
Harnack inequalities for jump processes

Richard F. Bass 1 and David A. Levin

Department of Mathematics
University of Connecticut
Storrs, CT 06269, U.S.A.

Abstract. We consider a class of pure jump Markov processes in Rd whose jump kernels
are comparable to those of symmetric stable processes. We establish a Harnack inequality
for nonnegative functions that are harmonic with respect to these processes. We also
establish regularity for the solutions to certain integral equations.

Keywords. Harnack inequality, jump processes, stable processes, Lévy systems, integral
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1. Introduction.
In this paper we consider pure jump Markov processes in Rd whose jump structure

is comparable to that of symmetric stable processes. Our two main goals are
(1) to establish a Harnack inequality for nonnegative functions that are harmonic with

respect to these processes.
(2) to establish regularity for certain integral equations.

Before explaining (1) and (2) in more detail, let us describe the processes we con-
sider. We are interested in pure jump processes that are generalizations of symmetric
stable processes. A symmetric stable process Zt of index α is a Lévy process with no drift,
symmetric jump kernel, and no diffusion component, so that

E eiu·Zt = exp
(
t

∫
[eiu·h − 1− iu · h1(|h|≤1)]n(dh)

)
, (1.1)

with Lévy measure n(dh) = c|h|−d−αdh for some constant c. Since n is symmetric,
n(−A) = n(A) for any set A, and one could omit the term involving iu · h inside the
brackets in (1.1). The infinitesimal generator for Zt is given by

L0f(x) =
∫
Rd−{0}

[f(x + h)− f(x) −∇f(x) · h1(|h|≤1)]n(dh)

for suitable functions f .
The infinitesimal behavior of a Lévy process such as Zt is homogeneous in space: n

does not depend on x. In this paper we want to consider pure jump processes in Rd where
the jump structure n does depend on x, but is not too different from that of a symmetric
stable process. More precisely, we want to consider processes Xt associated to the operator

Lf(x) =
∫
Rd−{0}

[f(x + h)− f(x) −∇f(x) · h1(|h|≤1)]
a(x, h)
|h|d+α

, (1.2)

where a(x,−h) = a(x, h) and a is uniformly bounded above and below away from 0. The
number of jumps of size h of such a process will be comparable to the number of those of
a symmetric stable process of index α.

We say that a bounded function h : Rd → R is L-harmonic in a domain D if h(Xt)
is a martingale up until the time of first exiting the domain. It is easy to see that if h

has some smoothness properties and Lh = 0 in D, then h will be L-harmonic. A Harnack
inequality says that h(x)/h(y) is bounded by a constant independent of h if x, y are in D

and h is nonnegative and bounded in Rd and L-harmonic in D. See Theorem 3.6 for a
precise statement.

Harnack inequalities such as that of Moser for divergence form elliptic operators and
that of Krylov-Safonov for nondivergence form operators are an extremely important tool in
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the study of partial differential equations. All existing proofs of these Harnack inequalities
use the fact that the operator is local in an essential way. One of our interests in the
problem of proving a Harnack inequality for the pure jump case is that the infinitesimal
generator is non-local; instead of a differential operator, we have an integral one.

One important application of Harnack inequalities is to establish regularity for the
solutions of elliptic PDEs. The techniques that we develop in this paper allow us to obtain
regularity for certain integral operators. Consider the equation

Lu(x)− λu(x) = −g(x), x ∈ Rd, λ ≥ 0,

where L is given by (1.2). It is well known that the solution to this equation is given by
the λ-resolvent of g:

u(x) = Sλg(x) = E x
∫ ∞

0

e−λtg(Xt)dt.

Theorem 4.3 enables us to say that u must be Hölder continuous.
Harnack inequalities are implicit in the work of Chen and Song [CS] for the case of

symmetric stable processes. In [BBG] a Liouville property, which is closely related to a
Harnack inequality, was proved. In fact, that paper stimulated our interest in this project.
It should be mentioned that local regularity-improving Lp estimates for L-harmonic func-
tions for certain non-local operators had been obtained in [T]. For very recent related work
on Harnack inequalities see [Ka].

We have not been precise as to what it means for an operator L to be associated
to the process Xt. A natural connection is through the martingale problem formulation.
See (2.1) for the definition. Martingale problems for jump processes such as the ones
considered here have been studied by [Ba], [K], and especially [H].

Section 2 contains some preliminaries. Section 3 contains the proof of the Harnack
inequality, and the regularity is considered in Section 4.

2. Preliminaries.
Let us begin by describing more carefully the processes we wish to consider. A

probability measure P on the space D[0,∞) is a solution to the martingale problem for L
started at x if Xt(ω) = ω(t) are the coordinate maps, Ft is the σ-field generated by the
cylindrical sets, and

(a) we have P(X0 = x) = 1, and
(b) for each f ∈ C2 such that f and all its first and second partial derivatives are

bounded we have that

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds (2.1)
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is a P-martingale,
where

Lf(x) =
∫
Rd−{0}

[f(x + h)− f(x) −∇f(x) · h1(|h|≤1)]n(x, h)dh. (2.2)

The symmetry assumption we will impose on n will make the presence of the ∇f term
have no effect; moreover we could replace the 1(|h|≤1) term by 1(|h|≤M) with any M > 0
whatsoever.

We assume that (Px,Xt) is a strong Markov process with state space Rd such that
for each x the probability measure Px is a solution to the martingale problem for L started
at x.

Throughout this paper we make the following assumption.

Assumption 2.1. (a) For all x and h we have n(x,−h) = n(x, h).
(b) There exist constants κ ∈ (0, 1) and α ∈ (0, 2) such that for all x and h we have

κ

|h|d+α
≤ n(x, h) ≤ κ−1

|h|d+α
. (2.3)

We assume in Section 3 that such a process is given, but we comment that with the
assumption of some smoothness in x for n(x, h), we have the existence of such processes
by the results of [Ba] or [K].

The proof of the following scaling property is an easy change of variables argument.

Proposition 2.2. Suppose (Px,Xt) is as above, a > 0, and Yt = aXa−αt. Define Qx =
Px/a. Then (Qx, Yt) is a strong Markov process. We have Qx(Y0 = x) = 1 and if f ∈ C2,

then f(Yt)− f(Y0)−
∫ t

0 L̃f(Ys)ds is a Qx-martingale, where L̃f(x) =
∫

[f(x + h)− f(x)−
∇f(x) · h1(|h|≤1)]ñ(x, h)dh and ñ satisfies (2.3) with the same values of κ and α.

Proof. Because (Px,Xt) is strong Markov and Yt is a constant multiple of a time change
of Xt, then (Qx, Yt) is strong Markov. That Qx(Y0 = 1) = 1 is clear. Let

ñ(y, k) = a−(d+α)n(a−1y, a−1k), L̃f(y) =
∫
Rd−{0}

[f(y + k)− f(y)]ñ(y, k)dk.

Clearly ñ satisfies (2.3) with the same values of κ and α. Let f ∈ C2 and set g(x) = f(ax).
Then

g(Xa−αt)− g(X0)−
∫ a−αt

0

Lg(Xs)ds

is a martingale, hence so is

g(Xa−αt)− g(X0)−
∫ t

0

a−αLg(Xa−αs)ds.
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Consequently

f(Yt)− f(Y0)−
∫ t

0

a−αLg(a−1Ys)ds

is also a martingale.
It remains to check that a−αLg(a−1y) = L̃f(y). This follows because

a−αLg(a−1y) = a−α
∫

[g(a−1y + k)− g(a−1y)]n(a−1y, k)dk

= a−α
∫

[f(y + ak)− f(y)]n(a−1y, k)dk

= ad
∫

[f(y + ak)− f(y)]ñ(y, ak)dk

=
∫

[f(y + h)− f(y)]ñ(y, h)dh

= L̃f(y).

We will also need the following fact.

Proposition 2.3. Suppose A and B are Borel sets that are a positive distance from each

other. Then ∑
s≤t

1(Xs−∈A,Xs∈B) −
∫ t

0

1A(Xs)
∫
B

n(Xs, u−Xs)du ds

is a Px-martingale for each x.

Proof. Let f ∈ C2 with f = 0 on A and f = 1 on B. Let Mf
t denote the martingale in

(2.1). Then
∫ t

0
1A(Xs−)dMf

t is also a martingale under Px, since the stochastic integral
with respect to a martingale is a martingale. Since f(Xt)−f(X0) =

∑
s≤t[f(Xs)−f(Xs−)],

this says that ∑
s≤t

[1A(Xs−)(f(Xs)− f(Xs−))] −
∫ t

0

1A(Xs−)Lf(Xs)ds

is a martingale. Since Xs− 6= Xs for only countably many values of s, then

∑
s≤t

[1A(Xs−)(f(Xs)− f(Xs−))]−
∫ t

0

1A(Xs)Lf(Xs)ds (2.4)

is also a martingale. Now if x ∈ A, then f(x) and ∇f(x) are both equal to 0, and so

Lf(x) =
∫
Rd−{0}

f(x + h)n(x, h)dh =
∫
Rd−{0}

f(u)n(x, u − x)du .
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Note n(x, h) is integrable over h in the complement of any neighborhood of the origin.
Because A and B are a positive distance from each other, the sum on the left of (2.4) is
actually a finite sum. With these facts we can pass to a limit to see that∑

s≤t
[1A(Xs−)(1B(Xs)− 1B(Xs−)]−

∫ t

0

1A(Xs)
∫
B

n(Xs, u−Xs)du ds

is a martingale, which is equivalent to what we wanted to prove.

Remark 2.4. By taking limits, it is not necessary to assume that A and B are a positive
distance apart, but only that they are disjoint.

We let B(x, r) denote the ball of radius r centered at x. We use |A| to denote the
Lebesgue measure of A. Set

τA = inf{t > 0 : Xt /∈ A}, TA = inf{t > 0 : Xt ∈ A}.

The letter c with subscripts will denote finite positive constants whose values are unim-
portant and which may have different values in different places.

3. Harnack inequality.
We begin this section by proving a tightness result.

Proposition 3.1. There exists c1 depending only on κ and not x such that

Px(sup
s≤t
|Xs −X0| > 1) ≤ c1t.

Proof. Let f be a C2 function taking values in [0, 1] such that f(0) = 0 and f(y) = 1 if
|y| ≥ 1. Let fx(y) = f(x + y). By the Taylor expansion of fx,

|(fx(z + h)− fx(z)) + (fx(z − h)− fx(z))| ≤ c2|h|2. (3.1)

Since n is symmetric, this and Assumption 2.1(b) imply

|Lfx(z)| ≤
∣∣∣∫
|h|≤1

[fx(z + h)− fx(z)]n(z, h)dh
∣∣∣ + ∣∣∣∫

|h|>1

[fx(z + h)− fx(z)]n(z, h)dh
∣∣∣

≤ c3

∫
|h|≤1

|h|2n(z, h)dh + c4

∫
|h|>1

n(z, h)dh

≤ c5.

We now use (2.1) to write

E xfx(XτB(x,1)∧t)− fx(x) = E x
∫ τB(x,1)∧t

0

Lfx(Xs)ds ≤ c5t.
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If Xt exits B(x, 1) before time t then fx(XτB(x,1)∧t) = 1, and so the left hand side is greater
than Px(τB(x,1) ≤ t).

Lemma 3.2. Let ε > 0. There exists c1 depending only on ε such that if x ∈ Rd and

r > 0, then

inf
z∈B(x,(1−ε)r)

E zτB(x,r) ≥ c1r
α.

Proof. By scaling we may assume r = 1. By Proposition 3.1 and scaling, if z ∈ B(x, 1−ε)

Pz(τB(x,1) ≤ εαt) ≤ Pz( sup
s≤εαt

|Xs −X0| ≥ ε) ≤ c2t.

Thus

E zτB(x,1) ≥ εαtPz(τB(x,1) ≥ εαt) ≥ εαt(1− c2t) .

Taking t = 1/(2c2) yields a uniform lower bound.

Lemma 3.3. There exists c1 such that supz E
zτB(x,r) ≤ c1r

α.

Proof. By scaling, we may suppose r = 1. Let S be the time of the first jump larger than
2. We want to show there exists c2 ∈ (0, 1

2 ) such that Pz(S ≤ 1) > c2 for all z. For z such
that Pz(S ≤ 1) ≥ 1

2 , there is nothing to show. So suppose z is such that Pz(S ≤ 1) < 1
2 .

By an argument similar to that in Proposition 2.3,

∑
s≤t

1(|Xs−Xs−|>2) −
∫ t

0

∫
(|h|>2)

n(Xs, h)dh

is a martingale. Then by optional stopping and by the lower bounds on n

Pz(S ≤ 1) = E z
∑
s≤S∧1

1(|Xs−Xs−|>2)

= E z
∫ S∧1

0

∫
(|h|>2)

n(Xs, h)dh ds

≥ c3E z(S ∧ 1) ≥ c3Pz(S > 1) ≥ c3/2.

Letting c2 = (1 ∧ c3)/2, we have Pz(S ≤ 1) ≥ c2.
If there is a jump larger than 2 before time 1, then τB(x,1) ≤ 1. So

sup
z
Pz(τB(x,1) > 1) ≤ 1− c2.
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Let θt be the usual shift operator for Markov processes. By the Markov property,

Pz(τB(x,1) > m + 1) ≤ Pz(τB(x,1) > m, τB(x,1) ◦ θm > 1)

= E z
[
PXm(τB(x,1) > 1); τB(x,1) > m

]
≤ (1 − c2)Pz(τB(x,1) > m).

By induction, Pz(τB(x,1) > m) ≤ (1− c2)m, which implies that τB(x,1) has moments of all
orders.

Next we show Xt will hit sets of positive Lebesgue measure with positive probability.

Proposition 3.4. Suppose A ⊂ B(x, 1). There exists c1 not depending on x or A such

that

Py(TA < τB(x,3)) ≥ c1|A|, y ∈ B(x, 2).

Proof. Fix y ∈ B(x, 2). Write τ for τB(x,3). If Xt is in A for some t less than time
τ with probability larger than 1/4, we are done, so assume Py(TA < τ ) ≤ 1/4. Using
Proposition 3.1 and scaling, choose t0 small enough so that the probability that τ occurs
before time t0 is also less than 1/4. Note that TA cannot equal τ because A ⊂ B(x, 1).
For |h| ≤ 4, n(Xs, h) is bounded below by Assumption 2.1. Hence for Xs ∈ B(x, 3) and
u ∈ A ⊂ B(x, 1), we have |Xs−u| ≤ 4, and consequently n(Xs, u−Xs) is bounded below.
So

Py(TA < τ ) ≥ E y
∑

s≤TA∧τ∧t0

1(Xs− 6=Xs,Xs∈A)

= E y
∫ TA∧τ∧t0

0

∫
A

n(Xs, u−Xs)du ds

≥ c2|A|E y(TA ∧ τ ∧ t0).

Now
E y(TA ∧ τ ∧ t0) ≥ E y(t0;TA ≥ τ ≥ t0)

= t0Py(TA ≥ τ ≥ t0)

≥ t0[1− Py(TA < τ )− Py(τ < t0)] ≥ t0/2.

Combining this with the above,

Py(TA < τ ) ≥ c2|A|t0/2.

Proposition 3.5. There exist c1 and c2 such that if x ∈ Rd, r > 0, z ∈ B(x, r), and H is

a bounded nonnegative function supported in B(x, 2r)c , then

E zH(XτB(x,r) ) ≤ c1

(
E zτB(x,r)

)∫ H(y)
|y − x|d+α

dy
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and

E zH(XτB(x,r) ) ≥ c2

(
E zτB(x,r)

)∫ H(y)
|y − x|d+α

dy.

Proof. Note H(w) = 0 if w ∈ B(x, r) and H(XτB(x,r) ) > 0 only if there is a jump from
B(x, r) to B(x, 2r)c . By Proposition 2.3 and optional stopping, if B ⊂ B(x, 2r)c

E z1(Xt∧τ(B(x,r))∈B) = E z
∫ t∧τ(B(x,r))

0

∫
B

n(Xs, u−Xs)du ds

≤ E z
∫ t∧τ(B(x,r))

0

∫
B

c3

|u−Xs|d+α
du ds

≤ c4E z(t ∧ τB(x,r))
∫
B

dy

|y − x|d+α
.

Letting t → ∞, using monotone convergence on the right and dominated convergence on
the left, we have

E z1B(XτB(x,r) ) ≤ c4

(
E zτB(x,r)

)∫ 1B(y)
|y − x|d+α

dy.

Using linearity we have the above when 1B is replaced by a simple function; approximating
H by simple functions and taking limits, we have the first inequality in the statement of
the proposition.

The proof of the second inequality is exactly similar, using the lower bound for n

instead of the upper bound.

We say a bounded function h : Rd → R is L-harmonic in a domain D if h(Xt∧τD ) is
a Px-martingale for all x. It is easy to see that if h is C2 in D, and Lh(x) = 0 for x ∈ D,
then h will be L-harmonic.

Theorem 3.6. There exists c1 such that if h is nonnegative and bounded on Rd and

L-harmonic in B(x0, 16), then

h(x) ≤ c1h(y), x, y ∈ B(x0 , 1).

Proof. By looking at a constant multiple of h, we may assume infB(x0,1) h = 1
2 . Choose

z0 ∈ B(x0, 1) such that h(z0) ≤ 1. We want to show that h is bounded above in B(x0 , 1)
by a constant not depending on h. We will establish this by contradiction: if there exists
a point x ∈ B(x0, 1) with h(x) = K where K is too large, we can obtain a sequence of
points in B(x0, 2) on which h is unbounded.
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Let ε < 1
3 be chosen so that |B(0, 1− ε)|/|B(0, 1)| ≥ 3

4 . Using Lemma 3.2, Lemma
3.3, and Proposition 3.5, there exists c2 such that if x ∈ Rd, r > 0, and H is a nonnegative
function supported on B(x, 2r)c , then for y, z ∈ B(x, (1 − ε)r),

E zH(Xτ(B(x,r))) ≤ c2E yH(Xτ(B(x,r))). (3.2)

By Proposition 3.4 there exists c3 such that if A ⊂ B(x0, 4),

Py(TA < τB(x0,16)) ≥ c3|A|, y ∈ B(x0, 8). (3.3)

Also by Proposition 3.4 there exists c4 ≤ 1 such that if x ∈ Rd, r > 0, and C ⊂ B(x, r/3)
with |C |/|B(x, r/3)| ≥ 1

3 , then

Px(TC < τB(x,r)) ≥ c4. (3.4)

Let
η =

c4

3
, ζ =

1
3
∧ (c−1

2 η). (3.5)

Now suppose there exists x ∈ B(x0 , 2) with h(x) = K for some K > 2. Let r be
chosen so that

|B(x, r/3)| = 2/(c3ζK). (3.6)

Note this implies
r = c5K

−1/d. (3.7)

Let us write Br for B(x, r), τr for τB(x,r) and similarly B2r and τ2r. Let A be a compact
set contained in

A′ = {w ∈ B(x, r/3) : h(w) ≥ ζK}.

By (3.3) and optional stopping,

1 ≥ h(z0) ≥ E z0 [h(XTA∧τB(x0,16));TA < τB(x0,16)]

≥ ζKPz0(TA < τB(x0,16))

≥ c3ζK|A|,

hence
|A|

|B(x, r/3)| ≤
1

c3ζK|B(x, r/3)| ≤
1
2
.

This implies |A′|/|B(x, r/3)| ≤ 1
2 . Let C be a compact set contained in B(x, r/3) − A′

such that
|C |

|B(x, r/3)| ≥
1
3
. (3.8)
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Let H = h1Bc2r . We claim

E x[h(Xτr );Xτr /∈ B2r] ≤ ηK

If not
E xH(Xτr ) > ηK,

and by (3.2), for all y ∈ B(x, r/3),

h(y) ≥ E yh(Xτr ) ≥ E y[h(Xτr );Xτr /∈ B2r]

≥ c−1
2 E xH(Xτr ) ≥ c−1

2 ηK

≥ ζK,

contradicting (3.8) and the definition of A′.
Let M = supB2r

h(z). We then have

K = h(x) = E x[h(XTC );TC < τr] + E x[h(Xτr ); τr < TC ,Xτr ∈ B2r]

+ E x[h(Xτr ); τr < TC ,Xτr /∈ B2r]

≤ ζKPx(TC < τr) + MPx(τr < TC) + ηK

= ζKPx(TC < τr) + M(1 − Px(TC < τr)) + ηK,

or
M

K
≥ 1− η − ζPx(TC < τr)

1− Px(TC < τr)
.

Using (3.4) and (3.5) there exists β > 0 such that M ≥ K(1+ 2β). Therefore there
exists x′ ∈ B(x, 2r) with h(x′) ≥ K(1 + β).

Now suppose there exists x1 ∈ B(x0, 1) with h(x1) = K1. Define r1 in terms of K1

analogously to (3.6). Using the above argument (with x1 replacing x and x2 replacing x′),
there exists x2 ∈ B(x1, 2r1) with h(x2) = K2 ≥ (1 + β)K1. We continue and obtain r2

and then x3,K3, r3, etc. Note xi+1 ∈ B(xi, 2ri) and Ki ≥ (1 + β)i−1K1. In view of (3.7),∑
i |xi+1 − xi| ≤ c6K

−1/d
1 . So if K1 > cd6, then we have a sequence x1, x2, . . . contained

in B(x0, 2) with h(xi) ≥ (1 + β)i−1K1 → ∞, a contradiction to h being bounded on Rd.
Therefore we cannot take K1 larger than c1 = cd6, and thus supB(x0,1) h(y) ≤ c1, which is
what we wanted to prove.

Corollary 3.7. Suppose D is a bounded connected domain and r > 0. There exists

c1 depending only on D and r such that if h is nonnegative and bounded in Rd and L-

harmonic in D, then h(x) ≤ c1h(y) if x, y ∈ D and dist (x, ∂D) and dist (y, ∂D) are both

greater than r.

Proof. We form a sequence x = y0, y1, y2, . . . , ym = y such that |yi+1−yi| < (ai+1∧ai)/32,
where ai = dist (yi, ∂D) and each ai < r. By compactness we can choose M depending
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only on r so that no more than M points yi are needed. By scaling and Theorem 3.6,
h(yi) ≤ c2h(yi+1) with c2 > 1. So

h(x) = h(y0) ≤ c2h(y1) ≤ · · · ≤ cm2 h(ym) = cm2 h(y) ≤ cM2 h(y).

4. Regularity.
In this section we obtain some estimates on equicontinuity of resolvents.

Theorem 4.1. If h is bounded on Rd and L-harmonic in a ball B(x0 , 2), then h is Hölder

continuous in B(x0 , 1): there exist c1 and β > 0 such that

|h(x)− h(y)| ≤ c1‖h‖∞|x− y|β , x, y ∈ B(x0, 1).

Proof. By Proposition 3.4 there exists c2 such that if x ∈ Rd, r > 0, and A ⊂ B(x, r/3)
with |A|/|B(x, r/3)| ≥ 1

3 , then

Px(TA < τB(x,r)) ≥ c2. (4.1)

By Proposition 3.5 and Lemma 3.3 with H = 1B(x,s)c, there exists c3 such that if s ≥ 2r,
then

Px(XτB(x,r) /∈ B(x, s)) ≤ c3r
α/sα. (4.2)

Let

γ = 1− c2

4
, ρ =

1
3
∧
(γ

2

)1/α

∧
(c2γ

2

8c3

)1/α

.

By linearity and scaling it suffices to suppose 0 ≤ h ≤ M on Rd and h is L-harmonic on
B(x, 1). We will show

sup
B(x,ρk)

h− inf
B(x,ρk)

h ≤Mγk (4.3)

for all k.
We write Bi for B(x, ρi) and τi for τB(x,ρi). Let

ai = inf
Bi

h, bi = sup
Bi

h.

Suppose bi − ai ≤Mγi for all i ≤ k; we want to show

bk+1 − ak+1 ≤Mγk+1. (4.4)
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We have ak ≤ h ≤ bk on Bk+1. Let

A′ = {z ∈ Bk+1 : h(z) ≤ (ak + bk)/2}.

We may suppose |A′|/|Bk+1| ≥ 1
2 , for if not we look at M − h instead of h. Let A be

a compact set contained in A′ with |A|/|Bk+1| ≥ 1
3
. Let ε > 0, pick y ∈ Bk+1 with

h(y) ≥ bk+1 − ε, and pick z ∈ Bk+1 with h(z) ≤ ak+1 + ε.
By optional stopping

h(y)− h(z) = E y[h(XTA)− h(z);TA < τk]

+ E y[h(Xτk )− h(z); τk < TA,Xτk ∈ Bk−1]

+
∞∑
i=1

E y[h(Xτk )− h(z); τk < TA,Xτk ∈ Bk−i−1 −Bk−i].

The first term on the right is bounded by(ak + bk
2

− ak
)
Py(TA < τk).

The second term is bounded by

(bk − ak)Py(τk < TA) = (bk − ak)(1 − Py(TA < τk)).

Using (4.2) the infinite sum is bounded by

∞∑
i=1

(bk−i−1 − ak−i−1)Py(Xτk /∈ Bk−i)

≤
∞∑
i=1

c3Mγk−i−1(ρk)α/(ρk−i)α

= c3Mγk−1
∞∑
i=1

(ρα/γ)i

≤ 2c3Mγk−2ρα

≤ c2

4
Mγk.

Therefore

h(y)− h(z) ≤ 1
2
(bk − ak)Py(TA < τk) + (bk − ak)(1− Py(TA < τk)) + c2Mγk/4

≤ (bk − ak)[1− 1
2P

y(TA < τk)] + c2Mγk/4

≤Mγk[1− (c2/2)] + c2Mγk/4

= Mγk[1− (c2/4)] = Mγk+1.

13



We conclude that
bk+1 − ak+1 ≤Mγk+1 + 2ε.

Since ε is arbitrary, this proves (4.4) and hence (4.3).
If x, y ∈ B(x0, 1), let k be the smallest integer such that |x − y| < ρk. Then

log |x− y| ≥ (k + 1) log ρ, y ∈ B(x, ρk), and

|h(y)− h(x)| ≤Mγk = Mek log γ

≤ c4Melog |x−y|(log γ/ log ρ) = c4M |x− y|log γ/ log ρ.

Define

Sλg(x) = E x
∫ ∞

0

e−λtg(Xt)dt.

Proposition 4.2. Suppose g is bounded and has compact support. There exists c1 > 2
and β ∈ (0, 1) such that

|S0g(x)− S0g(y)| ≤ c1(‖S0g‖∞ + ‖g‖∞)(|x− y| ∧ 1)β .

Proof. Suppose |x− y| ≤ 1, for otherwise there is nothing to prove. We write

S0g(x) = E x
∫ τB(x,r)

0

g(Xs)ds + E xS0g(XτB(x,r))

and
S0g(y) = E y

∫ τB(x,r)

0

g(Xs)ds + E yS0g(XτB(x,r)).

Taking the difference,

|S0g(x)− S0g(y)| ≤ 2‖g‖∞ sup
z
E zτB(x,r) + c2‖S0g‖∞

( |x− y|
r

)β
,

using Theorem 4.1, scaling, and the fact that z → E zS0g(XτB(x,r)) is L-harmonic inside
B(x, r). Taking r = |x− y|1/2 and using Lemma 3.3, we obtain our result.

Theorem 4.3. Suppose g is bounded and λ > 0. There exists c1 > 0 and β ∈ (0, 1) such

that

|Sλg(x)− Sλg(y)| ≤ c1‖g‖∞(|x− y| ∧ 1)β .

Proof. Without loss of generality assume g ≥ 0. Temporarily assume g has compact
support. Let h = g−λSλg. Note S0h ≤ S0g+λSλS0g, so h is bounded. We have Sλg = S0h

by the resolvent equation. Since ‖Sλg‖∞ ≤ c2‖g‖∞, then ‖S0h‖∞+ ‖h‖∞ ≤ c3‖g‖∞. Our
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result now follows by Proposition 4.2 if g has compact support. Taking limits allows us to
remove this restriction.

Remark 4.4. The solution to the integral equation

Lu(x)− λu(x) = −g(x)

is given by u(x) = Sλg(x). So Theorem 4.3 provides a regularity result for the solutions
of such integral equations.

Remark 4.5. Theorem 4.3 also has applications to the uniqueness of the martingale
problem for L. One important technique in proving uniqueness of martingale problems is
perturbation. In the diffusion case, one looks at the operator ∂2

∂xi∂xj
Uλ, where Uλ is the

resolvent operator for Brownian motion, and one needs to establish Lp bounds for suitable
p. The case of L2 is quite easy, but the Lp estimates for other p rely on singular integrals.

To establish uniqueness for the martingale problem for L, one needs to obtain
estimates for an analogous operator. Again the L2 estimates are relatively straightforward,
but the Lp estimates are much harder. However, it is possible to establish uniqueness and
to weaken the hypotheses of [K] by using Theorem 4.3 and the L2 estimates. The argument
is rather lengthy, so we do not include it here, but a similar argument is used in [A].
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