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Abstract

As a Generalization to [36] where the Harnack inequality and the strong Feller
property are studied for stochastic porous media equations, this paper presents analo-
gous results for a large class of stochastic evolution equations with general monotone
drifts. Some ergodicity, compactness and contractivity properties are established for
the associated transition semigroups. Moreover, the exponential convergence of the
transition semigroups to invariant measure and the existence of a spectral gap are
also derived. As examples, the main results can be applied to many concrete SPDEs
such as stochastic reaction-diffusion equations, stochastic porous media equations and
stochastic p-Laplace equation in Hilbert space.

Keywords: stochastic evolution equation; Harnack inequality; strong Feller property; er-
godicity; hyperbounded; ultrabounded; spectral gap; p-Laplace equation; porous media equa-
tion.
AMS Subject Classification: 60H15; 60J35; 47D07.

1 Introduction and Main results

The dimension-free Harnack inequality has been a very efficient tool for the study of dif-
fusion semigroups in recent years. It was first introduced by Wang in [32] for diffusions
on Riemannian manifolds, then this infinite dimensional version of Harnack inequality has
been applied and extended intensively later, see e.g. [33, 35, 28, 29] for applications to
functional inequalities; [1, 2, 16] for the study of short time behavior of infinite-dimensional
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diffusions; [14, 34] for the estimate of high order eigenvalues, and [5] for applications to the
transportation-cost inequality and [13] for heat kernel estimates.

Recently, the dimension-free Harnack inequality was established in [36] for stochastic
porous media equations and in [20] for the stochastic fast-diffusion equations. As applica-
tions, the strong Feller property, estimates of the transition density and some contractive
properties were obtained for the associated transition semigroups. The approach used in
[20, 36] is based on a coupling argument developed in [3], where the Harnack inequality was
studied for diffusion semigroups on Riemannian manifolds with unbounded curvatures from
below. The advantage of this approach is one can avoid the assumption on the lower bounds
of curvature, which used essentially in previous works (cf.[1, 2, 5, 28, 29]) and would be very
hard to verify in the present framework of non-linear SPDE.

The aim of this paper is to establish the analogous results for general stochastic evo-
lution equations within the variational framework. More precisely, we mainly deal with
the stochastic evolution equations with monotone drifts in Hilbert space, whick cover many
important types of SPDE such as stochastic reaction-diffusion equations, stochastic porous
media equations and stochastic p-Laplace equation (cf.[26, 18, 38]). We first establish the
Harnack inequality and the strong Feller property for the associated transition semigroups,
then it has been used to derive some ergodicity and contractivity properties for the corre-
sponding transition semigroups. In particular, we give a very easy proof for the (topological)
irreduciblity by using the Harnack inequality in Theorem 1.4. Hence we can obtain the
uniqueness of invariant measures for the transition semigroups without assuming the strict
monotonicity of the drift, which has been required in many earlier works [26, 36, 20, 27, 8].
And we also obtain the convergence rate of the transition semigroups to its equilibrium. This
result implies the estimate of decay of the solutions to the deterministic evolution equations
(e.g. p-Laplace equation, porous medium equation), which coincide with some well-known
results in PDE theory. Moreover, the existence of a spectral gap are also investigated for
the corresponding Kolmogorov operator.

Now we describe our framework for SPDE in details. There exist three main different
approaches to analyze stochastic partial differential equations in the literature. The “mar-
tingale measure approach” was initiated by J. Walsh in [31]. The “variational approach”
was first used by Pardoux [25] to study SPDE, then this approach was further developed by
Krylov and Rozovoskii [18] and applied to non-linear filtering. Concerning the “semigroup
approach” we can refer to the classical book by Da Prato and Zabcyzk [9]. In this paper we
will use the variational approach because we mainly treat nonlinear SPDE of evolutionary
type. All kinds of dynamics with stochastic influence in nature or man-made complex sys-
tems can be modelled by such equations. This type of SPDE has been studied intensively
in recent years, we refer to [8, 12, 19, 27, 17, 26, 38](and references therein) for various
generalizations and applications.

Let H be a separable Hilbert space with inner product 〈·, ·〉H and H∗ its dual. Let V be
a reflexive and separable Banach space such that V ⊂ H continuously and densely. Then
for its dual space V ∗ it follows that H∗ ⊂ V ∗ continuously and densely. Identifying H and
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H∗ via the Riesz isomorphism we know that

V ⊂ H ≡ H∗ ⊂ V ∗

is a Gelfand triple. If the dualization between V ∗ and V is denoted by V ∗〈·, ·〉V we have

V ∗〈u, v〉V = 〈u, v〉H for all u ∈ H, v ∈ V.

SupposeWt is a cylindrical Wiener process on a separable Hilbert space U w.r.t a complete
filtered probability space (Ω,F ,Ft,P), and (L2(U ;H), ‖ · ‖2) is the space of all Hilbert-
Schmidt operators from U to H. Now we consider the following stochastic evolution equation

(1.1) dXt = A(t,Xt)dt+BtdWt, X0 = x ∈ H,

where
A : [0, T ]× V × Ω→ V ∗; B : [0, T ]× Ω→ L2(U,H)

are progressively measurable. We first recall the classical result in [18] for the existence and
uniqueness of strong solution. For more general results we refer to [12, 27, 38].

Lemma 1.1. ([18] Theorems II.2.1, II.2.2 ) Consider the general stochastic evolution
equation

(1.2) dXt = A(t,Xt)dt+B(t,Xt)dWt

where
A : [0, T ]× V × Ω→ V ∗; B : [0, T ]× V × Ω→ L2(U ;H)

are progressively measurable. Suppose for a fixed α > 1 there exist constants θ > 0, K and
a positive adapted process f ∈ L1([0, T ]× Ω; dt×P) such that the following conditions hold
for all v, v1, v2 ∈ V and (t, ω) ∈ [0, T ]× Ω.

(A1) Hemicontinuity of A: The map

λ 7→ V ∗〈A(t, v1 + λv2), v〉V

is continuous on R.

(A2) Monotonicity of (A,B):

2V ∗〈A(t, v1)− A(t, v2), v1 − v2〉V + ‖B(t, v1)−B(t, v2)‖2
2 ≤ K‖v1 − v2‖2

H .

(A3) Coercivity of (A,B):

2V ∗〈A(t, v), v〉V + ‖B(t, v)‖2
2 + θ‖v‖αV ≤ ft +K‖v‖2

H .

(A4) Boundedness of A:

‖A(t, v)‖V ∗ ≤ f
α/(α−1)
t +K‖v‖α−1

V .
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Then for any X0 ∈ L2(Ω → H;F0; P), (1.2) has a unique solution {Xt}t∈[0,T ] which is an

adapted continuous process on H such that E
∫ T

0
‖Xt‖αV dt <∞ and

〈Xt, v〉H = 〈X0, v〉H +

∫ t

0
V ∗〈A(s,Xs), v〉V ds+

∫ t

0

〈B(s,Xs)dWs, v〉H

hold for all v ∈ V and (t, ω) ∈ [0, T ]× Ω.

Note that in order to using the coupling method, here we only consider equation (1.1)
where the noise is the additive type. We intend to establish Harnack inequality for the
associate transition semigroup

PtF (x) := EF (Xt(x)), t ≥ 0, x ∈ H

where F is a bounded measurable function on H. To define the intrinsic metric induced by
Bt, we need to assume Bt(ω) is non-degenerate for t > 0 and ω ∈ Ω; that is, Bt(ω)y = 0
implies y = 0. Then for u ∈ V

‖u‖Bt :=

{
‖y‖U , if y ∈ U, Bty = u;

∞, otherwise.

Theorem 1.2. Suppose (A1) − (A4) hold for (1.1) with the coercivity exponent α. If there
exist a constant σ ≥ 2, σ > α − 2 and continuous functions δ, γ, ξ ∈ C[0,∞) such that for
any t ≥ 0, ω ∈ Ω and u, v ∈ V we have

(1.3) 2V ∗〈A(t, u)− A(t, v), u− v〉V ≤ −δtN(u− v) + γt‖u− v‖2
H ,

(1.4) N(u) ≥ ξt‖u‖σBt‖u‖
α−σ
H ,

where N is a positive real function on V and ξ, δ are strictly positive on [0,∞), then Pt is
strong Feller operator for t > 0, and for any p > 1 and positive measurable function F on
H we have

(1.5) (PtF )p(y) ≤ PtF
p(x) exp

[ p

p− 1
C(t, σ)‖x− y‖2+

2(2−α)
σ

H

]
, x, y ∈ H,

where

C(t, σ) =
2t

σ−2
σ (σ + 2)2+ 2

σ

(σ + 2− α)2+ 2
σ

[ ∫ t
0
(δsξs)

1
σ exp(α−2−σ

2σ

∫ s
0
γudu)ds

]2 .

In particular, if δ, ξ are time-independent, then

C(t, σ) =
2(σ + 2)2+ 2

σ

(σ + 2− α)2+ 2
σ (δξ)

2
σ t

σ+2
σ

.
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Remark 1.1. (1) Notice (A1)− (A4) are assumed in Theorem 1.2 only for the existence and
uniqueness of the strong solution to (1.1). One can replace those conditions by more general
ones in [27, 38] and obtain a similar result.

(2) This theorem covers the main result in [36] if we take N(u) = ‖u‖r+1
V for the stochas-

tic porous media equations. Moreover, if we take N(u) = m(g(u)) for some Young function
g, then this theorem can also be applied to stochastic generalized porous media equations
[27] in the framework of Orlicz space.

(3) This theorem can also be applied to many other types of SPDE in [26, 18] which
satisfy the strongly dissipative condition (1.3)(see Section 3). For concrete examples in this
paper we can consider N(u) = ‖u‖αV for simplicity. In this case (1.3) implies (A2) and (A3).
Under (1.3) we have established a stronger version of large deviation principle in [19] for
general SPDE with small multiplicative noise.

(4) Note (1.4) implies that V is contained in the range of Bt (as a operator from U to
H) for fixed t and ω. If we assume N(u) = ‖u‖αV and V ≡ H, then we know Bt is a bijection
map and its inverse operator is also continuous from H to U . Since Bt is a Hilbert-Schmidt
operator, then H and U has to be finite dimensional space. In this case (1.4) holds provided
Bt are invertible.

(5) The stochastic fast diffusion equations in [27] does not satisfy the assumption (1.3),
but we have also obtained the Harnack inequality, strong Feller property and heat kernel
estimate in [20] by using more delicate estimate. But we haven’t obtained strong contractive
property (e.g. hyperbounded) for the associated transition semigroups in [20] because of the
weaker dissipativity of the drift.

To apply Theorem 1.2 to obtain the heat kernel estimates, ergodicity and contractive
properties of Pt, we only consider the deterministic and time-homogenous case from now on.
We first establish some properties for invariant measure.

Theorem 1.3. Suppose coefficients A,B in (1.1) are deterministic and time-independent
such that (A1) and (A4) hold. Assume (1.3) hold for N(·) = ‖ · ‖αV and the embedding
V ⊆ H is compact.

(i) If γ ≤ 0 also holds in the case α ≤ 2, then the Markov semigroup {Pt} has an
invariant probability measure µ, which satisfies µ

(
‖ · ‖αV + eε0‖·‖

α
H

)
<∞ for some ε0 > 0.

(ii) If α = 2 , then for any x, y ∈ H we have

‖Xt(x)−Xt(y)‖2
H ≤ e(γ−c0δ)t‖x− y‖2

H , t ≥ 0,

where c0 is the constant such that ‖ · ‖2
V ≥ c0‖ · ‖2

H hold.
Moreover, if γ < c0δ, then there exists a unique invariant measure µ of {Pt} and for any

Lipschitz continuous function F on H we have

(1.6) |PtF (x)− µ(F )| ≤ Lip(F )e−(c0δ−γ)t/2(‖x‖H + C), x ∈ H,
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where C > 0 is a constant and Lip(F ) is the Lipschitz constant of F .
(iii) If α > 2 and γ ≤ 0, then there exists a constant C such that

‖Xt(x)−Xt(y)‖2
H ≤ ‖x− y‖2

H ∧
{
Ct−

2
α−2

}
, t > 0,

where Xt(y) is the solution to (1.1) with starting point y.
Therefore, {Pt} has a unique invariant measure µ and for any Lipschitz continuous func-

tion F on H we have

(1.7) sup
x∈H
|PtF (x)− µ(F )| ≤ CLip(F )t−

1
α−2 , t > 0.

Remark 1.2. (1.7) describes the algebraically convergence rate of the transition semigroup
to the equilibrium. In particular, if B = 0 and Dirac measure at 0 is the unique invariant
measure of {Pt}, then we can take F (x) = ‖x‖H in (1.7) and have

sup
x∈H
‖Xt(x)‖H ≤ Ct−

1
α−2 , t > 0.

Hence it give the decay estimate of the solution to a large class of deterministic evolution
equations. These results coincide with some well-known decay estimates in PDE theory, e.g.
the optimal decay of the solution to the classical porous medium equation in [4, 8]. We refer
to Section 3 for more examples.

We recall that {Pt} is called (topologically) irreducible if Pt1M(·) > 0 on H for any t > 0
and nonempty open set M . If {Pt} is a semigroup defined on L2(µ), then {Pt} is called
hyperbounded semigroup if ‖Pt‖L2(µ)→L4(µ) <∞ for some t > 0; {Pt} is called ultrabounded
semigroup if ‖Pt‖L2(µ)→L∞(µ) <∞ for any t > 0.

Theorem 1.4. Suppose coefficients A,B in (1.1) are deterministic and time-independent
such that all assumptions in Theorem 1.2 hold for N(·) = ‖ · ‖αV .

(i) {Pt} is irreducible and has a unique invariant measure µ with full support on H.
Moreover, µ is strong mixing and for any probability measure ν on H we have

lim
t→∞
‖ P ∗t ν − µ ‖var= 0,

where ‖ · ‖var is the total variation norm and P ∗t is the adjoint operator of Pt.
(ii) For any x ∈ H, t > 0 and p > 1, the transition density pt(x, y) of Pt w.r.t µ satisfies

‖pt(x, ·)‖Lp(µ) ≤
{∫

H

exp

[
−pC(t, σ)‖x− y‖2+

2(2−α)
σ

H

]
µ(dy)

}− p−1
p

.

(iii) If α = 2, then Pt is hyperbounded and compact on L2(µ) for some t > 0.
(iv) If α > 2, then Pt is ultrabounded and compact on L2(µ) for any t > 0. Moreover,

there exists a constant C > 0 such that

‖Pt‖L2(µ)→L∞(µ) ≤ exp
[
C(1 + t−

α
α−2 )

]
, t > 0.
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Remark 1.3. Based on the Harnack inequality, the irreducibility can be obtained very easily
for the transition semigroup. Then according to Doob’s theorem (see [22, 15]) one can
derive the uniqueness of invariant measures and some ergodic properties for the transition
semigroup. Comparing with the uniqueness result for invariant measure in Theorem 1.3, we
do not need to assume γ ≤ 0 or γ < c0δ in this case.

Let Lp be the generator of the semigroup {Pt} in Lp(µ). We say that Lp has the spectral
gap in Lp(µ) if there exists γ > 0 such that

σ(Lp) ∩ {λ : Reλ > −γ} = {0}

where σ(Lp) is the spectrum of Lp. The largest constant γ with this property is denoted by
gap(Lp).

Theorem 1.5. Suppose all assumptions in Theorem 1.4 hold and µ denotes the unique
invariant measure of {Pt}.

(i) If α = 2 and γ < c0δ, then the Markov semigroup {Pt} is V -uniformly ergodic, i.e.
there exist C, η > 0 such that for all t ≥ 0 and x ∈ H

sup
‖F‖V ≤1

|PtF (x)− µ(F )| ≤ CV (x)e−ηt,

where we can take V (x) = 1 + ‖x‖2
H and V (x) = eε0‖x‖

2
H for some small constant ε0 > 0,

‖F‖V := sup
x∈H

|F (x)|
V (x)

<∞.

(ii) If α > 2, then the Markov semigroup {Pt} is uniformly exponential ergodic, i.e. there
exist C, η > 0 such that for all t ≥ 0 and x ∈ H

sup
‖F‖∞≤1

|PtF (x)− µ(F )| ≤ Ce−ηt.

Moreover, for each p ∈ (1,∞) we have

gap(Lp) ≥
η

p
,

and for each F ∈ Lp(µ)

‖PtF − µ(F )‖p ≤ Cpe
−ηt/p‖F‖p, t ≥ 0.

Remark 1.4. Let ‖µ‖V denote the so-called V -variation

‖µ‖V = sup
‖F‖V ≤1

|µ(F )| = ‖V ◦ µ‖var,

where V ◦µ denotes the measure V dµ. Hence the uniformly exponential ergodicity is equiv-
alent to for any probability measure ν on H

‖P ∗t ν − µ‖var ≤ Ce−ηt, t ≥ 0.

Since ‖ · ‖var ≤ ‖ · ‖V , the V -uniformly ergodicity implies that

‖P ∗t ν − µ‖var ≤ Cν(V )e−ηt, t ≥ 0.
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The theorems will be proved in Section 2. To apply the main results, one has to verify
condition (1.3) and (1.4). For this purpose a crucial inequality is proved as a lemma in
Section 3. Then some concrete examples are discussed as applications.

2 Proofs of the Main Theorems

2.1 Proof of Theorem 1.2

The main techniques in the proof are a coupling argument and Girsanov transformation in
infinite dimensional space (cf.[20, 36]). The coupling method dates back to Doeblin’s work
[10] on Markov chains and it is one of the main tools in particle systems (cf.[6]). The first use
of coupling for SPDE up to our knowledge is due to Mueller [24], who used this technique
to prove the uniqueness of invariant measures for the stochastic heat equation. We refer to
some review papers [23, 21, 15] on this subject for more references.

The coupling we used here, which only depends on the natural distance between two
marginal processes, is a modification of the argument in [3]. Such a stronger Harnack
inequality (the estimate only depending on the usual norm) will provide more information
such as the strong Feller property and the hyper- or ultrabounded property of the transition
semigroups. In order to make the proof easier to understand, we first describe the main
ideas and steps.

To prove the Harnack inequality for the transition semigroup {Pt}, it suffices to construct
a coupling (Xt, Yt), which is a continuous adapted process on H ×H such that
(i) Xt solves (1.1) with X0 = x;
(ii) Yt solves the following equation

dYt = A(t, Yt)dt+BtdW̃t, Y0 = y

for another cylindrical Brownian motion W̃t on U under a weighted probability measure RP,
where W̃t as well as the density R will be constructed by a Girsanov transformation;
(iii) XT = YT , a.s.

As soon as (i)-(iii) are satisfied, then we have

PTF (y) = ERF (YT ) = ERF (XT )

≤ (ERp/(p−1))(p−1)/p(EF p(XT ))1/p

= (ERp/(p−1))(p−1)/p(PTF
p(x))1/p,

(2.1)

which implies the desired Harnack inequality provided ERp/(p−1) <∞.
Now we constract the coupling process Yt. We first take ε ∈ (0, 1), β ∈ C([0,∞); R+)

and consider the equation

(2.2) dYt =

(
A(t, Yt) +

βt(Xt − Yt)
‖Xt − Yt‖εH

1{t<τ}

)
dt+BtdWt, Y0 = y,
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where Xt := Xt(x) and τ := inf{t ≥ 0 : Xt = Yt} is the coupling time.
According to Lemma 1.1 we can prove that (2.2) also has a unique strong solution Yt(y)

by using a similar argument in [36, Theorem A.2] (in fact, one can prove the added drift is
also monotone). Then by (1.3) we have

‖Xt − Yt‖2
H ≤ ‖Xs−Ys‖2

H+

∫ t

s

(
−δuN(Xu − Yu) + γu‖Xu − Yu‖2

H − βu‖Xu − Yu‖2−ε
H 1{u<τ}

)
du

for all 0 ≤ s ≤ t. Hence we have Xt = Yt for t ≥ τ by using Gronwall’s lemma.
And it is easy to show that

(2.3)

e−
R t
0 γsds‖Xt − Yt‖2

H ≤ ‖x− y‖
2
H −

∫ t

0

e−
R u
0 γsds

(
δuN(Xu − Yu) + βu‖Xu − Yu‖2−ε

H 1{u<τ}

)
du.

First, we will prove the coupling time τ ≤ T a.s. by choosing βt appropriately in (2.2).

Lemma 2.1. If β satisfies
∫ T

0
βte
− ε

2

R t
0 γsdsdt ≥ 2

ε
‖x− y‖εH , then XT = YT , a.s.

Proof. By (2.3) and the chain rule we have{
e−

R t
0 γsds‖Xt − Yt‖2

H

}ε/2
≤ ‖x− y‖εH −

ε

2

∫ t

0

βse
− ε

2

R s
0 γududs, t ≤ τ ∧ T.

If T < τ(ω0) for some ω0 ∈ Ω, then by taking t = T and using the assumption we have

e−
ε
2

R T
0 γsds‖XT (ω0)− YT (ω0)‖εH ≤ ‖x− y‖εH −

ε

2

∫ T

0

βte
− ε

2

R t
0 γsdsdt ≤ 0.

This implies XT (ω0) = YT (ω0), which contradicts with the assumption T < τ(ω0).
Hence τ 6 T, a.s. The proof is complete.

Proof of Theorem 1.2 : Let ε = 1− α
σ+2
∈ (0, 1), then by (2.3) and (1.4) we have

d
{
‖Xt − Yt‖2

He
−

R t
0 γsds

}ε
≤ −εδte−ε

R t
0 γsds‖Xt − Yt‖2(ε−1)

H N(Xt − Yt)dt

≤ −εδtξte−ε
R t
0 γsds

‖Xt − Yt‖σBt
‖Xt − Yt‖2+σ−α−2ε

H

dt

= −εδtξte−ε
R t
0 γsds

‖Xt − Yt‖σBt
‖Xt − Yt‖σεH

dt

= −
βσt ‖Xt − Yt‖σBt
cσ‖Xt − Yt‖σεH

dt,

(2.4)

where

βσt = cσεδtξte
−ε

R t
0 γsds, c =

2‖x− y‖εH
ε
∫ T

0
(εδtξt)

1
σ e−( 1

2
+ 1
σ

)ε
R t
0 γsdsdt

.
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Let

ζt :=
βtB

−1
t (Xt − Yt)
‖Xt − Yt‖εH

1{t<τ}.

By using Hölder’s inequality and (2.4) we obtain∫ T

0

‖ζt‖2
Udt =

∫ T

0

β2
t ‖Xt − Yt‖2

Bt

‖Xt − Yt‖2ε
H

dt

≤ T
σ−2
σ

(∫ T

0

βσt ‖Xt − Yt‖σBt
‖Xt − Yt‖σεH

dt
) 2
σ

≤ T
σ−2
σ

(
cσ‖x− y‖2ε

H

) 2
σ
.

(2.5)

Hence we have

E exp
[1

2

∫ T

0

‖ζt‖2
Udt
]
<∞.(2.6)

Therefore, we can rewrite (2.2) as

dYt = A(t, Yt)dt+BtdW̃t, Y0 = y

where

W̃t := Wt +

∫ t

0

ζsds.

By (2.6) and the Girsanov theorem (e.g.[9, Th 10.14, Prop.10.17]) we know that {W̃t} is
a cylindrical Brownian motion on U under the weighted probability measure RP, where

R := exp
[ ∫ T

0

〈ζt, dWt〉 −
1

2

∫ T

0

‖ζt‖2
Udt
]
.

Therefore, the distribution of {Yt(y)}t∈[0,T ] under RP is same with the distribution of
{Xt(y)}t∈[0,T ] under P.

Let p′ = p
p−1

, then for any q > 1

ERp′ = exp
[
p′
∫ T

0

〈ζt, dWt〉 −
p′

2

∫ T

0

‖ζt‖2
Udt
]

≤
[
E exp(qp′

∫ T

0

〈ζt, dWt〉 −
q2(p′)2

2

∫ T

0

‖ζt‖2
Udt)

] 1
q

·
[
E exp(

qp′(qp′ − 1)

2(q − 1)

∫ T

0

‖ζt‖2
Udt)

] q−1
q

≤
[
E exp(

qp′(qp′ − 1)

2(q − 1)

∫ T

0

‖ζt‖2
Udt)

] q−1
q

≤ exp
[p′(qp′ − 1)

2
T
σ−2
σ

(
cσ‖x− y‖2ε

H

) 2
σ
]
.

(2.7)
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By taking q ↓ 1 we have

(PT )p(y) ≤ PTF
p(x)(ERp′)p′−1

≤ PTF
p(x) exp

[ p

p− 1
C(t, σ)‖x− y‖2+

2(2−α)
σ

H

]
,

(2.8)

where

C(t, σ) =
2t

σ−2
σ (σ + 2)2+ 2

σ

(σ + 2− α)2+ 2
σ

[ ∫ t
0
(δsξs)

1
σ exp(α−2−σ

2σ

∫ s
0
γudu)ds

]2 .

From (2.7) we know that R is uniformly integrable, then by the dominated convergence
theorem we have

lim
y→x

E|R− 1| = E lim
y→x
|R− 1| = 0.

Hence

|PTF (y)− PTF (x)| = |ERF (XT )− EF (XT )| ≤ ‖F‖∞E|R− 1| → 0(y → x).

This implies PTF ∈ Cb(H). Therefore, PT is strong Feller operator.

2.2 Proof of Theorem 1.3

(i) In the present case, {Pt} is a Markov semigroup (cf.[18, 26]). The existence of an invariant
measure µ can be proved by the standard Krylov-Bogoliubov procedure (cf.[26, 36]). Let

µn :=
1

n

∫ n

0

δ0Ptdt, n ≥ 1,

where δ0 is the Dirac measure at 0. Recall Xt(y) is the solution to (1.1) with starting point
y, then by (1.3) and the Gronwall Lemma

‖Xt(x)−Xt(y)‖2
H ≤ eγt‖x− y‖2

H , ∀x, y ∈ H.

This implies that Pt is a Feller semigroup.
Hence for the existence of an invariant measure, it is well-known that one only needs to

verify the tightness of {µn : n ≥ 1}.
Since γ ≤ 0 in the case α ≤ 2, then by (1.3) and (A4) we have

2V ∗ < A(x), x >V ≤ −δ‖x‖αV + γ‖x‖2
H + 2 V ∗〈A(0), x〉V

≤ θ2 − θ1‖x‖αV
(2.9)

holds for some constant θ1, θ2 > 0. By using the Itô formula we have

(2.10) ‖Xt‖2
H ≤ ‖x‖

2
H +

∫ t

0

(c− θ1‖Xs‖αV )ds+ 2

∫ t

0

〈Xs, BdWs〉H ,

11
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where c > 0 is some constant which may change from line to line.
Note that Mt :=

∫ t
0
〈Xs, BdWs〉H is a martingale, then (2.10) implies that

(2.11) µn(‖ · ‖αV ) =
1

n

∫ n

0

E‖Xt(0)‖αV dt ≤
c

θ1

, n ≥ 1.

Since the embedding V ⊆ H is compact, then for any constant K the set {x ∈ H : ‖x‖V ≤
K} is relatively compact in H. Therefore, (2.11) implies that {µn} is tight, hence the limit
of a convergent subsequence provides an invariant measure µ of {Pt}.

Now we need to prove the concentration property of µ. If ε0 is small enough, then by
(2.10) and Itô’s formula

eε0‖Xt‖
α
H ≤eε0‖x‖αH +

∫ t

0

(
c− θ1‖Xs‖αV + αε0‖B‖2

2‖Xs‖αH
) αε0

2
‖Xs‖α−2

H eε0‖Xs‖
α
Hds

+ αε0

∫ t

0

‖Xs‖α−2
H eε0‖Xs‖

α
H 〈Xs, BdWs〉H

≤eε0‖x‖αH +

∫ t

0

(c− c1‖Xs‖αH)
αε0

2
‖Xs‖α−2

H eε0‖Xs‖
α
Hds

+ αε0

∫ t

0

‖Xs‖α−2
H eε0‖Xs‖

q
H 〈Xs, BdWs〉H

≤eε0‖x‖αH +

∫ t

0

(
c2 − c3e

ε0‖Xs‖αH
)

ds+ αε0

∫ t

0

‖Xs‖α−2
H eε0‖Xs‖

α
H 〈Xs, BdWs〉H

(2.12)

holds for some positive constants c, c1, c2 and c3. Therefore

µn(eε0‖·‖
α
H ) =

1

n

∫ n

0

Eeε0‖Xt(0)‖αHdt ≤ 1

c3n
+
c2

c3

, n ≥ 1.

Hence we have µ(eε0‖·‖
α
H ) <∞ for some ε0 > 0. In particular, this implies µ(‖ · ‖2

H) <∞.
By (2.10) there also exists a constant C such that

E

∫ 1

0

‖Xt(x)‖αV dt ≤ C(1 + ‖x‖2
H), ∀x ∈ H.

Therefore

µ(‖ · ‖αV ) =

∫
H

µ(dx)

∫ 1

0

E(‖Xt(x)‖αV )dt ≤ C + C

∫
H

‖x‖2
Hµ(dx) <∞.

(ii) If α = 2, then for any x, y ∈ H

‖Xt(x)−Xt(y)‖2
H ≤ ‖x− y‖2

H +

∫ t

0

(
−δ‖Xs(x)−Xs(y)‖2

V + γ‖Xs(x)−Xs(y)‖2
H

)
ds.

By the Gronwall lemma we have

‖Xt(x)−Xt(y)‖2
H ≤ e(γ−c0δ)t‖x− y‖2

H , ∀x, y ∈ H.

12
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If γ < c0δ, then (2.9) still holds. Hence {Pt} has an invariant measure by repeating the
argument in (i). And we also have

lim
t→∞
‖Xt(x)−Xt(y)‖H = 0, ∀x, y ∈ H.

By the dominated convergence theorem we know for any invariant measure µ and for any
bounded continuous function F

|PtF (x)− µ(F )| ≤
∫
H

E|F (Xt(x))− F (Xt(y))|µ(dy)→ 0(t→∞).

This implies the uniqueness of invariant measures.
We denote the invariant measure by µ. By (i) we know µ(‖ · ‖2

H) < ∞, hence for any
bounded Lipschitz function F on H we have

|PtF (x)− µ(F )| ≤
∫
H

E|F (Xt(x))− F (Xt(y))|µ(dy)

≤ Lip(F )e(γ−c0δ)t/2
∫
H

‖x− y‖Hµ(dy)

≤ Lip(F )e(γ−c0δ)t/2 (‖x‖H + C) , x ∈ H,

where C > 0 is a constant.
(iii) If α > 2 and γ ≤ 0, then there exists a constant c > 0 such that

‖Xt(x)−Xt(y)‖2
H ≤ ‖x− y‖2

H − c
∫ t

0

‖Xs(x)−Xs(y)‖αHds, t ≥ 0.

Suppose ht solves the equation

(2.13) h′t = −ch
α
2
t , h0 = (‖x− y‖H + ε)2,

where ε is a positive constant. Then by a standard comparison argument we have

(2.14) ‖Xt(x)−Xt(y)‖2
H ≤ ht ≤ Ct−

2
α−2 ,

where C > 0 is a constant. In fact, we can define

ϕt := ht − ‖Xt(x)−Xt(y)‖2
H , τ := inf{t ≥ 0 : ϕt < 0}.

If τ <∞, then we know ϕτ ≤ 0 by the continuity.
By the mean-value theorem we have

ϕt ≥ ϕ0 − c
∫ t

0

(
h
α
2
s − ‖Xs(x)−Xs(y)‖αH

)
ds

≥ ε2 −K
∫ t

0

ϕsds, 0 ≤ t ≤ τ,

13
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where K > 0 is some constant. Then by the Gronwall lemma we have

ϕτ ≥ ε2e−Kτ > 0,

which is contradict to ϕτ ≤ 0. Hence (2.14) holds.
Therefore, for any x ∈ H and bounded Lipschitz function F on H, we have

|PtF (x)− µ(F )| ≤
∫
H

E|F (Xt(x)− F (Xt(y)))|µ(dy) ≤ CLip(F )t−
1

α−2 .

Hence (1.7) holds and the uniqueness of invariant measures also follows.

2.3 Proof of Theorem 1.4

(i) By the definition of ‖ · ‖B and (1.4), for any constant K there exists K > 0 such that

{x ∈ H : ‖x‖B ≤ K} ⊆ {Bu : u ∈ U ; ‖u‖U ≤ K};
{x ∈ H : ‖x‖V ≤ K} ⊆ {x ∈ H : ‖x‖B ≤ K}.

Since B is a Hilbert-Schmidt (hence compact) operator, then the following set

{x ∈ H : ‖x‖V ≤ K}

is relatively compact in H for any constant K, i.e. the embedding V ⊆ H is compact. Hence
{Pt} has an invariant measure according to Theorem 1.3.

Suppose µ is an invariant measure of Pt, then by taking p = 2 in (1.5) we have

(Pt1M(x))2

∫
H

e−2C(t,σ)‖x−y‖2+
2(2−α)
σ

H µ(dy)

≤
∫
H

Pt1M(y)µ(dy) = µ(M),

(2.15)

where M is a Borel set on H. Hence the transition kernel Pt(x, dy) is absolutely continuous
w.r.t. µ, and we denote the density by pt(x, y).

If µ does not have full support on H, this means there exist x0 ∈ H and r > 0 such that

B(x0; r) := {y ∈ H : ‖y − x0‖H ≤ r}

is a null set of µ. Then (2.15) implies that Pt(x0, B(x0; r)) = 0, i.e.

P (Xt(x0) ∈ B(x0; r)) = 0, t > 0.

SinceXt(x0) is a continuous process onH, we have P (X0 ∈ B(x0; r)) = 0, which is contradict
with X0 = x0.

Therefore, µ has full support on H.

14
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According to the Harnack inequality (1.5) we have

(Pt1M)p(x0) ≤ Pt1M(x) exp
[ p

p− 1
C(t, σ)‖x− x0‖

2+
2(2−α)
σ

H

]
, x, x0 ∈ H.

Therefore, to prove the irreducibility, one only has to show for any given nonempty open set
M and t > 0, there exists x0 ∈ H such that Pt1M(x0) > 0 .

Note that the full support property of µ implies∫
H

Pt1M(x)µ(dx) =

∫
H

1M(x)µ(dx) = µ(M) > 0.

So Pt1M(·) cannot be the zero function. Therefore {Pt} is irreducible.
Since {Pt} have also the strong Feller property, then the uniqueness of invariant measures

follows from the classical Doob theorem [7] (or See [15, Th 2.1]).
Note that the solution has continuous paths on H, then the other assertions follow from

the general result in the ergodic theory (cf.[30, Th 2.2 and Prop 2.5], [22]).
(ii) For any p > 1 and nonnegative measurable function f with µ(fp/(p−1)) ≤ 1, by

replacing p with p/(p− 1) in (1.5) we have(
Ptf(x)

)p/(p−1) ≤
(
Ptf

p/(p−1)(y)
)

exp
[
pC(t, σ)‖x− y‖2+

2(2−α)
σ

H

]
, x, y ∈ H.

Taking integration w.r.t. µ(dy) on both sides we have

(
Ptf(x)

)p/(p−1)
∫
H

e−pC(t,σ)‖x−y‖2+
2(2−α)
σ

H µ(dy) ≤ µ(fp/(p−1)) ≤ 1.

This implies that

Ptf(x) ≤
(∫

H

e−pC(t,σ)‖x−y‖2+
2(2−α)
σ

H µ(dy)

)−(p−1)/p

.

Note that

Ptf(x) =

∫
H

f(y)Pt(x, dy) =

∫
H

f(y)pt(x, y)µ(dy),

hence

‖pt(x, ·)‖Lp(µ) = sup
‖f‖Lq(µ)≤1

∣∣∣∣∫
H

f(y)pt(x, y)µ(dy)

∣∣∣∣ ≤ (∫
H

e−pC(t,σ)‖x−y‖2+
2(2−α)
σ

H µ(dy)

)−(p−1)/p

,

where q = p/(p− 1).
(iii) By (1.5) there exists a constant c > 0 such that

(2.16) (Ptf)2(x) exp

[
− c‖x− y‖2+

2(2−α)
σ

H

t
σ+2
σ

]
≤ Ptf

2(y), x, y ∈ H, t > 0.

15
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Integrating on both sides w.r.t. µ(dy), for f ∈ L2(µ) with µ(f 2) = 1 we have

(Ptf)2(x) ≤ 1

µ(B(0, 1))
exp

[c(‖x‖H + 1)2+
2(2−α)
σ

t
σ+2
σ

]
, x ∈ H, t > 0,(2.17)

where B(0; 1) := {y ∈ H : ‖y‖H ≤ 1} and µ (B(0; 1)) > 0.
If α = 2, then there exists C > 0 such that∫

H

(Ptf)4(x)µ(dx) ≤ C

µ(B(0, 1))

∫
H

exp
[C‖x‖2

H

t
σ+2
σ

]
µ(dx) <∞

holds for sufficiently large t > 0, since µ(eε0‖·‖
2
H ) is finite according to Theorem 1.3(i).

Hence Pt is hyperbounded operator for sufficient large t > 0. Since Pt has a density w.r.t.
µ, Pt is also compact in L2(µ) for large t > 0 according to [37, Theorem 2.3].

(iv) If α > 2, then by (2.12) we have for small enough ε0 > 0

(2.18) deε0‖Xt‖
α
H ≤ (c− θ‖Xt‖2α−2

H eε0‖Xt‖
α
H )dt+ αε0‖Xt‖α−2

H eε0‖Xt‖
α
H 〈Xt, BdWt〉H ,

where c, θ > 0 are some constants. By Jensen’s inequality we have

Eeε0‖Xt‖
α
H ≤ eε0‖x‖

α
H + ct− θε−(2α−2)/α

0

∫ t

0

Eeε0‖Xu‖
α
H
(
log Eeε0‖Xu‖

α
H
) 2α−2

α du.

Let h(t) solve the equation

(2.19) h′(t) = c− θε−(2α−2)/α
0 h(t)

{
log h(t)

}(2α−2)/α
, h(0) = exp [ε0 (‖x‖αH + c)] .

Then by a standard comparison argument we know

(2.20) Eeε0‖Xt(x)‖αH ≤ h(t) ≤ exp
[
c0

(
1 + t−α/(α−2)

)]
, t > 0, x ∈ H

hold for a constant c0 > 0. By using (2.17) we have

‖Ptf‖∞ = ‖Pt/2Pt/2f‖∞

≤ c1 sup
x∈H

E exp
[ c1

t(σ+2)/σ

(
1 + ‖X t

2
(x)‖H

)2+
2(2−α)
σ
]
, t > 0,

(2.21)

where c1 > 0 is a constant. By Young’s inequality there exists c2 > 0 such that

c1

t
σ+2
σ

(1 + u)2+
2(2−α)
σ ≤ ε0(1 + uα) + c2t

−α/(α−2), u, t > 0.

Therefore, there exists a constant C > 0 such that

‖Pt‖L2(µ)→L∞(µ) ≤ exp[C(1 + t−
α
α−2 )], t > 0.

The compactness of Pt also follows from the [37].
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2.4 Proof of Theorem 1.5

The proof is based on [11, Theorem 2.5-2.7]. Since the proof of (i) and (ii) are very similar,
here we only give the detailed proof for (ii) which is more difficult. According to Theorem
1.4, we know {Pt} is strong Feller and irreducible. Now we only need to verify the following
properties:

(1) For each r > 0 there exist t0 > 0 and a compact set M ⊂ H such that

inf
x∈Br

Pt01M(x) > 0,

where Br = {y ∈ H : ‖y‖H ≤ r}.
(2) There exist constants K <∞ and t1 > 0 such that

E‖Xt(x)‖2
H ≤ K, x ∈ H, t ≥ t1.

By using the Itô formula we have

‖Xt‖2
H ≤ ‖x‖2

H +

∫ t

0

(
c− δ

2
‖Xs‖αV + γ‖Xs‖2

H

)
ds+

∫ t

0

〈Xs, BWs〉H .

Since α > 2, there exists a constant c1 > 0

‖Xt‖2
H ≤ ‖x‖2

H +

∫ t

0

(
c1 −

δ

4
‖Xs‖αV

)
ds+

∫ t

0

〈Xs, BWs〉H .

This implies that there exists C > 0 such that

(2.22) E

∫ t

0

‖Xs‖αV ds ≤ C(t+ ‖x‖2
H), t ≥ 0.

And by using Jensen’s inequality

E‖Xt‖2
H ≤ ‖x‖2

H +

∫ t

0

[
C1 − C2

(
E‖Xs‖2

H

)α/2]
ds.

Then by a standard comparison estimate we get

E‖Xt(x)‖2
H ≤ C(1 + t−

2
α−2 ), x ∈ H, t > 0.

Hence property (2) holds.
According to (1.5), for the property (1) it is enough to show that there exist t0 and a

compact set M in H such that Pt01M(x) > 0 for some x ∈ Br.
By a simple contradiction argument, (2.22) implies that there exists t0 > 0 such that

Pt01M(x) > 0 for the compact set M :=
{
y ∈ H : ‖y‖V ≤ [C(1 + r2)]

1/α
}

and any x ∈ Br.

If α = 2 and γ < c0δ, then we can prove

E‖Xt(x)‖2
H ≤ e−βt‖x‖2

H + C, t ≥ 0, x ∈ H,

hold for some constants β > 0 and C.
Then the conclusions follow from the [11, Theorem 2.5, 2.7].
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3 Examples

To apply our main results, one has to verify condition (1.3) and (1.4). To this end, we
present some simple sufficient conditions for (1.3) and (1.4). We first establish the following
inequality, which is crucial for verifying (1.3) in concrete examples.

Lemma 3.1. Let (H, 〈·, ·〉) be a Hilbert space and ‖ · ‖ denote its norm, then for any r ≥ 0
we have

(3.1) 〈‖a‖ra− ‖b‖rb, a− b〉 ≥ 2−r‖a− b‖r+2, a, b ∈ H.

Proof. (i) If ‖a‖ = ‖b‖, then (3.1) holds obviously.
(ii) If ‖a‖ 6= ‖b‖, we may assume ‖a‖ > ‖b‖ without lost of generality. Then we have

〈‖a‖ra− ‖b‖rb, a− b〉
=‖b‖r‖a− b‖2 + (‖a‖r − ‖b‖r)〈a, a− b〉

=‖b‖r‖a− b‖2 +
1

2
(‖a‖r − ‖b‖r)(‖a‖2 + ‖a− b‖2 − ‖b‖2)

>‖b‖r‖a− b‖2 +
1

2
(‖a‖r − ‖b‖r)‖a− b‖2

=
1

2
(‖a‖r + ‖b‖r)‖a− b‖2

≥2−r‖a− b‖r+2.

(3.2)

Hence the proof is complete.

Remark 3.1. If r < 0, then (3.1) does not hold in general. Hence the assumption (1.3) in
Theorem 1.2 does not hold for the stochastic fast diffusion equations. For more details we
refer to [20].

In the following examples L(Y, Z) denotes the space of all bounded linear operators from
Y to Z and Ran(B) denotes the range of operator B.

Example 3.2. (Stochastic reaction-diffusion equation)
Let Λ be an open bounded domain in Rd with smooth boundary and ∆ be the Laplace operator
on L2(Λ) with Dirichlet boundary condition. Consider the following triple

W 1,2
0 (Λ) ⊆ L2(Λ) ⊆

(
W 1,2

0 (Λ)
)∗

and the stochastic reaction-diffusion equation

(3.3) dXt = (∆Xt − c|Xt|p−2Xt)dt+BdWt, X0 = x ∈ L2(Λ)

where 1 < p ≤ 2 and c ≥ 0, B is a Hilbert-Schmidt operator and Wt is a cylindrical Wiener
process on L2(Λ), then (A1)−(A4) and (1.3) hold with N(u) = ‖u‖2

1,2 (Sobolev norm). Hence
the assertions in Theorem 1.3 hold for (3.3).
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Moreover, if B is a one-to-one operator such that

W 1,2
0 (Λ) ⊆ Ran(B), B−1 ∈ L(W 1,2

0 (Λ);L2(Λ)),

then (1.4) also holds. In particular, if d = 1 and B := (−∆)−θ with θ ∈ (1
4
, 1

2
], then B

is a Hilbert-Schmidt operator and (1.4) holds. Hence the assertions in Theorem 1.2,1.4
and 1.5 also holds for (3.3). Particularly, the associated transition semigroup of (3.3) is
hyperbounded.

Remark 3.2. Suppose that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·

are the eigenvalues of −∆ and the corresponding eigenvectors {ei}i≥1 form an orthonormal
basis on L2(Λ). If Bei := biei and there exists a positive constant C such that

∑
i

b2
i < +∞; bi ≥

C√
λi
, i ≥ 1,

then B is a Hilbert-Schmidt operator and (1.4) holds.

On the other hand, by the Sobolev inequality (see [34],Corollary 1.1 and 3.1) we know
that

λi ≥ ci2/d, i ≥ 1,

hold for some constant c > 0. This implies that the space dimension d is less than 2.
However, if we consider a general negative definite self-adjoint operator L instead of ∆ in
(3.3), e.g. L := −(−∆)q, q > 0. Then, by the spectral representation theorem, our results
can apply to examples on Rd with d ≥ 2. For more details we refer to [20, 36].

Example 3.3. (Stochastic p-Laplace equation)
Let Λ be an open bounded domain in Rd with smooth boundary. Consider the triple

W 1,p
0 (Λ) ⊆ L2(Λ) ⊆ (W 1,p

0 (Λ))∗

and the stochastic p-Laplace equation

(3.4) dXt =
[
div(|∇Xt|p−2∇Xt)− c|Xt|p̃−2Xt

]
dt+BdWt, X0 = x,

where c ≥ 0, 2 ≤ p <∞, 1 ≤ p̃ ≤ p, B is a Hilbert-Schmidt operator and Wt is a cylindrical
Wiener process on L2(Λ), then the assertions in Theorem 1.3 hold for (3.4).

Moreover, if d = 1 and B := (−∆)−θ with θ ∈ (1
4
, 1

2
], then (1.4) also holds. Therefore the

assertions in Theorem 1.2,1.4 and 1.5 also hold for (3.4). In particular, the associated
transition semigroup of (3.4) is ultrabounded and compact provided p > 2.

19



Wei Liu

Proof. According to [26, Example 4.1.9], (A1)− (A4) hold for (3.4). Hence we only need to
verify (1.3) for N(u) = ‖u‖p1,p under our assumptions. By using Lemma 3.1 and the Poincaré
inequality we have

V ∗〈div(|∇u|p−2∇u)− div(|∇v|p−2∇v), u− v〉V

= −
∫

Λ

〈 |∇u(x)|p−2∇u(x)− |∇v(x)|p−2∇v(x),∇u(x)−∇v(x)〉Rddx

≤ −2p−2

∫
Λ

|∇u(x)−∇v(x)|pdx

≤ −C‖u− v‖p1,p, u, v ∈ W
1,p
0 (Λ),

where C > 0 is a constant. And it is easy to show that

V ∗〈|u|p̃−2u− |v|p̃−2v, u− v〉V ≥ 0.

Hence (1.3) holds.
If d = 1 and B := (−∆)−θ with θ ∈ (1

4
, 1

2
], then there exists a constant c > 0 such that

(see the remark above)
‖u‖1,2 ≥ c‖u‖B, u ∈ W 1,p

0 (Λ).

This implies (1.4) holds.

Remark 3.3. (1) The Harnack inequality and some consequent properties still hold if one
also add some locally bounded linear (or order less than p) perturbation in the drift. Only
for certain properties (e.g.hyperbounded or ultrabounded) we need to require the drift is
dissipative (i.e.γ ≤ 0).

(2) If we assume B = 0 in (3.4), then by (iii) of Theorem 1.3 we can get the following
decay of the solution to the classical p-Laplace equation

sup
x∈L2(Λ)

‖Xt(x)‖L2 ≤ Ct−
1
p−2 , t > 0.

The following SPDE has been studied in [18, 19], in which the main part of drift in the
equation is a high order generalization of the Laplace operator.

Example 3.4. Let Λ be an open bounded domain in R1 and m ∈ N+. Consider the following
triple

Wm,p
0 (Λ) ⊆ L2(Λ) ⊆ (Wm,p

0 (Λ))∗

and the stochastic evolution equation
(3.5)

dXt(x) =

[
(−1)m+1 ∂

m

∂xm

(∣∣∣∣ ∂m∂xmXt(x)

∣∣∣∣p−2
∂m

∂xm
Xt(x)

)
− c|Xt(x)|p̃−2Xt(x)

]
dt+BdWt,

where c ≥ 0, 2 ≤ p <∞, 1 ≤ p̃ ≤ p, B ∈ L2(L2(Λ)) and Wt is a cylindrical Wiener process
on L2(Λ), then the assertions in Theorem1.3 hold for (3.5).
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Moreover, if B is also a one-to-one operator such that B−1 ∈ L(Wm,p
0 (Λ);L2(Λ)), then

(1.4) is also satisfied. Hence the assertions in Theorem 1.2,1.4 and 1.5 hold for (3.5). In
particular, the associate transition semigroup of the solution is ultrabounded if p > 2 and
hyperbounded if p = 2.

Proof. Take N(u) = ‖u‖pm,p, then the proof is similar to the argument in Example 3.3.

Remark 3.4. (i) If we assume p > 2 and B = 0 in (3.5), then by Theorem 1.3 we also obtain
the decay of the solution to the deterministic evolution equation, i.e.

sup
f∈L2(Λ)

‖Xf
t ‖L2 ≤ Ct−

1
p−2 , t > 0,

where Xf
t denote the solution to the following equation

dXt(x)

dt
= (−1)m+1 ∂

m

∂xm

(∣∣∣∣ ∂m∂xmXt(x)

∣∣∣∣p−2
∂m

∂xm
Xt(x)

)
− c|Xt(x)|p̃−2Xt(x), X0 = f ∈ L2(Λ).

(ii) Assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·

are the eigenvalues of a positive definite self-adjoint operator L where D(
√
L) = Wm,2

0 (Λ),
the corresponding eigenvector {ei}i≥1 is an ONB of L2(Λ). Suppose Bei := biei and there
exists a constant C > 0 such that∑

i

b2
i < +∞; bi ≥

C√
λi
, i ≥ 1,

then B is a Hilbert-Schmidt operator on L2(Λ) and (1.4) is satisfied.
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