ≤ 0
∧

� (�⃗∗) < � (�⃗#)
∨

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

∃� ∈ {1, 2, . . . ,�} : �� (�⃗∗) > 0
∧

∃� ∈ {1, 2, . . . ,�} : �� (�⃗#) > 0
∧

∀� ∈ {1, 2, . . . ,�} : �� (�⃗∗) ≤ �� (�⃗#)
∧

∃� ∈ {1, 2, . . . ,�} : �� (�⃗∗) < �� (�⃗#) .

(5)

Figure 4 illustrates this procedure of comparison between �⃗#
and �⃗∗, replacement of �⃗# with �⃗∗, and elimination of �⃗∗.

It is observed from the above descriptions that the
infeasible HM members violating the given constraints can
also evolve in the modi	ed HS method. In other words, we
do not have to always search for new feasible HM members
by repeatedly examining them with the constraint functions,
as in Figure 2. Compared with the original HS method,
our approach needs only a considerably smaller number
of constraint function evaluations and, thus, has a lower
computational complexity.

5.3. Wind Generator Design. In this section, we investigate
the constrained optimization e�ectiveness of themodi	edHS
method using a real-world design problem. Wind generator
design has been an important but di�cult topic in the
modern electrical machinery industry. �e wind generator
shown in Figure 5 is a radial 
ux type permanent magnet
generator, in which the NdFeBmagnets are surface-mounted
[45].�e remanence 
ux density of the magnets is 1.05 T, and
coercivity 800 kA/m.�e stator winding is a three-phase two-
layer full-pitch diamondwinding.�enumber of the slots per
pole and phase is 2. �e stator slot and constant dimensions
of the slot are illustrated in Figure 6.�e iron core consists of
55mm long subcores, between which there are radial 6mm
wide ventilation ducts. �e length of the subcore is constant,
and the number of the ventilation ducts is a decimal fraction
in the calculations. �e stator frame, bearing shields, and
rotor steel body are all 20mm thick. In the rotor body disc,
there are holes, and around 50% of the disc is iron and 50%
holes. �e iron loss factor is -15 = 6.6W/kg with 50Hz and
1.5 T, and the air-gap length is 5mm. �e rated values of this
practical wind generator are given in Table 1.

�e detailed design principles of the above wind genera-
tor are explained in [45].�e objective function�(x) (in C) to
be minimized is the sum of the material costs and capitalized
costs of the total losses of this generator:

� (x) = �Fe/Fe + �Cu/Cu + �PM/PM

+ �Fef/Frame + �Loss�tot,
(6)

where/Fe,/Cu,/PM, and/Frame are the masses of the stator
iron core, stator winding, permanent magnets, and stator
frame and rotor body, respectively, �Fe, �Cu, �PM, and �Fef the
unit prices of the stator core, copper, permanentmagnets, and
stator frame and rotor body, respectively, and �Loss capitalized
costs of the losses (Table 2). More details of the calculation of
(6) can be found in [45]. �e cost of the stator core actually
includes the punching, waste parts of the sheet, and assembly
of the stator core. �e manufacturing cost of the winding is
taken into account in the copper cost.�e permanentmagnet
cost includes the corrosion protection, assembly into bigger
cassettes, andmagnetization of themagnets.�e stator frame
and rotor body costs consist of the material cost and cost of
manufacturing the frame and body.
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Figure 5: Cross section and dimensions of permanent magnet generator.

�estator resistive losses are calculated at the temperature
of 100∘C, and the iron losses in the stator teeth are

�Fed = 2 ⋅ -15 ( 5	1.5T)
2 ( �

50Hz
)1.5/	, (7)

where-15 is the iron loss factor,5	 themaximum
ux density
in the teeth, � the frequency, and /	 the mass of the stator
teeth. �e iron losses in the stator yoke are

�Fey = 1.5 ⋅ -15 ( 5

1.5T)

2 ( �
50Hz

)1.5/
, (8)

where 5
 is the maximum 
ux density in the yoke and /

the mass of the yoke. �e losses in the permanent magnets
are assumed to be 1% of the rated power, that is, 30 kW. �e
additional losses are assumed to be 3%of the rated power, that
is, 90 kW.�e friction and ventilation losses are

�� = 10 ⋅ ?� (@ + 0.6 ⋅ A) (B�?�)2 [W] , (9)

where?� is the outer rotor diameter, A the pole pitch, and �
the rotational speed of the rotor. Table 3 gives the nine design
parameters to be optimized and their valid ranges.

Like most of the practical design problems, the design
variables of this wind generator are also subject to constraints.
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Slot wedge
(nonmagnetic)

h1 = 6.5mm

Copper wires

Insulation

Coils

Clearance between slot and coil

between slot and coil)

b4

hslot

h� = 3mm (insulation between coils)

h6 = 1.4mm (insulation + clearance

Figure 6: Slot form and constant dimensions of slot.

Table 1: Rate values of wind generator.

Power 3MW

Voltage 690V

Connection Star

Speed 16.98 rpm

Number of phases 3

A total of 	ve given constraints are provided in Table 4. It
can be observed that among them there are one constraint on
the stator tooth width, three constraints on the 
ux density
of stator and rotor yoke and stator tooth, and one constraint
on the output power of the wind generator. �erefore,
these constraints must be satis	ed by the optimized design
variables.

5.4. Modi
ed HS Method-Based Optimal Design of Wind
Generator. Both the original and our modi	ed HS methods
are applied to attack the above demanding wind generator

Table 2: Unit prices of materials and capitalized loss costs.

Electrical steel, �Fe 4C/kg

Copper, �Cu 12C/kg

NdFeB magnets, �PM 60C/kg

Stator frame and rotor steel body, �Fef 2C/kg

Losses, �Loss 2C/W

optimal design problem with constraints. �e optimization
coe�cients used are chosen as follows: HMCR = 0.8 and
PAR = 0.75. To assess the constrained optimization capa-
bilities of these two HS methods, the Number of Constraint
Evaluations (NCEs) is used as the performance criterion here.
In other words, the smaller the NCEs are, the more e�cient
the optimization method is. �e evolution procedures of the
two HS methods are terminated, when a preset optimization
design goal is met, and the NCEs used are compared with
each other. In our simulations, there are six optimization
goals, that is, 6.65 × 105, 6.625 × 105, 6.6 × 105, 6.575 × 105,
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Table 3: Wind generator design parameters with ranges.

Parameters Symbols Ranges

Stator core length including ventilation
ducts

@ 0.3–3.0m

Stator yoke height ℎys 0.01–0.5m

Stator outer diameter ?se 3.0–8.0m

Stator slot height ℎslot 0.07–0.3m

Maximum 
ux density in air gap 5
max

0.4–0.9 T

Number of e�ective conductors in stator
slot

E� 8–26

Rotor yoke height ℎyr 0.01–0.5m

Number of poles pairs - 20–80

Stator slot width F4 0.007–0.04m

Table 4: Wind generator optimization constraints.

Stator tooth width >8mm

Stator yoke 
ux density <2.2 T
Rotor yoke 
ux density <2.2 T
Stator tooth 
ux density <2.2 T
Maximum output power >4.8MW

Table 5: NCEs used by two HSmethods for achieving optimization
goals.

Optimization
goals

HS Modi	ed HS
Improvement
percentages

6.65 × 105 1.8874 × 104 1.2193 × 104 35.40%

6.625 × 105 2.4925 × 104 1.5694 × 104 37.04%

6.6 × 105 3.2848 × 104 1.8874 × 104 42.54%

6.575 × 105 4.2013 × 104 2.3214 × 104 44.75%

6.55 × 105 6.0106 × 104 2.9916 × 104 50.23%

6.625 × 105 8.8975 × 104 4.0342 × 104 54.66%

6.55× 105, and 6.625× 105. A�er a total of 1,000 independent
trials have been run, the average NCEs used by the original
and modi	ed HS methods are given in Table 5. Apparently,
the modi	ed HSmethod uses less NCEs than the original HS
for reaching the same optimal design goals. �at is to say,
the former is more e�cient than the latter in coping with
the given constraints in this optimal wind generator design
problem. It is also worth noting that the improvement of the
NCEs usage grows with the increase of the optimization goal.

6. Conclusions

In this paper, we provide an overview of the theory and
applications of the HS method. �e fundamentals of the HS
are 	rst introduced. Next, both the basic HS algorithm and
some typical variants are discussed in detail.�e applications
of the HS method in a few applications areas, such as
optimization, power systems, signal processing, and robotics,
are also presented. Furthermore, as a case study example, a
modi	ed HS proposed by the authors for coping with the
constrained optimization problems is demonstrated. Based

on the Pareto-dominance ranking of the HM members,
the given constraints can be directly handled in this new
HS method. A real-world optimal wind generator design
problem has been employed to verify its e�ectiveness.
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