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HARNACK INEQUALITIES FOR NON-LOCAL
OPERATORS OF VARIABLE ORDER

RICHARD F. BASS AND MORITZ KASSMANN

Abstract. We consider harmonic functions with respect to the operator

Lu(x) =

∫
[u(x+ h)− u(x)− 1(|h|≤1)h · ∇u(x)]n(x, h) dh.

Under suitable conditions on n(x, h) we establish a Harnack inequality for
functions that are nonnegative and harmonic in a domain. The operator L is
allowed to be anisotropic and of variable order.

1. Introduction

There is a huge literature concerned with Harnack inequalities for functions that
are harmonic with respect to second order elliptic operators. Seminal contribu-
tions in this field have been made among others by Moser [Mos61], Krylov-Safonov
[KS80], and Fabes-Stroock [FS86]. The first and third of these papers deal with
differential operators in divergence form, while the second deals with differential
operators in non-divergence form. These papers, as well as alternate proofs of their
results, all rely heavily on the fact that the operators are local operators, that is,
differential operators.

At the same time, in the last few years there has been intense interest in using
integral operators (or equivalently, processes with jumps) to model problems in
mathematical physics, in finance, and in probability theory. These operators are
non-local, in the sense that the behavior of a harmonic function at a point depends
on values of the harmonic function at points some distance away rather than just
at nearby points.

The purpose of this paper is to consider functions that are harmonic with respect
to the integral operator L, where

Lu(x) =
∫
Rd\{0}

[u(x+ h)− u(x)− 1(|h|≤1)h · ∇u(x)]n(x, h)dh(1.1)

operates on C2 functions defined on Rd. This is a reasonably general integro-
differential operator, and includes, for example, many of the operators considered
by probabilists. In probabilistic terms, n(x, h) represents the relative intensity
of the number of jumps of the associated Markov process from a point x to the
point x+ h. We examine what conditions are needed on n(x, h) to guarantee that
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838 RICHARD F. BASS AND MORITZ KASSMANN

a Harnack inequality holds. We start with the assumption that for two positive
constants κ1 and κ2

κ1

|h|d+α
≤ n(x, h) ≤ κ2

|h|d+β
, x ∈ Rd, |h| ≤ 2,(1.2)

where 0 < α < β < 2. This is the analogue of the coercivity and boundedness
conditions from the theory of elliptic PDE. Note that the order of the singularity of
the kernel with respect to h might depend on x. Moreover, the kernel might exhibit
different singularities in different directions. Hence, the corresponding integro-
differential operator L is anisotropic and of variable order. For now let us say that
a function u is harmonic with respect to L in a domain D if Lu = 0 in D; a more
precise definition is given in Section 2 in terms of martingales.

Our main result is that if β − α < 1, then a Harnack inequality holds for non-
negative functions that are harmonic in a domain; see Theorem 4.1 for a precise
statement. We do not know if our condition β − α < 1 is sharp. The conclusion of
Theorem 4.1 says that u(x) ≤ κ̄(R)u(y) for x, y in a ball of radius R/2 when u is
harmonic in the concentric ball of radius R. In Proposition 5.1 we give an example
to show that the dependence of κ̄ on R cannot be dispensed with.

At the time of the writing of this paper, there are only a few papers that we
know of that consider Harnack inequalities for non-local operators. In [BBG00] a
very specific operator was considered; there the interest was not in the Harnack
inequality but in a Liouville property for a certain degenerate PDE. In [BL02a] the
operator L given in (1.1) was considered, but in the special case where α = β, which
is sometimes known as the stable-like case. The results of [BL02a] were extended to
certain other Markov jump processes in [SV04]. A parabolic Harnack inequality for
symmetric jump processes, again with α = β, together with heat kernel estimates,
was proved in [BL02b]. This was extended to more general state spaces in [CK03].
See [BSS02a] and [BSS02b] for related results. A weak Harnack inequality has been
obtained in [Kas03] for non-local operators corresponding to jump-diffusions.

The current paper is a major generalization of the results obtained in [BL02a]
and [SV04] in that we remove the requirement α = β. We are able to allow the
integro-differential operators to be anisotropic and of variable order.

The method starts with the ideas of [BL02a], but due to the fact that α 6= β, the
techniques are considerably more delicate. Both [BL02a] and the current paper use
techniques substantially different from those used in the case of elliptic operators,
although the roots of our method come from those of [KS80]. It is interesting that
while in [KS80] the hardest part of the proof is obtaining what is essentially an
estimate on the probability of hitting sets; here, by contrast, the corresponding
estimate is fairly easy. The principal difficulty in this paper is using that estimate
to obtain the Harnack inequality.

After a short section on preliminaries, in Section 3 we present some estimates
for the Markov process associated with L. These are used in Section 4 to prove the
Harnack inequality. Section 5 contains some examples.

2. Preliminaries

We use B(x, r) for the open ball of radius r with center x. The letter c with
subscripts will denote positive finite constants whose exact value is unimportant.
The Lebesgue measure of a Borel set A will be denoted by |A|.
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HARNACK INEQUALITIES 839

We consider the operator

Lu(x) =
∫
h 6=0

[u(x+ h)− u(x)− 1(|h|≤1)h · ∇u(x)]n(x, h)dh.(2.1)

Suppose 0 < α < β < 2. We make the following assumptions on n(x, h).

Assumption 2.1. There exist positive finite constants κ1, κ2, κ3, κ4 such that:
• (a) For all |h| ≤ 2 and all x

n(x, h) ≥ κ1

|h|d+α
.

• (b) For all |h| ≤ 2 and all x

n(x, h) ≤ κ2

|h|d+β
.

• (c) For all x ∫
|h|>1

n(x, h)dh ≤ κ3.

• (d) For all x, y, and z

n(x, z − x) ≤ κ4n(y, z − y), |z − x| ≥ 1, |z − y| ≥ 1, |x− y| ≤ 1.

Assumptions 2.1 (a)-(c) say that the Lévy kernel n(x, h)dh is bounded between
that of a symmetric stable process of index α and that of one of index β for the
jumps of size less than 2. Moreover, we have a uniform bound on the number
of jumps of size bigger than 1. n(x, h) can be thought of as the intensity of the
number of jumps from x to x + h; thus n(x, z − x) represents the intensity of the
number of jumps from x to z. Assumption 2.1 (d) says that the probability of
jumping to a point z is comparable if x, y are more than distance one away from
z and within distance one of each other. Note that the constant “one” could be
replaced by another appropriate positive constant. In Proposition 5.2 we show that
an assumption of this type cannot be avoided.

Our method is probabilistic, and we need to work with the Markov process
associated with L. We say a strong Markov process (Px, Xt) is associated with L
if for each x we have Px(X0 = x) = 1 and for each x and for each u ∈ C2 that
is bounded with bounded first and second partial derivatives, u(Xt) − u(X0) −∫ t

0
Lu(Xs)ds is a martingale under Px. This is commonly expressed as saying that

Px solves the martingale problem for L started at x.
Without some regularity on n(x, h) we do not know that there is a strong Markov

process associated with L or that if there is one, it is unique. One of the major open
problems in the area of uniqueness is to formulate simple but not too restrictive
sufficient conditions. If n(x, h) depends on x in a Lipschitz fashion, it is known that
uniqueness holds, see [Sko65]. Let us assume that n(x, h) satisfies some conditions
(see [Kom84, Bas88, Hoh95, Sko65]) which insure that there is one and only one
solution to the martingale problem for L started at x. However, we underline that
none of the constants in any of our results depend on the smoothness or regularity
of n(x, h).

An equivalent formulation of the connection between the Markov process and
the operator L can be made in terms of a stochastic differential equation driven by
a random measure, but this is less direct.
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840 RICHARD F. BASS AND MORITZ KASSMANN

For any Borel set A, let

TA = inf{t : Xt ∈ A}, τA = inf{t : Xt /∈ A},
the first hitting time and first exit time, respectively, of A. We say that a function
u is harmonic in a domain D if u(Xt∧τD) is a Px-martingale for each x ∈ D. It
is easy to check that if u satisfies some smoothness conditions (e.g., u and its first
and second partials are bounded and continuous in D) and Lu = 0 in D, then u is
harmonic in D.

Similarly to the diffusion case explained in [SV79], Corollary 6.3.3, uniqueness
of solutions to the martingale problem imply that the corresponding process is
a Feller process. Therefore our Markov process is a Hunt process (see [BG68],
Section 1.9) and in particular left hand limits exist. We write Xt− = lims↑tXs

and ∆Xt = Xt −Xt−. Any harmonic function u is excessive with respect to the
semigroup of Xt and therefore u(Xt∧τD) is right-continuous, with the exceptional
set having Px-measure zero for all x; see [BG68], Theorem II.2.12.

3. Some estimates

Throughout this section we assume that Assumption 2.1 holds. Set

β = max(β, 1).(3.1)

Proposition 3.1. There exist constants c1 and c2 not depending on x0 such that
if r < 1, β 6= 1 and t > 0, then

Px0(τB(x0,r) ≤ c1t) ≤ tr−β ,
and in particular

Px0(τB(x0,r) ≤ c2rβ) ≤ 1
2 .

Proof. Let u be a nonnegative C2 function that is equal to |x−x0|2 for |x−x0| ≤ r/2,
which equals r2 for |x−x0| ≥ r, and such that u is bounded by c3r2, its first partial
derivatives are bounded by c3r, and its second partial derivatives are bounded by
c3. Then, since Px0 solves the martingale problem,

E x0u(Xt∧τB(x0,r)
)− u(x0) = E x0

∫ t∧τB(x0,r)

0

Lu(Xs)ds.(3.2)

We examine Lu(x) for x ∈ B(x0, r). We break the integral in (2.1) into two
parts, where |h| ≤ r and where |h| > r. For the first part, we have∫

|h|≤r
[u(x+ h)− u(x)− h · ∇u(x)]n(x, h)dh ≤ c4

∫
|h|≤r

h2n(x, h) dh,

since the expression inside the brackets is bounded by a constant times h2‖D2u‖∞.
Since for |h| ≤ r we have n(x, h) ≤ c5h

−d−β, we bound the above by c6r
2−β . For

the second part we obtain, using Assumptions 2.1 (b) and (c),∫
|h|>r

[u(x+ h)− u(x)]n(x, h) dh ≤ ‖u‖∞
∫
|h|>r

n(x, h) dh ≤ c7r2−β ,

and, using ‖∇u‖∞ ≤ c2r,∣∣∣∫
1>|h|≥r

h · ∇u(x)n(x, h)dh
∣∣∣ ≤ c8r2−β .
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Substituting in (3.2), we obtain

E x0u(Xt∧τB(x0,r)
) ≤ c9tr2−β .

Note that the left hand side is greater than r2Px0(τB(x0,r) ≤ t), which yields the
first part of the proposition. If we now take t = c10r

β , we obtain the second part
of the proposition. �

Proposition 3.2. If A and B are disjoint Borel sets, then for each x∑
s≤t

1(Xs−∈A,Xs∈B) −
∫ t

0

∫
B

1A(Xs)n(Xs, u−Xs)du ds

is a Px-martingale.

The proof is identical to that of Proposition 2.3 and Remark 2.4 of [BL02a].
The next proposition estimates the hitting probability for certain sets. It is

notable that, unavoidably, the conclusion is considerably weaker than that of The-
orem 1 in [KS79]; namely, the hitting probability is not bounded away from zero.
Despite this difference from the non-degenerate diffusion case, we are able to prove
a Harnack inequality.

Proposition 3.3. Suppose r < 1 and β 6= 1.
• (a) There exists c1 such that if A ⊂ B(x0, r/2) and also y ∈ B(x0, r/2),

then
Py(TA < τB(x0,r)) ≥ c1rβ−α|A|/|B(x0, r)|.

• (b) There exists c1 such that if A ⊂ B(x0, r/2) and also y ∈ B(x0, r), then

Py(TA < τB(x0,r)) ≥ c1[dist (y, ∂B(x0, r))]βr−α|A|/|B(x0, r)|.

Proof. (a) is an immediate consequence of (b), so we prove (b). Fix y and write
τ for τB(x0,r). Let p = dist (y, ∂B(x0, r)). If Py(TA < τ) ≥ 1

4 , we are done, so we
assume not. By Proposition 3.1 we can find a constant c2 such that if t0 = c2p

β,
then Py(τ ≤ t0) ≤ 1

2 . If x ∈ B(x0, r) and z ∈ A, then |z − x| ≤ 2r and

n(x, z − x) ≥ c3|z − x|−d−α ≥ c4r−d−α.
Then by Proposition 3.2 and optional stopping,

Py(TA < τ) ≥ E y
∑

s≤TA∧τ∧t0

1(Xs− 6=Xs,Xs∈A)

= E y
∫ TA∧τ∧t0

0

∫
A

n(Xs, z −Xs)dz ds

≥ c4|A|r−d−αE y(TA ∧ τ ∧ t0).

We also have

E y(TA ∧ τ ∧ t0) ≥ E y(t0;TA ≥ τ ≥ t0) = t0Py(TA ≥ τ ≥ t0)

≥ t0 [1− Py(TA < τ) − Py(τ < t0)] ≥ t0/4.
Therefore

Py(TA < τ) ≥ c4
4
|A|r−d−αt0 = c5p

βr−α|A|/|B(x0, r)|.
�
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Lemma 3.4. There exist c1 and c2 such that if r < 1/2 and β 6= 1, then

E xτB(x,r) ≥ c1rβ , E xτB(x,r) ≤ c2rα.

Proof. By Proposition 3.1 there exists c3 such that Px(τB(x,r) ≤ c3r
β) ≤ 1

2 . So
τB(x,r) is greater than c3r

β with probability at least 1
2 , and the first inequality

follows easily from this.
To prove the second inequality, let S be the time of the first jump larger than

2r. Suppose Pz(S ≤ rα) ≤ 1
2 . Then by Proposition 3.2 and optional stopping,

Pz(S ≤ rα) = E z
∑

s≤S∧rα
1(|Xs−Xs−|>2r) = E z

∫ S∧rα

0

∫
|h|>2r

n(Xs, h)dh ds

≥ E z
∫ S∧rα

0

∫
2≥|h|>2r

n(Xs, h)dh ds

≥ c4r−αE z(S ∧ rα) ≥ c4r−αE z(rα;S > rα)

≥ c4Pz(S > rα) ≥ c4/2.

The other alternative is that Pz(S ≤ rα) > 1
2 . In either case there exists c5 such

that Pz(S ≤ rα) ≥ c5 > 0.
If θt is the shift operator from Markov process theory, then by the Markov

property

Pz(S > (m+ 1)rα) ≤ Pz(S > mrα, S ◦ θmrα > rα)

= E z
[
PXmrα (S > rα);S > mrα

]
≤ (1− c5)Pz(S > mrα).

By induction Pz(S > mrα) ≤ (1 − c5)m, which proves E xS ≤ c6r
α. Our second

inequality follows because τB(x,r) ≤ S when we start the process at x. �

Proposition 3.5. There exists c1 such that if r < 1/2, β 6= 1, z ∈ B(x, r/4), and
H is a bounded nonnegative function supported in B(x, r)c, then

E xH(XτB(x,r/2)) ≤ c1r2(α−β)E zH(XτB(x,r/2)).

Proof. By linearity and a limit argument, it suffices to consider H = 1C for a set
C contained in B(x, r)c. Note that Assumptions 2.1 (a), (b) and (d) imply that if
v /∈ B(x, r), then

sup
y∈B(x,r/2)

n(y, v − y) ≤ c2rα−β inf
y∈B(x,r/2)

n(y, v − y).(3.3)

Write τ for τB(x,r/2). For Xτ to be in C, it must get there by a jump of size at
least r/2. By Proposition 3.2 and optional stopping,

E z1(Xt∧τ∈C) = E z
∑
s≤t∧τ

1(|Xs−−Xs|>r/2,Xs∈C)

= E z
∫ t∧τ

0

∫
C

n(Xs, v −Xs)dv ds

≥ (E z(t ∧ τ))
(∫

C

inf
y∈B(x,r/2)

n(y, v − y)dv
)
.
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Letting t→∞ and using dominated convergence on the left and monotone conver-
gence on the right, we get

Pz(Xτ ∈ C) ≥ E zτ
∫
C

inf
y∈B(x,r/2)

n(y, v − y)dv.

Since E zτ ≥ E zτB(z,r/4), Lemma 3.4 tells us that

Pz(Xτ ∈ C) ≥ c3rβ
∫
C

inf
y∈B(x,r/2)

n(y, v − y)dv.(3.4)

Similarly,

Px(Xτ ∈ C) ≤ E xτ
∫
C

sup
y∈B(x,r/2)

n(y, v − y)dv.(3.5)

Lemma 3.4, (3.3), (3.4), and (3.5) then imply our result. �

4. Harnack inequality

Theorem 4.1. Suppose Assumption 2.1 holds. Suppose β−α < 1. Let z0 ∈ Rd and
R > 0. Suppose u is nonnegative and bounded on Rd and harmonic on B(z0, R).
Then there exists a constant κ̄ depending on R, κ1, κ2, κ3, κ4 but not z0, u, or ‖u‖∞
such that

u(x) ≤ κ̄u(y), x, y ∈ B(z0, R/2).(4.1)

Proof. Since β − α < 1 and α > 0, we can take β bigger if necessary so that β > 1
and β − α < 1. So without loss of generality we may assume β > 1, and hence
β = β.

Let us first suppose R ≤ 1. By looking at u+ε and letting ε ↓ 0, we may suppose
u is bounded below by a positive constant. By looking at au for a suitable constant
a, we may suppose infB(z0,R/2) u ∈ [1

2 , 1]. (We do not know that u is continuous,
so the infimum might not be attained.) We want to bound u above in B(z0, R/2)
by a constant depending only on R and κ1, κ2, κ3, κ4. Choose z1 ∈ B(z0, R/2) such
that u(z1) ≤ 1. Choose ρ such that 1 < ρ < 1/(β − α).

Let
ri = c2R/i

ρ,

where c2 is a constant that will be chosen later. We require first of all that c2 be
small enough so that

∞∑
i=1

ri ≤ R/8 ,(4.2)

which, in particular, implies ri ≤ 1/8.
Recall that by Proposition 3.3(b) there exists c3 such that for any z̄, r̄, A ⊂

B(z̄, r̄/2) and x̄ ∈ B(z̄, r̄/2) we have

Px̄(TA < τB(z̄,r̄)) ≥ c3r̄β−α|A|/|B(z̄, r̄/2)|.(4.3)

Let c4 be another constant to be chosen later. Once c2 and c4 have been chosen,
choose K1 sufficiently large so that

1
4
c3K1 exp(Rc2c4i1−ρ(β−α))c5(β−α)+d

2 R5(β−α) ≥ 2iρ(5(β−α)+d)(4.4)

for i = 1, 2, . . .. Such a choice is possible because 1− ρ(β −α) > 0. K1 will depend
on d,R, ρ, α, and β as well as c2, c3 and c4.
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Suppose now that there exists x1 ∈ B(z0, R/2) with u(x1) ≥ K1. We will
show that in this case there exists a sequence {(xj ,Kj)} with xj+1 ∈ B(xj , 2rj) ⊂
B(z0, 3R/4), Kj = u(xj), and

Kj ≥ K1 exp
(
Rc2c4j

1−ρ(β−α)
)
.(4.5)

Since 1 − ρ(β − α) > 0, then Kj → ∞, a contradiction to u being bounded. We
can then conclude that u must be bounded by K1, and hence u(x)/u(y) ≤ 2K1 if
x, y ∈ B(z0, R/2).

Suppose x1, x2, . . . , xi have been selected and that (4.5) holds for j = 1, . . . , i.
We will show there exists xi+1 ∈ B(xi, 2ri) such that if Ki+1 = u(xi+1), then (4.5)
holds for j = i+ 1; we then use induction to conclude that (4.5) holds for all j.

Let
Ai = {y ∈ B(xi, ri/4) : u(y) ≥ Kir

4(β−α)
i }.

First, we prove that

|Ai|/|B(xi, ri/4)| ≤ 1
4 .(4.6)

To prove this claim, we suppose to the contrary that |Ai|/|B(xi, ri/4)| > 1
4 . Let D

be a compact subset of Ai with |D|/|B(xi, ri/4)| > 1
4 . Recall that R ≥ 8ri ≥ ri. By

Doob’s optional stopping theorem, the facts that u is nonnegative and u(Xt∧τD) is
right-continuous, (4.3), (4.4), and (4.5), we can estimate

1 ≥ u(z1) ≥ E z1 [u(XTD∧τB(z0,R));TD < τB(z0,R)]

≥ Kir
4(β−α)
i Pz1(TD < τB(z0,R))

≥ c3Kir
4(β−α)
i Rβ−α|D|/|B(z0, R)|

≥ 1
4
c3Kir

5(β−α)
i (ri/R)d ≥ 2.

This is a contradiction, and therefore (4.6) is proved.
Write τi for τB(xi,ri/2). Set Mi = supB(xi,ri) u(x). Let E be a compact subset

of B(xi, ri/4) \Ai such that |E|/|B(xi, ri/4)| ≥ 1
2 . In view of (4.6) such a choice is

possible. Let
pi = Pxi(TE < τi).

We have

Ki = u(xi) = E xi [u(XTE∧τi);TE < τi](4.7)

+ E xi [u(XTE∧τi);TE ≥ τi, Xτi ∈ B(xi, ri)]

+ E xi [u(XTE∧τi);TE ≥ τi, Xτi /∈ B(xi, ri)].

Since E ⊂ B(xi, ri/4) \Ai is compact, the first term is bounded above by

Kir
4(β−α)
i Pxi(TE < τi) ≤ Kir

4(β−α)
i .

The second term is bounded above by

Mi(1− pi).
We turn to the third term. Inequality (4.6) implies in particular that there exists
yi ∈ B(xi, ri/4) with u(yi) ≤ Kir

4(β−α)
i . We then have, using Proposition 3.5,

Kir
4(β−α)
i ≥ u(yi) ≥ E yi [u(Xτi);Xτi /∈ B(xi, ri)]

≥ c5r2(β−α)
i E xi [u(Xτi);Xτi /∈ B(xi, ri)].(4.8)
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Using (4.8), the third term on the right of (4.7) is bounded above by

c−1
5 r

2(α−β)
i Kir

4(β−α)
i = c6Kir

2(β−α)
i .

Substituting in (4.7), we get

Ki ≤ Kir
4(β−α)
i +Mi(1− pi) + c6Kir

2(β−α)
i .(4.9)

Rearranging,

Mi ≥ Ki

(1− r4(β−α)
i − c6r2(β−α)

i

1− pi

)
.(4.10)

By (4.3)

pi ≥ c7c3rβ−αi .(4.11)

Since ri ≤ c2R ≤ c2, if we choose c2 small enough, then

r
4(β−α)
i + c6r

2(β−α)
i ≤ 1

2c7c3r
β−α
i(4.12)

for all i. Therefore

Mi ≥ Ki

(1− 1
2pi

1− pi

)
>
(

1 +
pi
2

)
Ki.

Using the definition of Mi and (4.11), there exists a point xi+1 ∈ B(xi, ri) ⊂
B(xi, 2ri) such that

Ki+1 = u(xi+1) ≥ Ki(1 + c7c3r
β−α
i /2).

Taking logarithms and writing

logKi+1 = logK1 +
i∑

j=1

[logKj+1 − logKj ],

we have

log(Ki+1) ≥ logK1 +
i∑

j=1

log(1 + c7c3r
β−α
j /2)

≥ logK1 + c8

i∑
j=1

rβ−αj

= logK1 +Rc2c8

i∑
j=1

j−ρ(β−α)

≥ logK1 +Rc2c4(i+ 1)1−ρ(β−α),

and hence (4.5) holds for i + 1 provided we choose c2 small enough so that (4.2)
and (4.12) hold. The theorem has thus been proved for R < 1.

For R ≥ 1 we use a standard chain of balls argument. Given any two points
x, y ∈ B(z0, R/2), we can find N balls B1 . . . , BN of radius 1

2 such that x is the
center of B1, y is the center of BN , the centers of Bi and Bi+1 lie within 1

4 of each
other for each i, and the center of Bi lies in B(z0, R/2) for each i. Moreover, the
number of balls N depends only on R. We then apply the Harnack inequality that
we proved above N times to derive u(x) ≤ cN9 u(y). �
Remark 4.2. If one keeps careful track of the constants, one sees that κ̄ grows at
most polynomially in 1/R as R→ 0. See also Proposition 5.1.
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Remark 4.3. We do not know if the condition β−α < 1 can be weakened. It would
be very interesting to either weaken this condition or find an example showing it is
necessary.

Remark 4.4. Must a function that is bounded in Rd and is harmonic in a ball be
continuous in the ball? This is the case for nondegenerate diffusions and stable-like
jump processes (i.e., α = β), but we do not know the answer to this question in
the variable order case. Continuity appears to be a less robust property than the
Harnack inequality.

5. Examples

In Theorem 4.1 we allowed the constant κ̄ to depend on R. This is necessary,
as the following proposition shows. To see the idea behind the proof, consider
(V 1
t , V

2
t ), where V 1

t is a one-dimensional symmetric stable process of order β and
V 2
t is a one-dimensional symmetric stable process of order α. If β > α, then over

short distances the first component moves much faster than the second. However
(V 1
t , V

2
t ) does not satisfy Assumption 2.1(a), and so we must use a more complicated

example. See [Ber96] for information on Lévy processes.

Proposition 5.1. Let 0 < α < β < 2. There exists a function n(x, h) satisfying
Assumption 2.1 with the following property.

• For R < 1 there exist functions uR that are nonnegative and harmonic on
B(0, R) and points xR, yR ∈ B(0, R/2) such that uR(yR)/uR(xR) → ∞ as
R→ 0.

Proof. Observe that lima→1(a− 2 + 1
a )/(1− a) = 0. Choose a < 1 sufficiently close

to 1 so that β > (a − 2 + 1
a )/(1 − a). Take a closer to 1 if necessary so that

aβ + a− 1 > α. Some algebra shows that β + 1− 1
a > aβ + a− 1. We now choose

γ such that β + 1− 1
a > γ > aβ + a− 1. Since a < 1, then γ < β; by our choice of

a, we see that γ > α.
Let

A = {(x1, x2) : |x2| > |x1|a, |x2| < 1}.
We define a Lévy process Xt = (X1

t , X
2
t ) by specifying that there is no Gaussian

component, no drift, and the Lévy measure is given by n(dh) = n(h)dh, where

n(h) =
1

|h|2+α
+

1A(h)
|h|2+β

.

If we set n(x, h) = n(h) for all x, clearly Assumption 2.1 holds.
Let DR = [−R,R]2, xR = (−R/4, 0), yR = (R/4, 0). Define uR(x1, x2) on Dc

R

to be 1 if x1 > 0 and 0 otherwise. Define uR inside DR by uR(x) = E xuR(XτDR
).

Then uR is harmonic in B(0, R).
We will show that

P( sup
s≤Rγ

|X2
s | < R)→ 0 as R→ 0(5.1)

and

P( sup
s≤Rγ

|X1
s | > R/4)→ 0 as R→ 0.(5.2)
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(5.1) says that for R small, |X2
t | is very likely to have exceeded R by time Rγ ;

hence τDR ≤ Rγ with high probability. (5.2) says that by time τDR the process X1
t

is unlikely to have moved as far as R/4. Consequently

PxR(X1
τDR

> 0)→ 0 as R→ 0,

PyR(X1
τDR

> 0)→ 1 as R→ 0.

This shows that uR(xR) → 0 and uR(yR) → 1; hence uR(yR)/uR(xR) → ∞ as
R→ 0.

We now prove (5.1) and (5.2). Write h = (h1, h2). Since a < 1, then for
h2 ∈ [2R, 3R] and h1 ∈ (0, |h2|1/a] we have that |h| is comparable to h2. We
calculate

I1(R) =
∫
A∩(|h2|>2R)

n(dh) ≥ 4
∫ 1

2R

∫ |h2|1/a

0

1
|h|2+β

dh1 dh2

≥ 4
∫ 3R

2R

∫ |h2|1/a

0

1
|h|2+β

dh1 dh2 ≥ c1R
1
a−1−β .

The number of times that ∆Xs ∈ A ∩ (|h2| > 2R) for s ≤ t is a Poisson random
variable with parameter greater than tI1(R). By our choice of γ, RγI1(R)→∞ as
R→ 0. Hence the probability that there are no jumps with ∆Xs in A∩(|h2| > 2R)
by time Rγ tends to 0 as R → 0. But if ∆Xs ∈ A ∩ (|h2| > 2R) for some s ≤ Rγ ,
then |X2

s | will exceed R. This proves (5.1).
We turn to (5.2). We can write Xt = Yt + Zt, where Y and Z are indepen-

dent Lévy processes, Y has Lévy measure nY (dh) = |h|−(2+α)dh, and Z has Lévy
measure nZ(dh) = 1A(h)|h|−(2+β)dh.

By scaling and the fact that γ > α,

P( sup
s≤Rγ

|Ys| > R/8)→ 0 as R→ 0.(5.3)

We calculate

I2(R) =
∫
A∩(|h1|>R/16)

nZ(dh)

≤ 4
∫ 1

R/16

∫ 1

|h1|a

1
|h|2+β

dh2 dh1

≤ 4
∫ 1

R/16

∫ 1

|h1|a

1
|h2|2+β

dh2 dh1

≤ c2R1−a−aβ

and

I3(R) = 4
∫ R

0

∫ 1

|h1|a

(h1)2

|h|2+β
dh2 dh1 ≤ c3R3−a−aβ.

The expected number of times ∆Zs is in A ∩ (|h1| > R/16) for s ≤ Rγ is RγI2(R),
which tends to 0 as R→ 0 by our choice of γ. Therefore

P(|∆Z1
s | > R/16 for some s ≤ Rγ)→ 0 as R→ 0.(5.4)
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Let Wt be the process Zt with all jumps such that ∆Zs is in A ∩ (|h1| > R/16)
removed, that is,

Wt = Zt −
∑
s≤t

∆Zs1A∩(|h1|>R/16)(∆Zs).

Then Wt is the Lévy process with Lévy measure

nW (dh) =
1A∩(|h1|≤R/16)(h)

|h|2+β
dh.

Since a Lévy process with bounded jumps has moments of all orders and W has no
drift component, then W 1

t is a martingale. By Doob’s inequality,

P( sup
s≤Rγ

|W 1
s | > R/16) ≤ 4

E (W 1
Rγ )2

(R/16)2
.

But E (W 1
t )2 = tI3(R), and so by our choice of γ we have E (W 1

Rγ )2/R2 → 0 as
R→ 0. Therefore

P( sup
s≤Rγ

|W 1
s | > R/16)→ 0 as R→ 0.(5.5)

Putting (5.3), (5.4), and (5.5) together gives (5.2). �

The following example shows that a hypothesis along the lines of Assumption
2.1(d) is necessary for a Harnack inequality to hold.

Proposition 5.2. There exists a function n(x, h) satisfying Assumptions 2.1(a)-(c)
(but not (d)) for which the Harnack inequality fails for the corresponding operator.

Proof. We work in two dimensions. Let B = B(0, 1), let y0 = (1/8, 0) and for
m ≥ 4 let xm = (−1/8, 2−m), zm = (16, 2−m), Cm = B(xm, 2−m−4), and Em =
B(zm, 2−m−4). Define

n(x, h) = |h|−d−α1(|h|≤3) +
∞∑
m=4

1Cm(x)1Em(x+ h).

It is clear that n(x, h) satisfies Assumptions 2.1 (a)-(c), because the Cm are disjoint
and the Em are disjoint. It is also not hard to see that there is a unique solution to
the martingale problem for L, because n differs from the Lévy kernel of a symmetric
stable process only in the jumps of size larger than 3, see [Kom84].

Next we show that Py0(TCm < τB) is small when m is large. Note that Lemma
3.4 does not use Assumption 2.1(d), and therefore E y0τB ≤ c1 < ∞. Fix m, let
ε = 2−m−4, let g(x) = |x − xm|−d−α, let ϕ be a nonnegative C∞ function with
support in B(0, 1/2) whose integral is 1, let ϕε(x) = ε−dϕ(x/ε), and let fε = g ∗ϕε.
Let n0(x, h) = |h|−d−α and let L0 be the operator corresponding to n0. Then
fε ≥ c2ε−α−d on Cm and fε ∈ C∞. It is well known that L0fε(x) = −c3ϕε(x−xm),
and hence L0fε(x) = 0 for x /∈ Cm. It is also easy to check that fε(y0) ≤ c4 and
|Lfε(x) − L0fε(x)| ≤ c5 if x ∈ B \ Cm. Therefore Lfε(x) ≤ c5 for x ∈ B \ Cm.
Since Py0 is a solution to the martingale problem for L, we have

E y0fε(XTCm∧τB )− fε(y0) = E y0

∫ TCm∧τB

0

Lfε(Xs)ds

≤ c5E y0τB ≤ c1c5.
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Therefore

c2ε
−α−d Py0(TCm < τB) ≤ E y0fε(XTCm∧τB ) ≤ c1c5 + c4.

Thus Py0(TCm < τB) will be small if m is large.
Now suppose that the Harnack inequality did hold for nonnegative functions that

are harmonic in B, that is, suppose there exists c6 such that

u(x) ≤ c6u(y), x, y ∈ B(0, 1/2),

whenever u is bounded in Rd and nonnegative and harmonic in B. Let

um(x) = E x[1Em(XτB )].

This function is bounded, nonnegative, and harmonic in B. Note the only way that
XτB can be in Em is if XτB− is in Cm. We then have

um(y0) = E y0 [1Em(XτB );TCm < τB]

= E y0
[
EXTCm [1Em(XτB )];TCm < τB

]
= E y0 [um(XTCm );TCm < τB ]

≤ c6um(xm)Py0(TCm < τB),

where we used the assumption that a Harnack inequality holds to get the last
inequality. But then

um(xm)
um(y0)

≥ 1
c6Py0(TCm < τB)

,

which can be made arbitrarily large if we take m large enough. This is a contra-
diction, and therefore the Harnack inequality cannot hold. �
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