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Abstract

Using the coupling by parallel translation, along with Girsanov’s theorem, a new version of a dimension-
free Harnack inequality is established for diffusion semigroups on Riemannian manifolds with Ricci curva-
ture bounded below by −c(1+ρ2

o), where c > 0 is a constant and ρo is the Riemannian distance function to
a fixed point o on the manifold. As an application, in the symmetric case, a Li–Yau type heat kernel bound
is presented for such semigroups.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The difficulties of extending the elliptic Harnack inequality to the parabolic situation are well
studied; see the classical work of Moser [19,20], as well as [9,13,14]. In particular, it is in general
not possible to compare, for instance on compact sets, different values of a heat semigroup Ptf

(for f non-negative) by a constant only depending on t . There are several ways to deal with
this deficiency: typically the parabolic Harnack inequality is formulated by introducing a shift
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in time; another possibility is by seeking for Hölder type inequalities with an exponent strictly
bigger than 1. For a discussion of the difficulties to obtain Harnack inequalities by probabilistic
methods from Bismut type formulas, see for instance [23].

In 1997, a dimension-free Harnack inequality (with an exponent bigger than 1) was estab-
lished in [26] for diffusion semigroups with generators having curvature bounded from below.
This inequality has been applied and further developed to the study of functional inequalities
(see [1,22,27,29]), heat kernel estimates (see [4,10]), higher order eigenvalues (see [11,28,30]),
transportation cost inequalities (see [5]), and short time behavior of transition probabilities (see
[2,3,16]). Due to the potential of applications, it would be useful to establish inequalities of this
type also for diffusions with curvature unbounded below. On the other hand, since the formula-
tion of the inequality in [26] is equivalent to an underlying lower curvature bound (see [31]), the
formulation of the resulting inequality will be slightly different in the present paper.

Let M be a connected complete Riemannian manifold of dimension d , either with convex
boundary ∂M or without boundary. Let o ∈ M be a fixed point, ρ be the Riemannian distance
function, and ρo(x) := ρ(o, x), x ∈ M . Consider the (reflecting) diffusion semigroup Pt on M

generated by L := �+Z for some C1-vector field Z. We assume that the corresponding (reflect-
ing) diffusion process is non-explosive. We shall prove the dimension-free Harnack inequality
for Pt under the following condition.

Assumption 1. There exists a constant c > 0 such that for all x ∈ M ,

Ricx := inf
{
Ric(X,X): X ∈ TxM, |X| = 1

}
� −c

(
1 + ρo(x)2),

hZ(x) := sup
{〈∇XZ,X〉: X ∈ TxM, |X| = 1

}
� c

(
1 + ρo(x)

)
,

〈Z,∇ρo〉(x) � c
(
1 + ρo(x)

)
. (1.1)

In this case we have no longer a gradient estimate like |∇Ptf | � CtPt |∇f |, which has
been crucial for deriving the original dimension-free Harnack inequality (cf. the proof of [26,
Lemma 2.2]). Under our condition it is possible to prove a weaker type estimate such as

|∇Ptf |p � CtPt |∇f |p for p > 1,

but this is not enough to imply the desired Harnack inequality by following the original proof.
Hence, in this paper we develop a new argument in terms of coupling by parallel translation and
Girsanov’s theorem.

The main idea is as follows. Given two points x0 �= y0 on M , let (xt , yt ) be the coupling by
parallel translation of the L-diffusion process starting from (x0, y0). To force the two marginal
processes to meet before a given time T , we make a Girsanov transformation of yt , denoted by
ỹt , which is equal to xt at t = T and is generated by L under a weighted probability Q := RP

with a density R induced by the Girsanov transform. Then, for any bounded measurable function
on M , one has

|PT f |α(y0) = ∣∣EQ

[
f (ỹT )

]∣∣α = ∣∣E[
Rf (xT )

]∣∣α
� PT |f |α(x0)

(
E[Rα/(α−1)])α−1

, α > 1.

To derive a Harnack inequality, it suffices therefore to prove that E[Rp] < ∞ for p > 1 and to
estimate this quantity. We will be able to realize this idea under Assumption 1 (cf. Sections 2
and 3 below for a complete proof).
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Theorem 2. Suppose that Assumption 1 holds. For any ε ∈ ]0,1] there exits a constant c(ε) > 0
such that

|Ptf |α(y) � Pt |f |α(x) exp

{
α(εα + 1)ρ(x, y)2

2(2 − ε)(α − 1)t

+ c(ε)α2(α + 1)2

(α − 1)3

(
1 + ρ(x, y)2)ρ(x, y)2 + α − 1

2

(
1 + ρo(x)2)}

holds for all α > 1, t > 0, x, y ∈ M and any bounded measurable function f on M , where
ρ(x, y) is the Riemannian distance from x to y and ρo(x) = ρ(o, x).

As an application of the above Harnack inequality, we present a heat kernel estimate as in
[10]. Assume that Z = ∇V for some C2-function V on M , such that Pt is symmetric w.r.t. the
measure µ(dx) := eV (x)dx, where dx is the Riemannian volume measure. Let pt (x, y) be the
transition density of Pt w.r.t. µ; that is,

Ptf (x) =
∫
M

pt(x, y)f (y)µ(dy), x ∈ M, t > 0, f ∈ Cb(M).

Corollary 3. Suppose that Assumption 1 holds and let Z = ∇V . For any δ > 2 there exists a
constant c(δ) > 0 such that for any t > 0,

pt(x, y) �
exp

{−ρ(x,y)2

2δt
+ c(δ)(1 + t + t2 + ρo(x)2 + ρo(y)2)

}
√

µ(B(x,
√

2t))µ(B(y,
√

2t))

, x, y ∈ M,

where B(x, r) is the geodesic ball centered at x in M with radius r .

2. Proof of Theorem 2 without cut-locus

To explain our argument in a simple way, we assume in this section that the cut-locus is empty;
that is, Cut(M) := {(x, y) ∈ M × M: x ∈ cut(y)} = ∅. In the next section, we then treat the
technical details for Cut(M) �= ∅. Moreover, if ∂M is convex, we may assume that M is a regular
domain in a Riemannian manifold such that the minimal geodesic linking any two points in M

is contained in M , see [32, Proposition 2.1.5]. Thus, according to the proof of [25, Lemma 2.1],
the reflection of the two marginal processes at the boundary makes them move together faster.
Hence, without loss of generality, we may and will assume that ∂M = ∅. Finally, in the sequel
we assume that f is a non-negative measurable bounded function on M .

We now recall the construction of coupling by parallel translation. Let Bt be a d-dimensional
Brownian motion. Then the L-diffusion process starting at x0 ∈ M can be constructed by solving
the following SDE:

dxt = √
2Φt ◦ dBt + Z(xt )dt, x0 ∈ M, (2.1)

where Φt denotes the horizontal lift of xt ; that is

dΦt = HΦt ◦ dxt , Φ0 ∈ Ox0(M),

in terms of the horizontal lift operator H :π∗T M → T O(M).
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For given points x �= y, let e(x, y) : [0, ρ(x, y)] → M be the unique minimal geodesic from x

to y and let Px,y :TxM → TyM be the parallel translation along the geodesic e(x, y). In particu-
lar Px,x = I , the identity operator. Consider the Itô equation

dItôyt = √
2Pxt ,yt Φt dBt + Z(yt )dt, y0 ∈ M, (2.2)

where in coordinates the Itô differential is given by

(dItôyt )
k = dyk

t + 1

2

∑
i,j

Γ k
ij (yt )d[yi

t , y
j
t ],

see Emery [8]. Recall that (2.2) is equivalent to the system of equations

dΨt = HΨt ◦ dyt , Ψ0 ∈ Oy0(M),

dyt = √
2Ψt ◦ dB ′

t + Z(yt )dt, y0 ∈ M,

dB ′
t = Ψ −1

t Pxt ,yt Φt dBt ,

where the last equation is an Itô equation in Rd and Ψt is the horizontal lift of yt . See [17, (2.1)]
for an analogous construction (with the mirror reflection operator). Since Px,y is smooth, yt is a
well-defined L-diffusion process starting at y0. We call the pair (xt , yt ) the coupling by parallel
translation of the L-diffusion process.

To calculate the distance process ρ(xt , yt ), let Mx,y :TxM → TyM be the mirror reflection
operator along the geodesic e(x, y); that is, Mx,yX := Px,yX if X ⊥ ė, while Mx,yX := −Px,yX

if X ‖ ė at the point x. Let {ui}d−1
i=0 be an orthonormal basis in Rd such that Φtu

0 = ė at xt .
Define vi := (Ψ −1

t Pxt ,yt Φt )u
i , i = 0, . . . , d − 1. Since 〈Φtu

i, ė〉(xt ) = 0 for all i �= 0, we have

v0 = −(ΨtMxt ,yt Φt )u
0, vi = (ΨtMxt ,yt Φt )u

i, i �= 0.

Then [17, Theorem 2 and (2.5)] implies

dρ(xt , yt ) � IZ(xt , yt )dt, t � τ, (2.3)

where τ := inf{t � 0 : xt = yt } is the coupling time and

IZ(x, y) =
d−1∑
i=1

ρ(x,y)∫
0

(|∇ė(x,y)Ji |2 − 〈
R

(
ė(x, y), Ji

)
ė(x, y), Ji

〉)
s
ds

+ Zρ(·, y)(x) + Zρ(x, ·)(y).

Here R denotes the Riemann curvature tensor, ė(x, y) the tangent vector of the geodesic e(x, y),
and {Ji}d−1

i=1 are Jacobi fields along e(x, y) which, together with ė(x, y), constitute an orthonor-
mal basis of the tangent space at x and y:

Ji

(
ρ(x, y)

) = P(x, y)Ji(0), i = 1, . . . , d − 1.

To calculate IZ(xt , yt ) we may take (Φt (u
i)) at xt and (Ψt (v

i)) at yt . Let

K(x,y) := sup
z∈e(x,y)

(−Ricz)
+,

δ(x, y) := sup
{〈∇XZ,X〉z: z ∈ e(x, y), X ∈ TzM, |X| = 1

}
.
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We have

Zρ(·, y)(x) + Zρ(x, ·)(y) =
ρ(x,y)∫

0

〈∇ė(x,y)Z, ė(x, y)
〉
s

ds � δ(x, y)ρ(x, y).

Thus, by [32, Theorem 2.1.4] (see also [7] and [6]), we obtain

IZ(x, y) � 2
√

K(x,y)(d − 1) tanh

(
ρ(x, y)

2

√
K(x,y)/(d − 1)

)
+ δ(x, y)ρ(x, y). (2.4)

To construct a coupling such that the coupling time is less than a given T > 0, let us consider the
equation

dItôỹt = √
2Pxt ,ỹt

Φt dBt + Z(ỹt )dt

−
(

IZ(xt , ỹt ) + ρ(x0, y0)

T

)
n(ỹt , xt )dt, ỹ0 = y0, (2.5)

where n(y, x) := ė(y, x)|y = ∇ρ(x, ·)(y) ∈ TyM for x �= y. Since n(x, y) is smooth outside the
diagonal D := {(x, x): x ∈ M}, the solution ỹt exists and is unique up to the coupling time
τ̃ := inf{t � 0: xt = ỹt }. We let ỹt = xt for t � τ̃ . As in (2.3) we have

dρ(xt , ỹt ) � −ρ(x0, y0)

T
dt, t � τ̃ ,

so that τ̃ � T . Let

Nt := 1√
2

t∧τ̃∫
0

〈
Pxs,ỹs

Φs dBs,

(
IZ(xs, ỹs) + ρ(x0, y0)

T

)
n(ỹs, xs)

〉
,

Rt := exp

(
Nt − 1

2
[N ]t

)
. (2.6)

By Girsanov’s theorem, {ỹt } is an L-diffusion under the weighted probability measure Q :=
RT P. Therefore,

PT f (y) = EQ

[
f (ỹT )

] = E
[
RT f (xT )

]
�

(
E

[
f α(xT )

])1/α
(ER

β
T )1/β, α−1 + β−1 = 1. (2.7)

By (2.4) and (2.6) we have

[N ]T � 1

2

T∫
0

(
IZ(xt , ỹt ) + ρ(x0, y0)

T

)2

dt

� 1

2

T∫
0

(
2
√

(d − 1)K(xt , ỹt ) + δ(xt , ỹt )ρ(xt , ỹt ) + ρ(x0, y0)

T

)2

dt.

Exploiting the conditions (1.1) and the fact that ρ(xt , ỹt ) � ρ(x0, y0), we obtain, given ε ∈ ]0,1],

[N ]T �
T∫ {

c1
(
1 + ρ(x0, y0)

2)(1 + ρo(xt )
2) + ρ(x0, y0)

2

(2 − ε)T 2

}
dt (2.8)
0
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for some constant c1 = c1(ε) � 1. Next, by (1.1) and the Laplacian comparison theorem, we get

dρo(xt ) �
√

2 dbt

+
√

c
(
1 + ρo(xt )2

)
/(d − 1) coth

[
ρo(xt )

√
c
(
1 + ρo(xt )2

)
/(d − 1)

]
dt

+ c
(
1 + ρo(xt )

)
dt =: √2 dbt + Ut dt,

where bt is a one-dimensional Brownian motion. In particular, this gives

dρo(xt )
2 � 2

√
2ρo(xt )dbt + [

2Utρo(xt ) + 2
]

dt

� 2
√

2ρo(xt )dbt + c2
(
1 + ρo(xt )

2)dt

for some constant c2 > 0. Thus, for any γ, δ > 0, we have

deγ (1+ρo(xt )
2)e−δt

� dMt − γ e−δt
(
(δ − c2)

(
1 + ρo(xt )

2) − 4γ e−δtρo(xt )
2) eγ (1+ρo(xt )

2)e−δt

dt

for some local martingale Mt . Letting δ := c2 + 4γ we arrive at

E
[
exp

{
γ
(
1 + ρo(xt )

2)e−δt
}]

� exp
{
γ
(
1 + ρo(x0)

2)}.
Therefore, there exists a constant δ0 ∈ ]0,1] such that

E
[
exp

{
δ0

(
1 + ρo(xt )

2)}] � exp
{
1 + ρo(x0)

2}, t � 1. (2.9)

Let p := 1 + ε, q := (1 + ε)/ε. The proof of Theorem 2 is completed in two more steps.
I. Assume that T � T0 := 2δ0/[c1β(βp − 1)q(1 + ρ(x0, y0)

2)]. We have

γ := β(βp − 1)qc1
(
1 + ρ(x0, y0)

2)T/2 � δ0.

Then, by (2.8) and (2.9), we obtain

E
[
exp

{
β(βp − 1)q[N ]T /2

}]
� exp

{
β(βp − 1)qρ(x0, y0)

2

2(2 − ε)T

}
E

[
exp

{
γ

T

T∫
0

(
1 + ρo(xt )

2)dt

}]

� exp

{
β(βp − 1)qρ(x0, y0)

2

2(2 − ε)T

}
1

T

T∫
0

E
[
exp

{
δ0

(
1 + ρo(xt )

2)}]dt

� exp

{
β(βp − 1)qρ(x0, y0)

2

2(2 − ε)T
+ 1 + ρo(x0)

2
}
.

Combining this with (2.7) and the fact that

E[Rβ
T ] = E

[
exp

{
βNT − pβ2[N ]T /2

}
exp

{
β(βp − 1)[N ]T /2

}]
�

(
E exp

{
pβNT − p2β2[N ]T /2

})1/p(
E exp

{
β(βp − 1)q[N ]T /2

})1/q

= (
E exp

{
β(βp − 1)q[N ]T /2

})1/q
,

we conclude that

(PT f )α(y0) � PT f α(x0) exp

{
α(pβ − 1)ρ(x0, y0)

2

∇ + α (
1 + ρo(x0)

2)}. (2.10)

2(2 − ε)T qβ
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II. If T > T0, then by (2.10) and Jensen’s inequality,

(PT f )α(y0) �
(
PT0(PT −T0f )

)α
(y0)

� PT0(PT −T0f )α(x0) exp

{
α(pβ − 1)ρ(x0, y0)

2

2(2 − ε)T0
+ α

qβ

(
1 + ρo(x0)

2)}

� PT f α(x0) exp

{
c2αβ(2β − 1)2(1 + ρ(x0, y0)

2)ρ(x0, y0)
2

+ α

2β

(
1 + ρo(x0)

2)}

for some c2 = c2(ε). In conclusion, combining this with (2.10), the desired inequality for some
c(ε) > 0 is obtained.

3. Proof of Theorem 2 with cut-locus

As already explained in Section 2, we may assume that ∂M = ∅. When Cut(M) �= ∅, the idea
(originally due to Cranston [7]) is to construct the coupling by parallel translation outside of
Cut(M) and to let the two marginal processes move independently on the cut-locus. This idea
has been realized in [32] by an approximation argument. Since the present situation is different
due to the Girsanov transformation, we reformulate the procedure here in detail for our purpose
of achieving a coupling time smaller than a given T > 0.

By Itô’s formula it is easy to see that, when Cut(M) = ∅, the generator of the coupling (xt , ỹt )

is (cf. the proof of [15, Theorem 6.5.1])

L(x) + L(y) + 2
d∑

i,j=1

〈
Px,yXi(x),Yj (y)

〉
Xi(x)Yj (y) − (

IZ(x, y) + ρ(x0, y0)/T
)
n(y, x),

where L(x) and L(y) denote the operator L acting on the first and the second components re-
spectively, and {Xi} and {Yi} are local frames normal at x and y, respectively. Note that this
operator is independent of the choices of the local frames. Thus, in the general situation, we
intend to construct a process generated by

L̃(x, y) := L(x) + L(y) + 21�Cut(M)(x, y)

d∑
i,j=1

〈
Px,y Xi(x),Yj (y)

〉
Xi(x)Yj (y)

− (
(1�Cut(M)IZ)(x, y) + ρ(x0, y0)/T

)
n(y, x), (3.1)

where n(y, x) is set to be zero on Cut(M)∪D. To this end, we adopt an approximation argument
as in [32, §2.1].

For any n � 1 and ε ∈ ]0,1[, let hn,ε ∈ C∞(M × M) such that

0 � hn,ε � 1 − ε, hn,ε|�Cut(M)n = 1 − ε, hn,ε|Cut(M)2n = 0,

where

Cut(M)n := {
(x, y): ρM×M

(
(x, y),Cut(M)

)
� 1/n

}
, n � 1,

and ρM×M is the Riemannian distance on M × M . Consider the operator
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L̃n,ε(x, y) := L(x) + L(y) + 2hn,ε(x, y)

d∑
i,j=1

〈
Px,yXi(x),Yj (y)

〉
Xi(x)Yj (y)

− (
IZ(x, y) + (

1 − hn,ε(x, y)
)
J (x, y) + ρ(x0, y0)/T

)
n(y, x),

with J ∈ C∞((M × M) \ D) such that

Lρ(·, y)(x) + Lρ(x, ·)(y) � J (x, y), x �= y.

Since L̃n,ε is a uniformly elliptic second order differential operator with smooth diffusion coef-
ficients and the drift is smooth outside of D, it generates a unique diffusion process (xt , y

n,ε
t )

up to the coupling time τn,ε := inf{t � 0: xt = y
n,ε
t } (cf. [24, Theorem 6.4.3]), which can be

constructed by solving (2.1) and the Itô SDE

dItôy
n,ε
t =

√
2hn,ε(xt , y

n,ε
t )Pxt ,y

n,ε
t

Φt dBt

+
√

2
(
1 − hn,ε(xt , y

n,ε
t )

)
Ψ

n,ε
t dB ′

t + Z(y
n,ε
t )dt

− (
IZ(xt , y

n,ε
t ) + (

1 − hn,ε(xt , y
n,ε
t )

)
J (xt , y

n,ε
t ) + ρ(x0, y0)/T

)
n(y

n,ε
t , xt )dt

with initial condition y
n,ε
0 = y0, where Φt and Ψ

n,ε
t are the horizontal lifts of xt and y

n,ε
t re-

spectively, and Bt and B ′
t are two independent d-dimensional Brownian motions. Indeed, the last

equation may be solved first neglecting the drift term involving n(y
n,ε
t , xt ) and then by applying

Girsanov’s theorem. We set y
n,ε
t = xt for t � τn,ε . By the choice of J and using Itô’s formula of

the radial process as presented in [18], we get

dρ(xt , y
n,ε
t ) � 2

√
1 − hn,ε(xt , y

n,ε
t )db

n,ε
t − ρ(x0, y0)

T
dt, t � τn,ε, (3.2)

where b
n,ε
t is a one-dimensional Brownian motion. Therefore, letting P

x0,y0
n,ε be the distribution

of (xt , y
n,ε
t )t∈[0,T ], where here and in the sequel, (ξ., η.) ∈ C([0, T ];M × M) is the canonical

path, we have

lim sup
N→∞

sup
n,ε

P
x0,y0
n,ε

{
sup

t∈[0,T ]
ρ(ξt , ηt ) � N

} = 0. (3.3)

Since the first marginal distribution of P
x0,y0
n,ε is Px0 , the distribution of the L-diffusion process

starting at x0, it follows from (3.3) that

P
x0,y0
n,ε

{
sup

s,t∈[0,T ]
ρM×M

(
(ξs, ηs), (ξt , ηt )

)
� N

}
� P

x0,y0
n,ε

{
sup

s,t∈[0,T ]
(
2ρ(ξs, ξt ) + ρ(ξs, ηs) + ρ(ξt , ηt )

)
� N

}
� P

x0,y0
n,ε

{
sup

s,t∈[0,T ]
ρ(ξs, ξt ) � N/4

} + P
x0,y0
n,ε

{
sup

t∈[0,T ]
ρ(ξt , ηt ) � N/4

}
= Px0

{
sup

s,t∈[0,T ]
ρ(ξs, ξt ) � N/4

} + P
x0,y0
n,ε

{
sup

t∈[0,T ]
ρ(ξt , ηt ) � N/4

} → 0,

as N → ∞. Thus, by [21, Lemma 4] the family {Px0,y0
n,ε : n � 1, ε ∈ ]0,1[} is tight. We take

nk → ∞ and ε� → 0 such that P
x0,y0
nk,ε�

converges weakly to some P
x0,y0
ε�

(� � 1) as k → ∞ while
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P
x0,y0
ε�

converges weakly to some Px0,y0 as � → ∞. It is trivial to see that Px0,y0 solves the
martingale problem for L̃ up to the coupling time; that is, for any f ∈ C∞

0 ((M × M) \ D),

f (ξt , ηt ) −
t∫

0

L̃f (ξs, ηs)ds, t � T ,

is a Px0,y0 -martingale w.r.t. the natural filtration up to inf{t � 0: ξt = ηt }. Moreover, according
to the proof of [32, Theorem 2.1.1] and (3.2), there holds

dρ(ξt , ηt ) � −ρ(x0, y0)

T
dt, Px0,y0 -a.s. (3.4)

Hence, there exist two independent d-dimensional Brownian motions Bt and B ′
t on a complete

probability space (Ω,F ,Ft ,P), and two processes xt and ỹt on M such that Eq. (2.1) and

dItôỹt = √
2 1�Cut(M)(xt , ỹt )Pxt ,yt Φt dBt + √

2 1Cut(M)(xt , ỹt )Ψt dB ′
t + Z(ỹt )dt

− (
IZ(xt , ỹt ) + ρ(x0, y0)/T

)
n(ỹt , xt )dt, t � τ̃ ,

hold, where Φt and Ψt are the horizontal lifts of xt and ỹt respectively, and τ̃ := inf{t � 0: xt =
ỹt }. Moreover, by (3.4) we have

dρ(xt , ỹt ) � −ρ(x0, y0)

T
dt,

as well as τ̃ � T . Let yt = xt for t � τ̃ and let Rt be defined as in Section 2 with

Nt = 1√
2

t∧τ̃∫
0

〈
Pxs,ỹs

(
1�Cut(M)(xs, ỹs)Φs dBs + 1Cut(M)(xs, ỹs)Ψs dB ′

s

)
,

(
IZ(xs, ỹs) + ρ(x0, y0)

T

)
n(ỹs, xs)

〉
.

We conclude that ỹt is generated by L under the probability Q := RT P. The remainder of the
proof is analogous to the case where Cut(M) = ∅.

4. Proof of Corollary 3

Given t > 0, let T > 0, p ∈ ]1,2[ and q := p/2(p − 1) be such that qt < T . Applying Theo-
rem 2 with α := 2/p and ε = 1, we obtain, for any bounded non-negative measurable function f ,

I := µ
(
B(x,

√
2t )

)
e−c1(1+t+t2+ρo(x)2)−t/(T −qt)

(
Ptf (x)

)2

�
∫

B(x,
√

2t)

(
Ptf

α(y)
)p exp

{
−c1

(
1 + t + t2 + ρo(x)2) − t

T − qt

+ α(α + 1)p

α − 1
+ 2p c(1)α2(α + 1)2(1 + 2t)t

(α − 1)3
+ p

2
(α − 1)

(
1 + ρo(y)2)}µ(dy).

Since on B(x,
√

2t) one has ρo(y)2 � 2ρo(x)2 + 4t , there exists a constant c1 = c1(p) > 0 such
that

I �
∫
√

(
Ptf

α(y)
)p

exp

{
−1

2

ρ(x, y)2

(T − qt)

}
µ(dy).
B(x, 2t)
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Combining this with [10, (2.9)] we arrive at

I �
∫
M

f 2(y) exp

{
−ρ(x, y)2

2T

}
µ(dy). (4.1)

Taking f (y) := (n ∧ pt (x, y)) exp{n ∧ ρ(x,y)2

2T
}, y ∈ M , we obtain from (4.1) that∫

M

(
n ∧ pt (x, y)

)2 exp

{
n ∧ ρ(x, y)2

2T

}
µ(dy)

� exp{c1(p)(1 + t + t2 + ρo(x)2) + t/(T − qt)}
µ(B(x,

√
2t)

.

For any δ > 2, letting T := δt/2 and q := 1/2 + δ/4, we obtain

Eδ(x, t) :=
∫
M

pt(x, y)2 exp

{
ρ(x, y)2

δt

}
µ(dy) � exp{c(δ)(1 + t + t2 + ρo(x)2)}

µ(B(x,
√

2t)

for some c(δ) > 0. Therefore, by [12, (3.4)] we have

pt (x, y) � exp

{−ρ(x, y)2

2δt

}√
Eδ(x, t)Eδ(y, t)

� exp{c(δ)(1 + t + t2 + ρo(x)2 + ρo(y)2) − ρ(x, y)2/(2δt)}√
µ(B(x,

√
2t)µ(B(y,

√
2t))

.
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