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Abstract

Using the coupling by parallel translation, along with Girsanov’s theorem, a new version of a dimension-
free Harnack inequality is established for diffusion semigroups on Riemannian manifolds with Ricci curva-
ture bounded below by —c(1 + ,03), where ¢ > 0 is a constant and p, is the Riemannian distance function to
a fixed point o on the manifold. As an application, in the symmetric case, a Li—Yau type heat kernel bound
is presented for such semigroups.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The difficulties of extending the elliptic Harnack inequality to the parabolic situation are well
studied; see the classical work of Moser [19,20], as well as [9,13,14]. In particular, it is in general
not possible to compare, for instance on compact sets, different values of a heat semigroup P; f
(for f non-negative) by a constant only depending on ¢. There are several ways to deal with
this deficiency: typically the parabolic Harnack inequality is formulated by introducing a shift
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in time; another possibility is by seeking for Holder type inequalities with an exponent strictly
bigger than 1. For a discussion of the difficulties to obtain Harnack inequalities by probabilistic
methods from Bismut type formulas, see for instance [23].

In 1997, a dimension-free Harnack inequality (with an exponent bigger than 1) was estab-
lished in [26] for diffusion semigroups with generators having curvature bounded from below.
This inequality has been applied and further developed to the study of functional inequalities
(see [1,22,27,29]), heat kernel estimates (see [4,10]), higher order eigenvalues (see [11,28,30]),
transportation cost inequalities (see [5]), and short time behavior of transition probabilities (see
[2,3,16]). Due to the potential of applications, it would be useful to establish inequalities of this
type also for diffusions with curvature unbounded below. On the other hand, since the formula-
tion of the inequality in [26] is equivalent to an underlying lower curvature bound (see [31]), the
formulation of the resulting inequality will be slightly different in the present paper.

Let M be a connected complete Riemannian manifold of dimension d, either with convex
boundary dM or without boundary. Let 0 € M be a fixed point, p be the Riemannian distance
function, and p,(x) := p(0, x), x € M. Consider the (reflecting) diffusion semigroup P; on M
generated by L := A + Z for some C'-vector field Z. We assume that the corresponding (reflect-
ing) diffusion process is non-explosive. We shall prove the dimension-free Harnack inequality
for P; under the following condition.

Assumption 1. There exists a constant ¢ > 0 such that for all x € M,

Ric, := inf{Ric(X, X): X € e M, |X| =1} > —c(1 + po(x)?),
hz(x) :=sup{(VxZ, X): X € T, M, |X| =1} <c(1 + po(x)),
(Z,Vpo)(x) <c(1+ po(x)). (1.1

In this case we have no longer a gradient estimate like |V P; f| < C; P|V f|, which has
been crucial for deriving the original dimension-free Harnack inequality (cf. the proof of [26,
Lemma 2.2]). Under our condition it is possible to prove a weaker type estimate such as

IVP fIP <CiPIVSIP forp>1,

but this is not enough to imply the desired Harnack inequality by following the original proof.
Hence, in this paper we develop a new argument in terms of coupling by parallel translation and
Girsanov’s theorem.

The main idea is as follows. Given two points xo # yo on M, let (x;, y;) be the coupling by
parallel translation of the L-diffusion process starting from (xg, yo). To force the two marginal
processes to meet before a given time 7', we make a Girsanov transformation of y;, denoted by
v:, which is equal to x; at t = T and is generated by L under a weighted probability Q := RP
with a density R induced by the Girsanov transform. Then, for any bounded measurable function
on M, one has

|Pr 1% (yo) = [Eq[f Gn)]|* = [E[Rf (x1)] |
< Prlf1% (o) (BLRY@ D)™ o> 1

To derive a Harnack inequality, it suffices therefore to prove that E[R?] < oo for p > 1 and to
estimate this quantity. We will be able to realize this idea under Assumption 1 (cf. Sections 2
and 3 below for a complete proof).
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Theorem 2. Suppose that Assumption 1 holds. For any € € 10, 1] there exits a constant c(g) > 0
such that

1 , 2
[P fI* () < lea(x)exp{“;f; = s>)<z(f 1y>)r

c(e)o(a + 1)?
(@ —1)3

—1
(1+p0x, M) oG, >+ “T(l + po<x>2)}

holds for all « > 1, t > 0, x,y € M and any bounded measurable function f on M, where

o (x,y) is the Riemannian distance from x to y and p,(x) = p (0, x).

As an application of the above Harnack inequality, we present a heat kernel estimate as in
[10]. Assume that Z = VV for some C 2_function V on M , such that P; is symmetric w.r.t. the
measure (dx) := eV@dx, where dx is the Riemannian volume measure. Let p:(x,y) be the
transition density of P; w.r.t. u; that is,

Ptf(x)=/pt(x,y)f(y)u(dy), xeM, t>0, feCyM).
M

Corollary 3. Suppose that Assumption 1 holds and let Z = VV. For any § > 2 there exists a
constant c(8) > 0 such that for any t > 0,

exp{— 292 4 c()(1+1 412+ po(0) + po(»)
(B 2D (B(y.~/20)

pr(x,y) < , X,yEM,

where B(x,r) is the geodesic ball centered at x in M with radius r.
2. Proof of Theorem 2 without cut-locus

To explain our argument in a simple way, we assume in this section that the cut-locus is empty;
that is, Cut(M) := {(x,y) € M x M: x € cut(y)} = @. In the next section, we then treat the
technical details for Cut(M) # @. Moreover, if M is convex, we may assume that M is a regular
domain in a Riemannian manifold such that the minimal geodesic linking any two points in M
is contained in M, see [32, Proposition 2.1.5]. Thus, according to the proof of [25, Lemma 2.1],
the reflection of the two marginal processes at the boundary makes them move together faster.
Hence, without loss of generality, we may and will assume that 9 M = . Finally, in the sequel
we assume that f is a non-negative measurable bounded function on M.

We now recall the construction of coupling by parallel translation. Let B; be a d-dimensional
Brownian motion. Then the L-diffusion process starting at xop € M can be constructed by solving
the following SDE:

dx, =vV2®,0dB; + Z(x;)dt, xpoe M, 2.1
where @, denotes the horizontal lift of x;; that is
d®; = Hp, odx;, Ppe Oy (M),

in terms of the horizontal lift operator H : 7*TM — TO(M).
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For given points x # y, let e(x, y) : [0, p(x, y)] = M be the unique minimal geodesic from x
to y and let Py y: Ty M — T, M be the parallel translation along the geodesic e(x, y). In particu-
lar P, , = I, the identity operator. Consider the It6 equation

d"®y, =2 P, @, dB, + Z(y)dt, yoe M, (2.2)

where in coordinates the 1t6 differential is given by
A 1 .
I k k k
@y = dyf + 2 Z riondly;, v/,
iJ

see Emery [8]. Recall that (2.2) is equivalent to the system of equations

d¥; = Hy, ody;, ¥ ¢€ OyO(M),

dy, =v2¥ 0dB/ + Z(y)dt, yo €M,

-1
dB; =¥, Py, ,®;dB;,

where the last equation is an It equation in R? and ¥, is the horizontal lift of y;. See [17, (2.1)]
for an analogous construction (with the mirror reflection operator). Since Py y is smooth, y; is a
well-defined L-diffusion process starting at yg. We call the pair (x;, y;) the coupling by parallel
translation of the L-diffusion process.

To calculate the distance process p(x;, y;), let My y:TxM — T, M be the mirror reflection
operator along the geodesic e(x, y); thatis, My X := P, , X if X | é, while M y X :=—P, , X
if X || ¢ at the point x. Let {u"}lflz_o1 be an orthonormal basis in R such that ®,u° = ¢ at x;.
Define v’ := ("' Py, ,, @)u’,i =0,...,d — 1. Since (®,u', &)(x,;) = 0 for all i # 0, we have

V= — (WM, y, @), v = (WM, @)U, i #0.
Then [17, Theorem 2 and (2.5)] implies

do(xr, yr) < Iz (xp, y0)de, 1<, (2.3)
where t :=inf{t > 0: x; = y;} is the coupling time and

d—1 p(x,y)
Iz(x.9)=Y / (Ve Ji? = (R(éCx, y), Ji)éCx, ), Ji)) ds
i=1 0

+Zp(,y)X)+ Zp(x,)(y).

Here R denotes the Riemann curvature tensor, ¢(x, y) the tangent vector of the geodesic e(x, y),
and {J; };1;11 are Jacobi fields along e(x, y) which, together with é(x, y), constitute an orthonor-
mal basis of the tangent space at x and y:

Jilp(x, ) =P, ) Ji(0), i=1,....d—1.
To calculate I7(x;, y;) we may take (®; (u')) at x, and (¥, (v')) at y:. Let

K(x,y):= sup (—Ricz)+,

z€e(x,y)

8(x,y):=sup{(VxZ,X):: z€e(x,y), XM, |X|=1}.
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We have
p(x,y)
Zo(, Y)) + Zp(x, )(y) = / (Ve Z. éx. y), ds < 5z, y)p(x, ).
0

Thus, by [32, Theorem 2.1.4] (see also [7] and [6]), we obtain

I7(x.y) <2J/K(x y)(d — 1)tanh(p(x2’ Y K d= 1)) 50, )p(x,y). (2.4)

To construct a coupling such that the coupling time is less than a given T > 0, let us consider the
equation

"5 = V2 Py, 5, dB, + Z(F,) dt
p(x0, Y0)
T

where n(y, x) :=é(y, x)|y, = Vop(x,-)(y) € TyM for x # y. Since n(x, y) is smooth outside the
diagonal D := {(x, x): x € M}, the solution y; exists and is unique up to the coupling time
7:=inf{r > 0: x;, = y;}. We let y;, = x; for t > 7. As in (2.3) we have

o (x0, Y0)
T

- (lz(xt, yi) + )n(iz, x)dt, Yo = yo. 2.5

dp(x, 1) < — dr, <7,

sothat T < T. Let

INT

l: \/— /< Xss V3¢ dBS’ (IZ(xévyS)—i_ p( all y0)> (&vas)>v

R; ::exp<N, — 5[N],>. (2.6)

By Girsanov’s theorem, {y;} is an L-diffusion under the weighted probability measure Q :=
R7P. Therefore,

Prf(y) =Eq[f ()] =E[Rr f(x7)]
< (B[r*en)]) " ®RDVE, a7t +p7 =1 @)
By (2.4) and (2.6) we have

T
1 3 , 2
[N]r < Ef(lzoct, 50+ M) di

NI—‘

T

2
/(2 (d—1)K(x;,?z)+5(er9t)P(x“yf)+M) &
0

Exploiting the conditions (1.1) and the fact that p(x;, y;) < p(x0, yo), We obtain, given ¢ € ]0, 1],
T

[Nlr < / {cl(l + p(x0, ¥0)*) (1 + po(x)?) +

0

2
p(x0, ¥o) }dt 28)

2—¢)T?
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for some constant ¢; = c1(¢) > 1. Next, by (1.1) and the Laplacian comparison theorem, we get
dpo(x;) < V2db,
(1 + poi)?)/(d — D coth] po(x)ye(1+ po(x)?) /@ — 1) | de
+c(14 po(xs)) dr =:~/2db, + U, dr,

where b; is a one-dimensional Brownian motion. In particular, this gives

dpo(x0)* < 22 po (x1) dby + [2U; 0o (x2) + 2] di
<2v2p, (1) dby + (1 + po(x:)*) dt
for some constant ¢ > 0. Thus, for any y, § > 0, we have

de? (IHpo(x)))e™

<M, — ye (8 — e2) (1 + po(0)?) — dy €% p, (x)2) 7 IHre e gy
for some local martingale M;. Letting § := ¢ + 4y we arrive at
E[exp{y (1 + po(x;)z)e_‘”}] Lexp{y(1+ po(x0)2)}.
Therefore, there exists a constant 8o € ]0, 1] such that
E[exp{So(l + ,oo(xt)z)}] < exp{l + ,Oo(xo)z}, t < 1. 2.9)

Let p:=1+4¢, g :=(1+ ¢)/e. The proof of Theorem 2 is completed in two more steps.
I. Assume that T < T := 280/[c18(Bp — g (1 + p(x0, y0)>)]. We have

y = B(Bp — Dgci (1 + p(xo. y0)*) T/2 < do.
Then, by (2.8) and (2.9), we obtain

E[exp{B(8p — Dq[N1r/2}]

T
1 ,
<o HEL fe [exp{%/ o) H
0
B(p — Dap(roy0* | 1 [
p — 1)gp(xo, y
< oxpf L2 J0P 00 0 }?/E[exp{ao(l+p,,(x,)2)}]dt
0
B(Bp — gp(xo, yo)? 2
<exp oo ) }

Combining this with (2.7) and the fact that
E[R}] =E[exp{ N1 — pB2[N17/2} exp{B(Bp — DINI7/2}]
< (Eexp{pBNr — p*B*[N1r/2})"" (Eexp{B(Bp — Da[N1r/2})"?
= (Eexp{B(Bp — Dq[N17/2})"",

we conclude that

. 2
a(pB — 1)p(x0, yo) T i(l +p0(x0)2)}- (2.10)

(Prf)*(y0) < Pr f* (x0) ‘“‘Xp{ 20-oT ap



M. Arnaudon et al. / Bull. Sci. math. 130 (2006) 223-233 229

IL. If T > T, then by (2.10) and Jensen’s inequality,

(Pr )*(0) < (Pr,(Pr—1, 1)) (o)

-1 , 2
< Pry,(Pr—1, f)* (x0) exp{“(p P Dpto. ol | &y po(xo>2)}

22 —-2e)Tp qp

< Prf*(xo) CXP{Czaﬁ@ﬂ — D?(1+ p(x0. y0)%) p(x0, y0)*

o
+ %(1 + po<xo)2)}
for some ¢ = c>(¢). In conclusion, combining this with (2.10), the desired inequality for some
c(e) > 0 is obtained.

3. Proof of Theorem 2 with cut-locus

As already explained in Section 2, we may assume that d M = J. When Cut(M) # ¢, the idea
(originally due to Cranston [7]) is to construct the coupling by parallel translation outside of
Cut(M) and to let the two marginal processes move independently on the cut-locus. This idea
has been realized in [32] by an approximation argument. Since the present situation is different
due to the Girsanov transformation, we reformulate the procedure here in detail for our purpose
of achieving a coupling time smaller than a given T > 0.

By Itd’s formula it is easy to see that, when Cut(M) = @, the generator of the coupling (x;, ¥;)
is (cf. the proof of [15, Theorem 6.5.1])

d

L(x)+ L(y)+2 Z (Px,yXi(x)a Yj(Y)>Xi(x)Yj(y) - (Iz(x, ¥) + p(xo, YO)/T)n(%x),
i,j=1

where L(x) and L(y) denote the operator L acting on the first and the second components re-
spectively, and {X;} and {Y;} are local frames normal at x and y, respectively. Note that this
operator is independent of the choices of the local frames. Thus, in the general situation, we
intend to construct a process generated by

d

L(x,y) = L) + L) + 21gcuon @ 3) Y (Peoy Xi(0). Y (3)Xi ()Y ()
i,j=1

~ (g cwan 12) (. ) + p (o, ¥0)/ T) n(y, x), 3.1

where n(y, x) is set to be zero on Cut(M) U D. To this end, we adopt an approximation argument
as in [32, §2.1].
Foranyn > 1and ¢ €10, 1[, let i, . € C°°(M x M) such that

0<hye<1l—g¢, hn,e|CCUt(M)n =1-e¢, hn,£|CUt(M)2n =0,
where
Cut(M),, :={(x, y): puxm((x.y). Cut(M)) <1/n}, n>1,

and pysx p is the Riemannian distance on M x M. Consider the operator
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d

Ly, y) = L)+ L) + 2k (0. 3) Y (Pey Xi@). Y;(0))Xi (0)Y;(3)
i,j=1

— Iz, y) 4+ (1 = hpe(x, 3)) I (x, y) + p(x0, y0)/ T)n(y, x),
with J € C®°((M x M)\ D) such that
Lo(,y)(x)+ Lo(x,)(y) < J(x,y), x#y.

Since I:n, ¢ 1s a uniformly elliptic second order differential operator with smooth diffusion coef-
ficients and the drift is smooth outside of D, it generates a unique diffusion process (x;, y;"®)
up to the coupling time 7, . :=inf{t > 0: x; = ytn’g} (cf. [24, Theorem 6.4.3]), which can be
constructed by solving (2.1) and the Itd SDE

dhéytn"’3 =,/ 2hn,8(x,, ytn,g) th’y;ns (Pt dB[

200 = e ) W B+ Z ()

- (IZ(xlv y;l’g) + (1 - hn,&‘(-xlv ytnyg))‘](xlv y[n’g) + p(x()v )’O)/T)n(yzn’sa -xl)dt

with initial condition yy'® = yo, where ®; and ¥/"® are the horizontal lifts of x; and y;"* re-
spectively, and B; and B are two independent d-dimensional Brownian motions. Indeed, the last
equation may be solved first neglecting the drift term involving n(y;"*, x;) and then by applying
Girsanov’s theorem. We set yt" f =x, fort > T,.¢. By the choice of J and using It&’s formula of
the radial process as presented in [18], we get

dp (e, Y1) < 24/ 1 = hy o (xp, y5) dB)® — M dt, 1< T, (3.2)

where b;"s is a one-dimensional Brownian motion. Therefore, letting Pﬁ?gy % be the distribution
of (x¢, y,"’s)zg[o,T], where here and in the sequel, (§,n) € C([0,T]; M x M) is the canonical
path, we have

lim sup sup P, { sup p (&, ) > N} =0. (33)

N—oo n,& te[0,T]

Since the first marginal distribution of P,°”° is P¥0, the distribution of the L-diffusion process
starting at xg, it follows from (3.3) that

Pi?éyo{ sup pMXM((éSv ns), G, 771)) = N}

s,t€[0,T]
<P sup (205, &) + p(Es, ns) + p(&. 1)) = N}
s,t€[0,T]
<P sup p&. &) = N/ + P sup p(&.n) = N/4}
s,t€[0,T] t€l0,7T]
=P sup p(&. &) = N/4}+PB% 0 sup p(&,m) > N/4} -0,
s,t€(0,T] tel0,T]

as N — oo. Thus, by [21, Lemma 4] the family {P,°"°: n > 1, & € 10, 1[} is tight. We take

ny — oo and g — 0 such that P,,"2% converges weakly to some P> (¢ > 1) as k — oo while
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Pﬁf’y % converges weakly to some P*0-%0 as ¢ — oo. It is trivial to see that P*0-Y0 solves the
martingale problem for L up to the coupling time; that is, for any f € Co°((M x M)\ D),

t

f&ne) — / Lf(,n)ds, 1<T,
0
is a P*0-Y0-martingale w.r.t. the natural filtration up to inf{r > 0: & = n,;}. Moreover, according
to the proof of [32, Theorem 2.1.1] and (3.2), there holds

dp(&,no) < —M dr, PY0_gsg, (3.4)

Hence, there exist two independent d-dimensional Brownian motions B; and B; on a complete
probability space (§2, ¥, #;, P), and two processes x; and y; on M such that Eq. (2.1) and
d"5, = V2 1g curar) s 50) Pay,y, @1 dBy + V2 Lewomny (e, 50 dB] + Z(5,) dt
— (Iz(x. 31) + p(x0, y0) / T)n(r, xp)de, 1 < T,
hold, where @; and ¥; are the horizontal lifts of x; and y; respectively, and T :=inf{r > 0: x; =
¥:}. Moreover, by (3.4) we have
p(x0, y0) ar.
T
aswellas T < T.Let y, =x; for t > 7 and let R; be defined as in Section 2 with

do(x;, y1) < —

INT

1 - ~
N; = ﬁ ‘/‘<sz,5zs (ICCut(M) (x5, ys)Ps dBg + 1Cut(M) (x5, ys)Ws dB;)a
0

(Iz(xs, 5) + M)n@s,m)

We conclude that y, is generated by L under the probability Q := R7P. The remainder of the
proof is analogous to the case where Cut(M) =

4. Proof of Corollary 3

Givent >0,let T >0, pe]l,2[ and g := p/2(p — 1) be such that gt < T. Applying Theo-
rem 2 with & :=2/p and ¢ = 1, we obtain, for any bounded non-negative measurable function f,

I = p(B, @)) efcl<1+z+z2+po<x)2>fr/<rfqt)(P[f(x))Z

< / (Ptf“(y>)”exp{—c1(1+t+r2+po(x>2)— :

T —qt
B(x,/21)
2 2
N ale+1Dp N 2pc(Da(a + l)% (1420)t N E(a B 1)(1 + pg(y)z)}u(dy).
a—1 (a — 1)- 2

Since on B(x, \/Z) one has ,()(,(y)2 < 2,00(x)2 + 4¢, there exists a constant ¢; = c¢1(p) > 0 such

that
2
1< / (Ptf"f(y))”exp{ z(pT( y))} (dy).
B(x,+/21)
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Combining this with [10, (2.9)] we arrive at

2
1<ff2<y>exp{—%}u(dy>. @.1)
M

Taking f(y) := (n A ps(x, y)) exp{n A 232}y € M, we obtain from (4.1) that

2
/(n A pi(x, y))zeXp{n A %}M(dy)
M

ol (Pt 412+ po(0)?) +1/(T — 1))
h (B (x, v/20)
For any 6 > 2, letting T :=§¢/2 and g := 1/2 + §/4, we obtain

2 2 2
Es(x.1) = )2 px,y) } 4 gexp{c(8>(1+t+t + 00(x))}
o A[ pe exp{ T K (B (x, V20)

for some c(8) > 0. Therefore, by [12, (3.4)] we have

_ 2
pe(x,y) < eXp{ %;y)}\/ﬂs(x, DEs(y, 1)
_ exp{e@) (L +1 412+ po(0)* + 9o (1)) = p(x, ¥)*/(201)}

(B VIO R(B(y. V210)
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