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Harnack inequality for stable processes on d-sets

by

Krzysztof Bogdan, Andrzej Stós and Paweł Sztonyk (Wrocław)

Abstract. We investigate properties of functions which are harmonic with respect
to α-stable processes on d-sets such as the Sierpiński gasket or carpet. We prove the
Harnack inequality for such functions. For every process we estimate its transition density
and harmonic measure of the ball. We prove continuity of the density of the harmonic
measure. We also give some results on the decay rate of harmonic functions on regular
subsets of the d-set. In the case of the Sierpiński gasket we even obtain the Boundary
Harnack Principle.

1. Introduction. In the last two decades we observed a rapid develop-
ment of analysis and probability theory on fractals; see [DSV], [Str], [Ba],
[BB], [BP] and the references therein. [Ba], for example, presents proba-
bilistic techniques in potential theory corresponding to the generator of the
so-called fractional diffusion, the fractal analogue of the classical Brownian
motion (see the next section for precise definitions).

Starting from the fractional diffusions, a class of subordinated processes
on d-sets was introduced in [S]. By an analogy with the classical setting, we
call these processes α-stable. The definition is briefly recalled in Section 3.

The present paper addresses several important problems of the potential
theory of α-stable processes on d-sets. One of the results is the Harnack
inequality for nonnegative harmonic functions of the process. The main re-
sults were announced earlier in [BSS]. For related recent developments we
refer the reader to [FJ], [FU], [Kum], [HL].

The paper is organized as follows. In Section 3 we give estimates and
some regularity results for the transition densities of the stable process. In
Section 4 we obtain estimates for the expected exit time for subdomains of
the d-set. We generally follow the approach designed in [Ba]; in particular

2000 Mathematics Subject Classification: Primary 60J45; Secondary 60J35.
Key words and phrases: stable processes, fractals, diffusions on fractals, Harnack in-

equality, Boundary Harnack Principle.
Research partially supported by KBN grant 2 P03A 041 22 and RTN Harmonic Anal-

ysis and Related Problems contract HPRN-CT-2001-00273-HARP.

[163]



164 K. Bogdan et al.

Lemmas 4.1 and 4.3, and Proposition 4.4 have their analogues in the diffu-
sion case. Here we give new and slightly generalized computations related
to the α-stable process.

In Section 6 we prove the existence and joint continuity of the Poisson
kernel PD(x, y) for an open ball D in the d-set. PD(x, y) is given by the
Ikeda–Watanabe Formula [IW] describing a relation between the harmonic
measure and the Lévy measure which is absent in the diffusion case. We
derive optimal estimates for the Poisson kernel when x and y are away from
the boundary (Proposition 6.4). The estimates turn out to be sufficient for
the proof of the Harnack inequality when α ∈ (0, 2/dw)∪(ds, 2). The latter is
given in Section 7. In the recurrent case the proof of Lemma 7.3 employs an
interesting formula (56) involving the hitting time for a point and the Green
function. The transient case relies on estimates of the Poisson kernel for balls.
We note here that the Harnack inequality has been recently established for
fractional diffusions ([Ba], [BB1]) and for pure jump processes in RN ([BL]).
In each case, including ours, the methods of proof are completely different.

Section 8 gives an estimate for the exit times of subdomains of the d-set
(Theorem 8.3) which easily yields the decay rate of harmonic functions near
the boundary (Theorem 8.4). The latter has an analogue in the theory of
rotation invariant α-stable processes in RN (see [B, Lemma 3]). However,
[B] makes an essential use of the exact formula for the Poisson kernel for a
ball, which is not available in our case. Section 8 also contains a Carleson
type estimate for α ∈ (0, 2/dw) with a proof adapted from [BBy]. Our main
contribution is in showing that the weak scaling of the process is sufficient
for this proof to work. The restriction on α above is due to the fact that our
proof depends on the polarity of the boundary of a ball. Finally, we give a
proof of the Boundary Harnack Principle in the Sierpiński gasket case for
α ∈ (0, 2/dw) ∪ (ds, 2). Due to the simple geometry of this set the proof
is an application of the Harnack inequality. We believe that the Boundary
Harnack Principle holds more generally (e.g. for the Sierpiński carpet) but
more complicated methods must be used to prove it.

2. Preliminaries. In this section we collect some notation and defini-
tions adapted from [Ba] and [P].

Let F be a nonempty closed subset of RN , N ≥ 1. Set d ∈ (0, N ]. We say
that a (positive) Borel measure µ is a d-measure on F if for some constants
c1, c2 > 0 it satisfies

c1r
d ≤ µ(B(x, r)) ≤ c2r

d, x ∈ F, 0 < r ≤ r0,(1)

where r0 is the diameter of F and B(x, r) denotes the ball in RN with center
x and radius r. We call F a d-set if F = supp(µ) for some d-measure µ. It is
known that any d-measure is a regular Borel measure. Any two d-measures
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on the same d-set F are equivalent and the d-dimensional Hausdorff measure
restricted to a d-set F is a d-measure [JW].

We use c (with subscripts) to denote positive and finite constants which
depend only on the d-measure µ, F (and d), the fractional diffusion on F
and the stability index α (see below). Any additional dependence is indi-
cated explicitly, e.g. c4 = c4(D,κ). Constants are numbered consecutively
within each proof. The value of c (without subscript) may change from place
to place. We write (e.g.) f(x) � g(x), x ∈ F , to indicate that there are con-
stants c1, c2 > 0 (independent of x) such that c1f(x) ≤ g(x) ≤ c2f(x) for all
x ∈ F . We denote by | · | the Euclidean distance in RN . From now on B(x, r)
denotes the Euclidean ball intersected with our d-set F . For a subset D ⊆ F
we always take complements in F , i.e.Dc = F \D. Without losing generality,
in what follows we assume that 0 ∈ F , which often simplifies the notation.

The following lemma is a convenient replacement for integration in polar
coordinates.

Lemma 2.1. Let F and µ be as introduced above. Then for every x0 ∈ F ,
r > 0 and λ > 0 there is c = c(λ) such that

�

|x−x0|>r
|x− x0|−d−λ dµ(x) ≤ cr−λ,(2)

�

|x−x0|<r
|x− x0|−d+λ dµ(x) ≤ crλ.(3)

Proof. From (1) it follows that

�

|x−x0|>r
|x− x0|−d−λ dµ(x) =

∞∑

n=0

�

2nr<|x−x0|≤2n+1r

|x− x0|−d−λ dµ(x)

≤
∞∑

n=0

(2nr)−d−λµ(B(x0, 2n+1r))

≤ cr−d−λ
∞∑

n=0

2−n(d+λ)(2n+1r)d ≤ cr−λ.

This proves (2). The estimate (3) follows in a similar way.

From now on we let F ⊂ RN be a connected d-set, d ∈ (0, N ], N ≥ 2,
and we let µ be its d-measure. We put t0 = ∞ when r0 = ∞ and t0 = rdw0
otherwise (see Definition 2.1). We often refer to the general theory of Markov
processes in the setting of [BG] or [ChZ].

Definition 2.1. A Markov process X = (P x,Xt)x∈F, t≥0 is called a frac-
tional diffusion on F if

(a) X is a diffusion with state space F ,
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(b) X has a symmetric transition density q(t, x, y) = q(t, y, x), t > 0,
x, y ∈ F , which is jointly continuous for each t > 0 and satisfies, for some
constants c1, . . . , c4 > 0, dw > 1 and all x, y ∈ F and t ∈ (0, t0),

(4) c1t
−ds/2 exp

(
−c2

( |x− y|
t1/dw

)γ)

≤ q(t, x, y) ≤ c3t
−ds/2 exp

(
−c4

( |x− y|
t1/dw

)γ)
.

Here ds = 2d/dw, γ = dw/(dw − 1).

It is also known (see [P]) that all fractional diffusions on a fixed d-set F
must have the same value of the constant dw, i.e. dw depends only on the
underlying geometry. We have dw = 2 for F = RN and if the heat kernel of
the diffusion satisfies (4) then dw ≥ 2 (see [G]). We note here that the above
definition differs from that given in [Ba]. Following [P] we use the Euclidean
distance instead of the intrinsic shortest path metric (see [Ba]). Since the
well known fractal diffusions were constructed in the shortest path metric
setting (e.g. [Ba]), (4) is virtually tantamount to the assumption that the
two metrics are equivalent.

3. Stable process. From now on we fix α ∈ (0, 2). We also assume that
F is a connected d-set with d-measure µ and r0 = ∞ in (1). In particular
d ≥ 1 and F is necessarily unbounded. We briefly recall the construction of
the α-stable process from [S]. Suppose that there exists a fractional diffusion
on F and let q(u, x, y), u > 0, x, y ∈ F , denote its transition density with
respect to µ. Let (Yt)t>0 be the α/2-stable subordinator given by the Laplace
transform E exp(−uYt) = exp(−tuα/2). Let ηt(u), t > 0, u ≥ 0, be its one-
dimensional distribution density (see [Be] or [BG] for more details). For
t > 0 and x, y ∈ F we define

p(t, x, y) =
∞�

0

q(u, x, y)ηt(u) du.

By the general theory p(t, x, y) is the transition density of a Markov process
called the subordinate process (see [BG, p. 18]), which we denote by (Xt)t>0
and call α-stable.

To simplify the notation, for the rest of the paper we let dα = d+αdw/2.
The main result of this section is the theorem below. It resembles a well
known estimate for the rotation invariant α-stable process on RN and can
be interpreted as weak scaling of our process.

Theorem 3.1 (Weak scaling). For t > 0, x, y ∈ F , x 6= y, we have

p(t, x, y) � min
(

t

|x− y|dα , t
−ds/α

)
,(5)
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in particular
c1t
−ds/α ≤ p(t, x, x) ≤ c2t

−ds/α.(6)

Proof. By Theorem 37.1 of [D],

lim
u→∞

η1(u)u1+α/2 = α/(2Γ (1− α/2)).(7)

This, boundedness of η1(·) and the scaling property

ηt(u) = t−2/αη1(t−2/αu), t, u > 0,(8)

yield the following estimates:

ηt(u) ≤ c3tu
−1−α/2, t, u > 0,(9)

ηt(u) ≥ c4tu
−1−α/2, t > 0, u > u0t

2/α,(10)

where u0 depends only on α. Let t > 0, x, y ∈ F , x 6= y, and d(t, x, y) =
|x − y|γt−2/(α(dw−1)). By the definition of p(t, x, y), (10) and substitution
v = c2|x− y|γu−1/(dw−1) (where c2 is defined in (4)) we get

p(t, x, y) ≥ ct
∞�

u0t2/α

u−ds/2 exp(−c2|x− y|γu−1/(dw−1))u−1−α/2 du(11)

≥ ct|x− y|−dα
c5d(t,x,y)�

0

v(ds+α)(dw−1)/2−1e−v dv

≥ ct|x− y|−dαe−c5d(t,x,y)
c5d(t,x,y)�

0

v(ds+α)(dw−1)/2−1 dv

= ct−ds/αe−c5d(t,x,y).

If t ≥ |x − y|αdw/2 or |x − y|t−2/(αdw) ≤ 1, then d(t, x, y) ≤ 1 and
exp(−c5d(t, x, y)) ≥ exp(−c5). Consequently, we then get

p(t, x, y) ≥ c6t
−ds/α.(12)

Thus

p(t, x, y) ≥ c6 min
(

t

|x− y|dα , t
−ds/α

)

in this case. On the other hand, if t < |x−y|αdw/2 then d(t, x, y) > 1 so that
the integral in (11) is bounded away from 0 and p(t, x, y) ≥ c7t|x− y|−dα ≥
c7 min(t/|x− y|dα, t−ds/α) again. By (4), (9) and the same substitution as
in (11),

p(t, x, y) ≤ c5t

∞�

0

u−ds/2−α/2−1 exp(−c6|x− y|γu−1/(dw−1)) du(13)

=
ct

|x− y|dα Γ ((ds + α)(dw − 1)/2).
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This gives the upper bound of (5) with the first term under the minimum.
To finish the proof of (5) we will verify the estimate

ηt(u) ≤ ctu−1−α/2 exp(−tu−α/2), u > 0, t > 0.(14)

Indeed, from Lemma 1 in [H] (see also the proof therein) we have

η1(u) ≤ cu(α−4)/(4−2α) exp(−c8u
−α/(2−α))

as u→ 0. Since α/(2− α) > α/2, we clearly have

u(α−4)/(4−2α)e−c8u
−α/(2−α)

= o(u−1−α/2e−u
−α/2

) as u→ 0.

From this and (9),

η1(u) ≤ cu−1−α/2 exp(−u−α/2), u > 0.

(14) follows from this and (8). By (14) and the substitution v = tu−α/2, for
any x, y ∈ F we obtain

p(t, x, y) ≤ ct
∞�

0

u−ds/2u−1−α/2 exp(−tu−α/2) du(15)

= ct−ds/α
∞�

0

vds/αe−v dv = ct−ds/α.

This completes the proof of (5) and also gives the upper bound in (6).
The lower bound in (6) follows from (5) by continuity; see Proposition 3.2
below.

Remark 1. Note that

t ≤ |x− y|αdw/2 if and only if
t

|x− y|dα ≤ t
−ds/α.(16)

Therefore, Theorem 3.1 can be reformulated in the following way:

p(t, x, y) � t−ds/αϕ(|x− y|t−2/(αdw)), t > 0, x, y ∈ F,
with ϕ(u) = (1 ∨ |u|)−dα � (1 + |u|)−dα.

Remark 2. For later convenience we note that given β ∈ (0, 1) and
t ≥ β|x− y|αdw/2, the inequality (12) still holds true with some c6 = c6(β).

Consider a Markov process with state space being an open set D ⊆ F
and transition probability semigroup Pt(x,E), t > 0, x ∈ D, where E is a
Borel subset of D. We say that the semigroup has the strong Feller property
if Pt(L∞(D,µ)) ⊆ Cb(D), t > 0, where Cb(D) stands for the continuous
bounded functions on D. By C0(D) we denote the set of continuous bounded
functions on D that tend to zero at the boundary (and also when x → ∞
if D is unbounded). The semigroup is said to be strongly continuous on a
function space S if

lim
t→0
‖Ptf − f‖ = 0, f ∈ S,
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where the norm is taken in S. In what follows, S will be equal to C0(D)
or Lp(D), p ∈ [1,∞). The semigroup is said to have the Feller property if
Pt(C0(D)) ⊆ C0(D) and Pt is strongly continuous on C0(D).

We now return to the study of our stable process on F .

Proposition 3.2. (i) The transition density p(t, x, y) is jointly contin-
uous in (t, x, y) ∈ (0,∞)× F × F for each t > 0.

(ii) The transition semigroup (Pt) generated by our stable process has
both the Feller and strong Feller properties. In particular , (Pt) is strongly
continuous on C0(F ).

Proof. One applies the same arguments as for the Brownian motion on
RN using properties of the underlying fractional diffusion and the domi-
nated convergence theorem together with the upper bounds from (5), (6)
and (14).

By virtue of (ii) in the above proposition we may and do assume that
path functions of our stable process are right-continuous with left hand
limits and that the process is quasi-left-continuous (see [BG]).

4. Exit time. Let E be a Borel subset of F . We let TE = inf{t ≥ 0 :
Xt ∈ E} and τE = TEc .

Lemma 4.1. Let κ > 1. There exist constants c1 and c2 such that for
every x ∈ F and r > 0, t > 0,

P x[Xt 6∈ B(x, r)] ≥ c2tr
−αdw/2, 0 < t < rαdw/2,(17)

and

P y[Xt 6∈ B(x, r)] ≤ c1(κ/(κ− 1))αdw/2 tr−αdw/2,(18)

for all y ∈ B(x, r/κ).

Proof. Let a > 1 and let x, r, t be as in (17). If |y−x| ≥ r then |y−x|αdw/2
≥ t, and by (5) and (16) we have

P x[Xt 6∈ B(x, r)] ≥
�

r≤|y−x|<ar
p(t, x, y)dµ(y) ≥ ct

�

r≤|y−x|<ar

dµ(y)
|y − x|dα

≥ ctr−dαa−dαµ(B(x, ar) \B(x, r))

≥ ctr−αdw/2a−dα(c1a
d − c2),

where the constants c1, c2 come from (1). We can choose a large enough to
make the last factor positive and (17) follows.

We now fix κ > 1, x ∈ F , t > 0, and r > 0. Let r0 = r(κ−1)/κ. Observe
that if y ∈ B(x, r/κ) then B(y, r0) ⊆ B(x, r). By Theorem 3.1 and (2) we
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obtain

P y[Xt 6∈ B(x, r)] ≤ P y[Xt 6∈ B(y, r0)] =
�

B(y,r0)c

p(t, y, z) dµ(z)

≤ ct
�

B(y,r0)c

|z − y|−dα dµ(z) ≤ ctr−αdw/20 ,

and (18) follows.

The following simple lemma will be used without further mention (see
[ChZ, Proposition 1.20]).

Lemma 4.2. Let B be a Borel set in F . For each t > 0 and x ∈ F we
have P x[τB = t] = 0.

Lemma 4.3. For each κ > 1 there exists c1 = c1(κ) such that for x ∈ F ,
r > 0, y ∈ B(x, r/κ) we have

P y[τB(x,r) < t] ≤ c1tr
−αdw/2.

Proof. Let 1 < κ1 < κ and λ > 1 be such that κ1λ = κ (e.g. κ1 = λ
=
√
κ). Define T = τB(x,λr). For y ∈ B(x, r/κ1) we have

P y[T < t] = P y[Xt 6∈ B(x, r); T < t] + P y[Xt ∈ B(x, r); T < t]

≤ P y[Xt 6∈ B(x, r)] + P y[Xt ∈ B(x, r); T < t] = A+B.

By (18), we obtain A ≤ c2tr
−αdw/2 with c2 = c2(κ1).

By the strong Markov property we have

B = Ey[PX(T )[Xt−u ∈ B(x, r)]|u=T ; T < t].(19)

We now estimate the integrand in (19):

PX(T )[Xt−u ∈ B(x, r)]|u=T ≤ sup
z∈B(x,λr)c

P z[Xt−u ∈ B(x, r)]|u=T

≤ sup
u≤t

sup
z∈B(x,λr)c

P z[Xu ∈ B(x, r)]

≤ sup
u≤t

sup
z∈B(x,λr)c

P z[Xu 6∈ B(z, (λ− 1)r)]

≤ c3tr
−αdw/2,

where c3 = c3(λ). Consequently,

P y[T < t] ≤ c4tr
−αdw/2, y ∈ B(x, r/κ1),(20)

where c4 = c4(κ). Apply (20) to r/λ instead of r and the assertion follows.

Proposition 4.4. There exists c1 such that for x ∈ F , r > 0,

sup
y∈B(x,r)

EyτB(x,r) ≤ c1r
αdw/2,(21)
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and for each κ > 1 there exists a constant c2 = c2(κ) > 0 such that

EyτB(x,r) ≥ c2(κ)rαdw/2, x ∈ F, y ∈ B(x, r/κ).(22)

Proof. For each y ∈ B(x, r), from (5) we have

P y[τB(x,r) > t] ≤ P y[Xt ∈ B(x, r)] =
�

B(x,r)

p(t, y, z) dµ(z)

≤ ct−ds/αµ(B(x, r)) ≤ crdt−ds/α.
Hence,

P y[τB(x,r) > c3r
αdw/2] ≤ crdc−ds/α3 (rαdw/2)−ds/α = 1/2

for a suitably chosen value of c3. Let t0 = c3r
αdw/2. Then, by the Markov

property, for k = 1, 2, . . . we have

P y[τB(x,r) > (k + 1)t0] = P y[τB(x,r) ◦ θt0 > kt0, τB(x,r) > t0]

= Ey[PX(t0)[τB(x,r) > kt0]; τB(x,r) > t0]

≤ P y[τB(x,r) > t0] sup
z∈B(x,r)

P z[τB(x,r) > kt0]

(here θ stands for the standard shift operator on the space of trajectories).
By induction we get

P y[τB(x,r) > kt0] ≤ (1/2)k, y ∈ B(x, r), k = 0, 1, . . .

Thus,

EyτB(x,r) =
∞�

0

P y[τB(x,r) > t] dt ≤
∞∑

k=0

t0P
y[τB(x,r) > kt0] = 2c3r

αdw/2,

which gives (21).
By Lemma 4.3 there exists c4 = c4(κ) such that

P y[τB(x,r) < c4r
αdw/2] ≤ 1/2, y ∈ B(x, r/κ).

It follows that for t0 = c4r
αdw/2 we have

EyτB(x,r) ≥ t0P y[τB(x,r) > t0] ≥ (1/2)c4r
αdw/2, y ∈ B(x, r/κ).

The proof is complete.

5. Killed process and Green function. Let D ⊆ F be an open
set. By (PDt ) we denote the semigroup generated by the process killed on
exiting D, that is (see [BG]),

PDt f(x) = Ex[f(Xt); t < τD],

for, e.g., nonnegative or bounded Borel functions f on F .
The following proposition summarizes properties of PD

t .
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Proposition 5.1. Let D ⊆ F be an open bounded set.

(i) The semigroup (PDt ) has both Feller and strong Feller properties.
(ii) The semigroup is determined by a transition density pD(t, x, y), i.e.

for any nonnegative or bounded Borel function f on F we have

PDt f(x) =
�

D

f(y)pD(t, x, y) dµ(y), x ∈ F.

Moreover , for each t > 0, pD(t, x, y) is continuous in (x, y) ∈ D×D and

pD(t, x, y) = pD(t, y, x), x, y ∈ F \ ∂D, t > 0,

pD(t, x, y) = p(t, x, y)− rD(t, x, y), x, y ∈ F, t > 0,(23)

with rD(t, x, y) = Ex[p(t− τD,XτD , y); t > τD];

pD(t, x, y) >0, x, y ∈ D, t > 0;(24)

pD(t, x, y) =
�

F

pD(s, x, z)pD(t− s, z, y) dµ(z), t > s > 0, x, y ∈ F ;(25)

pD(t, x, y) = 0, x ∈ Dc.

Proof. The standard arguments that can be found e.g. in [ChZ] (see also
[Bs]) work also in the present setting with the exception of (24). We give a
proof of (24) similar to but more direct than the one in [CS].

Let K ⊆ D be a compact set and let x, y ∈ K. Define % = dist(K,Dc).
By (5) and Lemma 4.3, we have

rD(t, x, y) = Ex[p(t− τD,XτD , y); t > τD]

≤ cEx[(t− τD)|XτD − y|−dα|; t > τD]

≤ ct%−dαP x[τD < t] ≤ ct%−dαP x[τB(x,%) < t] ≤ ct2%−d−αdw .
Also, by Theorem 3.1,

p(t, x, y)−1 ≤ cmax(tds/α, t−1|x− y|dα),

so that

rD(t, x, y)
p(t, x, y)

≤ cmax(t2+ds/α, t|x− y|dα)%−d−αdw ≤ c1 max(t2+ds/α, t),

where c1 = c1(D,K). It follows from (23) that for t < t0 = t0(K) and
x, y ∈ K,

pD(t, x, y) > 1
2p(t, x, y) > 0.(26)

Fix arbitrary x0, y0 ∈ D. Let r > 0 be such that K = B(x0, r) ∪B(y0, r)
⊆ D. We then use t0 = t0(K) as above, (26) and the semigroup property to
obtain

pD(t, x, y) ≥
�

K

pD(t/2, x, z)pD(t/2, z, y) dµ(z) > 0
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for x, y ∈ K and t < 2t0. Similarly, by induction

pD(t, x, y) > 0, x, y ∈ K, t < nt0, n = 1, 2 . . . ,

and (24) follows.

The estimate (27) below is taken from [R] (Lemma 6). For the reader’s
convenience we include a version of the proof.

Lemma 5.2. We have

pD(t, x, y) ≤ ct−1−ds/αrαdw/2, x, y ∈ F, t > 0.(27)

Proof. From the semigroup property (25) and the estimate (5) we have

pD(t, x, y) =
�

D

pD(t/2, x, z)pD(t/2, z, y) dµ(z)

≤ sup
z∈D

pD(t/2, z, y)
�

D

pD(t/2, x, z) dµ(z)

≤ ct−ds/αP x[τD > t/2].

Hence, by the elementary inequality

P x[τD > t/2] ≤ 2ExτD/t

and (21) we get the assertion.

Let D ⊆ F be an open set. We define the Green function of D by

GD(x, y) =
∞�

0

pD(t, x, y) dt.(28)

Proposition 5.1 implies that if D is an open bounded set in F then
GD(x, y) has the following properties: it is symmetric and strictly positive on
D×D; it vanishes if x ∈ Dc or, by the symmetry of pD(t, x, y), y ∈ int(Dc).
GD is extended continuous on D × D for α ≤ ds as can be verified by an
adaptation of the corresponding proof from [ChZ] (GD(x, x) =∞ by (26)).
To show the continuity for α > ds we note that by (6) and a version of (27),

pD(t, x, y) ≤ cmin(t−ds/α, t−1−ds/α), t > 0, x, y ∈ F.(29)

Since this is integrable over (0,∞), the desired assertion follows from the
bounded convergence theorem. We leave the details to the interested reader.

Here we give an expression for the potential kernel of the stable pro-
cess Xt.

Lemma 5.3. If α < ds then

Kα(x, y) :=
∞�

0

p(t, x, y) dt � |x− y|−d+αdw/2, x, y ∈ F.(30)
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Proof. By Theorem 3.1 and (16),

∞�

0

p(t, x, y) dt � |x− y|−d−αdw/2
|x−y|αdw/2�

0

t dt+
∞�

|x−y|αdw/2
t−ds/α dt(31)

� |x− y|−d+αdw/2.(32)

Corollary 5.4. The process is transient if and only if α < ds.

Lemma 5.5. If α < ds then for any open bounded D ⊆ F ,

GD(x, y) = Kα(x, y)− ExKα(XτD , y)(33)

(unless x = y ∈ Dc) and

GD(x, y) ≤ Kα(x, y) � |x− y|−d+αdw/2, x, y ∈ F.(34)

Proof. From (23) by a simple change of variable we obtain

GD(x, y) =
∞�

0

p(t, x, y) dt− Ex
∞�

τD

p(t− τD,XτD , y) dt

=
∞�

0

p(t, x, y) dt− Ex
∞�

0

p(t,XτD , y) dt,

which is clearly (33).
Now, (34) follows immediately from (33) and Lemma 5.3.

Proposition 5.6. If α > ds then

GB(x,r)(x, y) ≤ cr−d+αdw/2, x, y ∈ F, r > 0.

Proof. Define D = B(x, r). We have

rαdw/2�

0

pD(t, x, y) dt ≤
rαdw/2�

0

p(t, x, y) dt ≤ c
rαdw/2�

0

t−ds/α dt.

Since α > ds, we get

rαdw/2�

0

pD(t, x, y) dt ≤ c1r
−d+αdw/2, x, y ∈ F.(35)

From (27) it follows that
∞�

rαdw/2

pD(t, x, y) dt ≤ crαdw/2
∞�

rαdw/2

t−1−ds/α dt = cr−d+αdw/2.(36)

Now, the assertion follows from (35), (36) and the definition of the Green
function.
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Let u be a Borel measurable function u on F , which is bounded from
below (above). We say that u is α-harmonic in an open set U ⊆ F if

u(x) = Exu(X(τB)), x ∈ B,
for every bounded open set B with the closure B contained in U . We say
that u is regular α-harmonic in U if

u(x) = Exu(X(τU )), x ∈ U.
By the strong Markov property of X, regular α-harmonic functions are α-
harmonic. We give an elementary proof of α-harmonicity of GD(x, y).

Proposition 5.7. Let D be an open bounded set in F and α 6= ds. Then
GD(·, y) is α-harmonic in D \ {y} for any y ∈ D.

Proof. Fix y ∈ D and let U be an arbitrary open set with U ⊆ D \ {y}.
(In fact it is enough to assume U ⊆ D and dist(U, y) > 0; we will use this
later.) For x ∈ U and a nonnegative Borel measurable function ψ supported
in U c we have

Ex
τD�

0

ψ(Xt) dt = Ex
τU�

0

ψ(Xt) dt+ Ex
[ τD�

τU

ψ(Xt) dt; τU < τD

]
(37)

= Ex
[
EXτU

τD�

0

ψ(Xt) dt; τU < τD

]
,

by the strong Markov property. In terms of the Green function of D this is
�

D

GD(x, z)ψ(z) dµ(z) = Ex
[ �

D

GD(XτU , z)ψ(z) dµ(z); τU < τD

]
(38)

=
�

D

Ex[GD(XτU , z); τU < τD]ψ(z) dµ(z).

For almost all z ∈ D ∩ U c (with respect to µ) we obtain

GD(x, z) = Ex[GD(XτU , z); τU < τD].

Now, let α > ds. The continuity of GD(x, ·) and boundedness over D∩U c

(see Proposition 5.6) yield

GD(x, y) = Ex[GD(XτU , y); τU < τD].(39)

On the set {τU = τD} we have XτU ∈ Dc and hence GD(XτU , y) = 0. Hence,
from (39) it follows that

ExGD(XτU , y) = Ex[GD(XτU , y); τU < τD] = GD(x, y),(40)

which completes the proof for α > ds.
If α < ds then Kα(·, y) is α-harmonic in F \{y}. Indeed, by (33) applied

to an open bounded set V ⊆ F \ {y} with dist(y, V ) > 0, we have

ExKα(XτV , y) = Kα(x, y)−GV (x, y).
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Since y ∈ int(V c), we get GV (x, y) = 0 and consequently

ExKα(XτV , y) = Kα(x, y),

which gives our claim. Now, the assertion for α < ds follows from (33) and
the strong Markov property.

Remark. It is also possible to derive (39) for α < ds by modifying
the method just applied for the case α > ds. Indeed, we take into account
uniform integrability (see (34)) of the family {GD(w, ỹ)1B(y,δ)(w) : ỹ ∈
B(y, δ)}, where δ > 0 is such that B(y, 2δ) ⊆ U c, and estimates of the
Poisson kernel for U near y similar to those given in Section 6.

Lemma 5.8. There exist a > 1 and c such that for all x, y ∈ F ,

GD(x, y) ≥ c|x− y|−d+αdw/2,(41)

where D = B(x, a|x− y|).

Proof. Let a > 1. Define r = |x − y|. By the definition of GD(x, y),
Theorem 3.1 and (16) we obtain

GD(x, y) ≥
|x−y|αdw/2�

0

(p(t, x, y)− Ex[p(t− τD,XτD , y); τD < t]) dt

≥
|x−y|αdw/2�

0

(c1t|x− y|−dα −Ex[c2(t− τD)|XτD − y|−dα ; τD < t]) dt,

where c1 and c2 are defined by the lower and upper bound in (5), respectively.
Observe that |XτD − y| ≥ (a − 1)|x − y|. Now, let a > 1 be such that
c2(a− 1)−dα ≤ c1/2. It follows that

GD(x, y) ≥
|x−y|αdw/2�

0

(c1t|x− y|−dα − c2t((a− 1)|x− y|)−dα) dt

≥ (c1/2)|x− y|−dα
|x−y|αdw/2�

0

t dt = (c1/4)|x− y|−d+αdw/2,

which gives (41).

6. Harmonic measure. For x, y ∈ F define

N(x, y) = lim
t→0

p(t, x, y)
t

= lim
t→0

∞�

0

q(u, x, y)
ηt(u)
t

du.(42)

We claim that the limit exists everywhere and is finite off the diagonal.
Indeed, from (7) and (8) we have

lim
t→0

t−1ηt(u) = lim
t→0

t−1−2/αη1(ut−2/α) = u−1−α/2 lim
s→∞

s1+α/2η1(s)

= [α/(2Γ (1− α/2))]u−1−α/2, u > 0.
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By (4) and (9), for x 6= y,

t−1q(u, x, y)ηt(u) ≤ c2u
−ds/2 exp(−c3|x− y|γu−γ/dw)u−1−α/2, u ∈ (0,∞).

Since this is integrable our claim follows by the dominated convergence
theorem. For later use we note that

N(x, y) = c1

∞�

0

q(u, x, y)u−1−α/2 du,(43)

with c1 = α/(2Γ (1− α/2)).
Let E be a Borel subset of F and x ∈ F . Define

n(x,E) =
�

E

N(x, y) dµ(y),

Note that by Proposition 4.4, for a bounded Borel set D ⊆ F we have

sup
x∈F

ExτD <∞.

We have the following formula (see [IW]).

Proposition 6.1. Assume that D ⊆ F is an open nonempty bounded
set , E ⊆ F is a Borel set and dist(E,D) > 0. Then

P x[XτD ∈ E] =
�

D

GD(x, y)n(y,E) dµ(y).(44)

Proof. We need to check the following assumptions (A1) and (A2) from
[IW]. Let M = (S, P x, x ∈ S) be a Markov process on a locally compact,
separable metric space S which satisfies

(A1) The semigroup
Ttf(x) =

�

S

f(y)P (t, x, dy)

maps C0(S) into C0(S) and is strongly continuous in t ≥ 0.

(A2) There exists a positive kernel n(x,E), x ∈ S, E ⊆ S a Borel subset,
such that

1◦ If dist(x,E) > 0 then

n(x,E) <∞.
2◦ Forf∈C0(S) and a bounded open setD withdist(D, supp f)>0,

sup
x∈D, t>0

t−1Ttf(x) <∞

and

lim
t→0+

t−1Ttf(x) = lim
t→0+

t−1
�

S

f(y)P (t, x, dy) =
�

S

f(y)n(x, dy)

for every x ∈ D.
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Assumption (A1) is satisfied by Proposition 3.2. To establish (A2), fix
D as above. Let f ∈ C0(D) be such that dist(D, supp f) ≥ δ > 0. Then, by
(5) and Lemma 2.1,

sup
x∈D, t>0

t−1Ptf(x) ≤ c sup
x∈D

� f(y) dµ(y)
|x− y|dα ≤ c‖f‖∞δ

−dα <∞

and
lim
t→0

t−1Ptf(x) = lim
t→0

t−1
�
f(y)p(t, x, y) dµ(y) =

�
f(y)n(x, dy),

by bounded convergence.

Corollary 6.2. Under the assumptions of Proposition 6.1 we have

P x[XτD ∈ E] �
�

D

�

E

GD(x, y)
|y − z|dα dµ(z) dµ(y).(45)

Proof. By a substitution as in (11), from (43) for x, y ∈ F , x 6= y, it
follows that

N(x, y) �
∞�

0

u−1−α/2−ds/2 exp(−c|x− y|γu−γ/dw) du

= c|x− y|−dα
∞�

0

v−(dw−1)(−1−α/2−ds/2)−dwe−v dv.

This yields

n(x,E) �
�

E

dµ(y)
|y − x|dα , x ∈ F,(46)

and (45) follows from (44).

In particular, the above corollary implies that the distribution of XτD

is absolutely continuous with respect to µ on int(Dc). The corresponding
density (Poisson kernel) is denoted by PD(x, y).

Proposition 6.3. Let D ⊆ F be an open bounded set and α 6= ds. Then
the Poisson kernel PD(·, ·) admits a version which is jointly continuous on
D × int(Dc).

Proof. We claim that N(x, y) is continuous on the set Sa = {(x, y) ∈
F × F : |x− y| > a} for each a > 0. Indeed, let (x, y) ∈ Sa and xn → x and
yn → y as n→∞. Then, for sufficiently large n, we have (xn, yn) ∈ Sa and

u−1−α/2q(u, xn, yn) ≤ c1u
−ds/2−1−α/2 exp(−c2a

γu−γ/dw), u ∈ (0,∞).

Consequently, by (43) and dominated convergence we obtain

N(xn, yn) = c3

∞�

0

q(u, xn, yn)u−1−α/2 du→ c3

∞�

0

q(u, x, y)u−1−α/2 du

as n→∞. This shows our claim.
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We let

PD(x, y) =
�

D

GD(x, z)N(z, y) dµ(z), x ∈ D, y ∈ int(Dc).

Assume that α < ds. Fix (x, y) ∈ D × int(Dc) and let xn → x, yn → y. We
may and do assume that dist(yn,D) ≥ 1

2 dist(y,D), n = 1, 2 . . . Then, by
(34) and (46), for ε > 0 such that ε < (ds/α− 1)−1 and for R large enough
we have

(47) sup
n

�

D

|GD(xn, z)N(z, yn)|1+ε dµ(z)

≤ c sup
n

�

D

|xn − z|(−d+αdw/2)(1+ε)|z − yn|−dα(1+ε) dµ(z)

≤ c(dist(y,D))−dα(1+ε) sup
n

�

D

|xn − z|(−d+αdw/2)(1+ε) dµ(z)

≤ c(dist(y,D))−dα(1+ε) sup
n

�

B(xn,R)

|xn − z|(−d+αdw/2)(1+ε) dµ(z) <∞,

by (3). It follows that (GD(xn, ·)N(·, yn))n∈N are uniformly integrable and
consequently

lim
n→∞

PD(xn, yn) = lim
n→∞

�

D

GD(xn, z)N(z, yn) dµ(z)(48)

=
�

D

GD(x, z)N(z, y) dµ(z) = PD(x, y).

This completes the case α < ds. If α > ds then the process is point-recurrent
and the Green function for D is bounded (see Proposition 5.6). Therefore,
a similar but simpler argument applies.

Proposition 6.4. There is a constant c such that for each κ>1, x0∈F ,
r > 0 and for c1 = ((κ + 1)/(κ − 1))dαc and c2 = ((κ − 1)/(κ + 1))dαc we
have

PB(x0,r)(x, z) ≤ c1r
αdw/2|x− z|−dα, x ∈ B(x0, r), z ∈ B(x0, κr)c,(49)

PB(x0,r)(x, z) ≥ c2r
αdw/2|x− z|−dα,(50)

x ∈ B(x0, r/κ), z ∈ int(B(x0, r)c).

Proof. Let x, y ∈ B = B(x0, r). Then, for z ∈ B(x0, κr)c,

|y − z| ≥ |z − x0| − |y − x0| ≥ κr − r = (κ− 1)r

and consequently

|x− z| ≤ |y − z|+ |y − x| ≤ |y − z|+ 2r

≤ |y − z|+ 2|y − z|/(κ− 1) = |y − z|(κ+ 1)/(κ− 1).
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Thus, from Proposition 4.4 it follows that

PB(x, z) �
�

B

GB(x, y)|y − z|−dα dµ(y)(51)

≤ ((κ+ 1)/(κ− 1))dα|x− z|−dαExτB ≤ c1|x− z|−dαrαdw/2,
with c1 = c1(κ). This gives (49). Now, let x ∈ B(x0, r/κ), z ∈ int(B(x0, r)c).
Then |y − z| ≤ |x− z|(κ+ 1)/(κ− 1), and from (22) we obtain

PB(x, z) ≥ c((κ− 1)/(κ+ 1))dα|x− z|−dαExτB ≥ c2|x− z|−dαrαdw/2,
with c2 = c2(κ) (cf. (51)). This completes the proof.

Lemma 6.5. Let α < ds and D = B(x0, r) where x0 ∈ F and r > 0 are
arbitrary. Then for each k ≥ 2 there exists a constant c1 = c1(k) such that

(52) PD(x, y)≤c1r
−d+αdw/2δ(y)−αdw/2, y∈B(x0, kr)∩Dc, x∈B(x0, r/2),

where δ(y) = dist(y,D).

Proof. By (45) and (34) we obtain

PD(x, y) �
�

D

GD(x, z)|z − y|−dα dµ(z)

≤ c
( �

B(x,r/4)

+
�

D∩B(x,r/4)c

)
|x− z|−d+αdw/2|z − y|−dα dµ(z).(53)

If |x − z| < r/4 then |z − y| > r/4, so that the first integral in (53) is not
greater than

c(r/4)−dα
�

B(x,r/4)

|x− z|−d+αdw/2 dµ(z)

≤ c(r/4)−dα(r/4)αdw/2 = cr−d+αdw/2r−αdw/2 ≤ c2r
−d+αdw/2δ(y)−αdw/2,

by Lemma 2.1 and the fact that δ(y) < (k−1)r. Here c2 = c2(k). The second
integral in (53) does not exceed

cr−d+αdw/2
�

D\B(x,r/4)

|z − y|−d−αdw/2 dµ(z)

≤ cr−d+αdw/2
�

B(y,δ(y))c

|z − y|−d−αdw/2 dµ(z) ≤ cr−d+αdw/2δ(y)−αdw/2,

by Lemma 2.1. This completes the proof.

7. Harnack inequality. Recall that F ⊆ RN . The main result of this
section can be stated as follows.

Theorem 7.1 (Harnack inequality). Let α ∈ (0, 2/dw) ∪ (ds, 2). Then
there exist c1, c2 such that for any x0 ∈ F , r > 0 and any function h ≥ 0
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(regular) α-harmonic in B(x0, c1r), we have

h(x) ≥ c2h(y), x, y ∈ B(x0, r).(54)

Since we can always take a smaller ball as the region of α-harmonicity
of our function, we may and do assume regular α-harmonicity above. The
method of proof depends on whether the process is point-recurrent or tran-
sient. Theorem 7.1 will be strengthened in Corollary 7.7 below.

7.1. Recurrent case. In this subsection we assume that α > ds, so that
the process is point-recurrent (see Lemma 7.2 and Remark 3 below).

For λ > 0 define the λ-potential

Gλ(x, y) =
∞�

0

e−λtp(t, x, y) dt, x, y ∈ F.

Lemma 7.2. There exist c1 such that

Gλ(x, y) ≤ c1λ
ds/α−1, x, y ∈ F.(55)

Proof. This follows immediately from the definition of Gλ(x, y) and our
basic estimate p(t, x, y) ≤ ct−ds/α:

Gλ(x, y) ≤ c
∞�

0

e−λtt−ds/α dt = cΓ (1− ds/α)λds/α−1.

Remark 3. Since the λ-potential is bounded on F × F , it follows that
points have positive capacity and the process is point-recurrent (see e.g. [PS,
Theorem 7.1]). In particular, P x[T{y} < ∞] = 1, x, y ∈ F (in fact, points
are regular for themselves, see [BG, Ch. 6, Proposition 4.11]).

For simplicity we write Ty := T{y}.

Lemma 7.3. There exist constants a > 1 and p0 such that

P x[Ty < τB(x,a|x−y|)] > p0, x, y ∈ F.
Proof. First, we prove a general fact:

P x[Ty < τD] = GD(x, y)/GD(y, y).(56)

Let δ > 0 be such that B(y, δ) ⊆ D. From (39) with U = D \ B(y, δ) and
x ∈ U we obtain

GD(x, y) = Ex[GD(X(τD\B(y,δ)), y); TB(y,δ) < τD].

Letting δ → 0, by the continuity and boundedness of GD(·, y), we get (56).
Now, let a and r = |x − y| be as in Lemma 5.8. Then, from (56) with

D = B(x, a|x− y|), (41) and Proposition 5.6, it follows that

P x[Ty < τD] ≥ c |x− y|
−d+αdw/2

(ar)−d+αdw/2
≥ p0,

which completes the proof.
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Proof of Theorem 7.1 for ds < α < 2. Let a, p0 be the constants of
Lemma 7.3 and c1 be such that B(x, 2ar) ⊆ B(x0, c1r), x ∈ B(x0, r). Then
B(x, a|x− y|) ⊆ B(x0, c1r) for any x, y ∈ B(x0, r). It follows that

h(x) = Exh(XτB(x,a|x−y|)) ≥ Ex[h(XτB(x,a|x−y|)); Ty < τB(x,a|x−y|)]

= Ex[EX(Ty)[h(XτB(x,a|x−y|))]; Ty < τB(x,a|x−y|)]

= h(y)P x[Ty < τB(x,a|x−y|)] ≥ p0h(y).

This proves Theorem 7.1 for α > ds.

7.2. Transient case. Throughout this subsection we consider the tran-
sient case α < ds (see Corollary 5.4). However, due to our restricted knowl-
edge on the Poisson kernel and some geometrical reasons, in the proof of the
remaining part of Theorem 7.1 we also assume the more restrictive condition
α < 2/dw. We say that E is polar if P x[TE < ∞] = 0 for all x ∈ F . For a
Borel set E let dimH(E) denote its Hausdorff dimension.

Lemma 7.4. Let E be a Borel set in F ⊆ RN . If α < 2(d−dimH(E))/dw
then E is polar.

Proof. The proof is an application of some general facts from potential
theory. For t > 0 and a Borel measure m with compact support in RN , such
that 0 < m(RN ) <∞, let φm,t(x) be its t-potential :

φm,t(x) =
� dm(y)
|x− y|t .

For a compact set K ⊆ RN define the t-capacity of E by

Ct(K) = sup
m

{( �
φm,t(x) dx

)−1}
,

where the supremum is taken over Borel measures m such that suppm ⊆ K
and m(K) = 1 (see [Fa1]). Equivalently (see [L]),

Ct(K) = sup{m(K) : φm,t ≤ 1}.
For an arbitrary E ⊆ RN define

Ct(E) = sup{Ct(K) : K is compact, K ⊆ E}.
By Corollary 6.5 from [Fa1],

dimH(E) = inf{t : Ct(E) = 0)} = sup{t : Ct(E) > 0}.
When αdw/2 < d (i.e. α < ds), by [BG, Ch. 6, Section 4], E is polar if and
only if Cd−αdw/2(E) = 0.

Now, by our assumption, dimH(E) < d−αdw/2 so that Cd−αdw/2(E) = 0.
It follows that E is polar, which is the assertion of the lemma.
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For z ∈ B(0, r/2) and s ∈ (r, 2r) let K(z, s) = B(z(s− r)/r, (s+ r)/2).
Observe that B(0, r) ⊆ K(z, s) ⊆ B(0, s). Indeed, if y ∈ B(0, r) then

|y − z(s− r)/r| ≤ |y|+ |z|(s− r)/r ≤ r + (s− r)/2 = (s+ r)/2,

so B(0, r) ⊆ K(z, s); in particular F ∩ K(z, s) is not empty (0 ∈ F , but
z(s− r)/r may belong to RN \ F ). Also, if y ∈ K(z, s) then

|y| ≤ |z|(s− r)/r + (s+ r)/2 ≤ (s− r)/2 + (s+ r)/2 = s,

and consequently K(z, s) ⊆ B(0, s). Note also that if |z| ≤ r/2 and s1 ≤ s2

then K(z, s1) ⊆ K(z, s2). Indeed, if x ∈ K(z, s1) then
∣∣∣∣x− z

s2 − r
r

∣∣∣∣ ≤
∣∣∣∣x− z

s1 − r
r

∣∣∣∣+ |z|
∣∣∣∣
s1 − r
r
− s2 − r

r

∣∣∣∣

≤ s1 + r

2
+
r

2
s2 − s1

r
=
s2 + r

2
,

which means that x ∈ K(z, s2).

Lemma 7.5. Let r > 0. There exists z0 ∈ B(0, r/12) (not necessarily
in F ) such that for almost all s ∈ (r, 2r) the stable process does not hit the
boundary of K(z0, s) in F .

Proof. Let s ∈ (r, 2r) and ∂K(z, s) = ∂B(z(s− r)/r, (s+ r)/2) ∩ F (on
the right hand side of this equality we consider the boundary of the ball in
RN ). From Theorem 8.1 and the Product Formula 7.3 in [Fa2] it follows that
for almost all (with respect to the Lebesgue measure) z ∈ B(0, r/2) ⊆ RN
we have dimH(∂K(z, s)) ≤ (N − 1 + d)−N = d− 1. Therefore, α < 2/dw ≤
2(d − dimH(∂K(z, s)))/dw, and so ∂K(z, s) is polar by Lemma 7.4. For
x ∈ F and a Borel set A the mapping (z, s) 7→ P x[XτK(z,s) ∈ A] is jointly
measurable. We thus we obtain

2r�

r

�

z∈B(0,r/2)

P x[XτK(z,s) ∈ ∂K(z, s)] dz ds = 0.

Hence, by Fubini’s theorem
2r�

r

P x[XτK(z,s) ∈ ∂K(z, s)] ds = 0(57)

for almost all z ∈ B(0, r/2) and the assertion follows.

Remark 4. When the process does not hit the boundary of a region D,
for every Borel u ≥ 0,

Exu(XτD) =
�

Dc

PD(x, y)u(y) dµ(y).

This fact will be exploited in what follows.
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Proof of Theorem 7.1 for α ∈ (0, 2/dw). Without losing generality we as-
sume that x0 = 0. Let h be a positive function that is regular α-harmonic in
B(0, 2r). We will show that h(x) ≤ ch(x̃), x, x̃ ∈ B(0, r/2). Let

h1(x) = Ex[h(XτB(0,2r)); XτB(0,2r) ∈ B(0, 3r)],

h2(x) = Ex[h(XτB(0,2r)); XτB(0,2r) ∈ B(0, 3r)c].

Then h = h1+h2 on F and, by definition, the functions h1 and h2 are regular
α-harmonic in B(0, 2r). Moreover, since supph2 ∩B(0, 2r)c ⊆ B(0, 3r)c, for
x, x̃ ∈ B(0, r/2) we have, by Proposition 6.4,

h2(x) =
�

B(0,3r)c

h2(y)PB(0,2r)(x, y) dµ(y)

≤ crαdw/2
�

B(0,3r)c

h2(y)|x− y|−dα dµ(y)

≤ crαdw/2
�

B(0,3r)c

h2(y)|x̃− y|−dα dµ(y)

≤ c
�

B(0,3r)c

h2(y)PB(0,2r)(x̃, y) dµ(y) = ch2(x̃).

Consequently, it is enough to show an analogous inequality for h1. Since
we do not know whether the process hits the boundary of B(0, 3r/4), we
have the inequality

h1(x̃) = Ex̃h1(XτB(0,3r/4)) ≥
�

B(0,3r/4)c

PB(0,3r/4)(x̃, y)h1(y) dµ(y).(58)

Define R = B(0, 3r) \ B(0, r). Note that supph1 ⊆ B(0, 3r), and also, for
x̃ ∈ B(0, r/2) and y ∈ R we have |x̃−y| ≤ 4r. From (58) and Proposition 6.4
it follows that

h1(x̃) ≥
�

R

PB(0,3r/4)(x̃, y)h1(y) dµ(y) ≥ crαdw/2
�

R

|x̃− y|−dαh1(y) dµ(y)

≥ cr−d
�

R

h1(y) dµ(y).

Set

P (x, y) =
2r�

r

PK(z0,s)(x, y) ds, x ∈ B(0, r/2), y ∈ R,

with z0 of Lemma 7.5 and the usual convention: PD(x, y) = 0 if y ∈ D. Then

h1(x) = r−1
�

R

h1(y)P (x, y) dµ(y), x ∈ B(0, r/2).

Indeed, by the fact that supph1 ⊆ B(0, 3r), B(0, r) ⊆ K(z0, s) ⊆ B(0, 2r),
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α-harmonicity of h1 on B(0, 2r), Lemma 7.5 and Remark 4 we obtain

�

R

h1(y)P (x, y) dµ(y) =
�

R

h1(y)
2r�

r

PK(z0,s)(x, y) ds dµ(y)

=
2r�

r

�

y∈R
h1(y)PK(z0,s)(x, y) dµ(y) ds

=
2r�

r

h1(x) ds = rh1(x),

which gives our claim.
Next we prove that

P (x, y) ≤ cr1−d, x ∈ B(0, r/2), y ∈ R.(59)

Define δs(y) = dist(y,K(z0, s)). Let s0(y) = inf{s > 0 : y ∈ K(z0, s)} so
that y ∈ K(z0, s) if s > s0(y). Recall that |z0| < r/12 < r/4. Hence,

B(0, r/2) ⊆ B
(
z0(s− r)

r
,

1
2
s+ r

2

)
, s ∈ (r, 2r).

By Lemma 6.5 and the substitution s = r(u + 1), for x ∈ B(0, r/2) and
y ∈ R we get

P (x, y) ≤ cr−d+αdw/2
2r∧s0(y)�

r

δs(y)−αdw/2 ds(60)

≤ cr−d+αdw/2
2r∧s0(y)�

r

(|y − z0(s− r)/r| − (s+ r)/2)−αdw/2 ds

= cr1−d+αdw/2
1∧u0(y)�

0

(|y − uz0| − (u+ 2)r/2)−αdw/2 du,

where u0 = u0(y) = −1 + s0(y)/r ≥ 0. Moreover,

|y − uz0| − (u+ 2)r/2 =
|y − uz0|2 − (u+ 2)2r2/4
|y − uz0|+ (u+ 2)r/2

� 1
r
g(u),(61)

where g is the numerator of the last fraction:

g(u) = gy,z0,r(u) = u2(|z0|2 − r2/4)− u(2〈z0, y〉+ r2) + |y|2 − r2.

Observe that g(0) > 0 and |z0|2 − r2/4 < 0 and so u = u0 is the unique
nonnegative solution of g(u) = 0. Hence

u0 =
2〈z0, y〉+ r2 −

√
(2〈z0, y〉+ r2)2 + (r2 − 4|z0|2)(|y|2 − r2)

2(|z0|2 − r2/4)

=
2(|y|2 − r2)√

(2〈z0, y〉+ r2)2 + (r2 − 4|z0|2)(|y|2 − r2) + 2〈z0, y〉+ r2
.
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Since |z0| < r/12, we have 2|〈z0, y〉| ≤ 2|z0| · |y| < r2/2 and r2− 4|z0|2 � r2.
Consequently, u0 � (|y| − r)/r and g(0)/u0 � r2. By concavity of g(u) we
have g(u) ≥ g(0)(1 − u/u0). From (60), (61) and the fact that u0 ≤ 2 it
follows that

P (x, y) ≤ cr1−d+αdw/2rαdw/2
1∧u0�

0

g(u)−αdw/2 du

≤ cr1−d+αdw(g(0)/u0)−αdw/2
1∧u0�

0

(u0 − u)−αdw/2 du

≤ cr1−d[−(u0 − u)1−αdw/2]1∧u0
0 ≤ cr1−d,

which gives our claim. It follows that

h1(x) = r−1
�

R

h1(y)P (x, y) dµ(y) ≤ cr−1
�

R

h1(y)r1−d dµ(y)

= cr−d
�

R

h1(y) dµ(y) ≤ ch1(x̃).

Thus, for functions α-harmonic in B(0, 2r) we showed (54) except that x, y ∈
B(x0, r) is replaced by x, y ∈ B(x0, r/2). Hence, substituting 2r for r we get
the assertion of Theorem 7.1 with c1 = 4. The proof is complete.

The following lemma is motivated by [BBy]. It is a useful tool in the
proof of the Boundary Harnack Principle and extends Theorem 7.1 slightly.
For the reader’s convenience we give the proof, as the general context is
much different than the one in [BBy]. We point out that the situation is
completely different as compared to the diffusion case. This is due to the
fact that the definition of α-harmonic functions is a global one. In general, a
ball in F may be disconnected. These circumstances make the classical chain
argument unavailable in our setting (compare also with Proposition 3.37 and
Corollary 3.38 in [Ba]). A desired extension of (54) in the diffusion case is not
even true, since on each component of a (disconnected) ball the harmonic
function can be defined separately.

Lemma 7.6. Let x1, x2 ∈ F , r > 0 and M ∈ R satisfy |x1 − x2| ≤ Mr.
Let u ≥ 0 be a function which is α-harmonic in B(x1, r) ∪ B(x2, r). Then
α-harmonic

c−1M−dαu(x2) ≤ u(x1) ≤ cMdαu(x2).

Proof. Without any loss of generality we assume x1 = 0 and |x2| ≥ 3r/2,
because otherwise we can consider smaller r. By Theorem 7.1 we obtain

u(x) ≥ cu(x2), x ∈ B(x2, r/4).
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By (50), for x ∈ B(x2, r/4) we have

PB(0,r/2)(0, x) ≥ crαdw/2|x|−dα ≥ crαdw/2(Mr)−dα = cM−dαr−d.

It follows that

u(0) ≥
�

B(x2,r/4)

PB(0,r/2)(0, x)u(x) dµ(x) ≥ cµ(B(x2, r/4))M−dαr−du(x2),

and, by (1) and symmetry, the assertion follows.

Corollary 7.7. Let α ∈ (0, 2/dw)∪ (ds, 2). For each κ > 1 there exists
c1 = c1(κ) such that for any x0 ∈ F , r > 0 and any function h ≥ 0 regular
α-harmonic in B(x0, r), we have

h(x) ≥ c1h(y), x, y ∈ B(x0, r/κ).(62)

Proof. As previously we assume x0 = 0. It is enough to show

c2h(0) ≤ h(x) ≤ c3h(0), x ∈ B(0, r/κ),(63)

with c2, c3 = c(κ). Let r̃ = (κ−1)r/κ. Clearly, B(x, r̃) ⊆ B(0, r), so that h is
α-harmonic in B(x, r̃)∪B(0, r̃). From Lemma 7.6, with r̃ and M = 1/(κ−1),
we obtain (63), and the assertion follows.

8. Estimates near boundary. Let D be an open nonempty bounded
subset of F . We will be interested in the decay rate of the exit time and
α-harmonic functions near the boundary of D. The main results of this
section are Theorems 8.3 and 8.4.

To measure the regularity of a set we make the following definition.
We say that D ⊆ F has the outer fatness property if there are constants
c1 = c1(D) and R0 = R0(D) such that

µ(Dc ∩B(x, r)) ≥ c1r
d, x ∈ ∂D, r ∈ (0, R0).(64)

It is clear that this holds for the interior of the natural cells and their finite
unions in the Sierpiński gasket (see below for the definition). For the rest of
this section we assume that D satisfies (64).

In Lemma 8.1 through Theorem 8.4 for simplicity we assume that
diam(D) = 1. We set Dn = {x ∈ D : δ(x) ≤ k−n}, n = 0, 1, . . . , where
δ(x) = dist(x,Dc) ≤ 1 and k is a natural number whose value will be spec-
ified later. Observe that D0 = D. Let Pn = Dn \Dn+1, n = 0, 1, . . .

Lemma 8.1. There exists c1 such that for each a > 2, r > 0 and x ∈ F ,

P x[XτB(x,r) 6∈ B(x, ar)] ≤ c1a
−αdw/2.

Proof. Since a > 2 we can apply Proposition 6.4 with κ = 2 and get the
constant independent of a. Thus
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P x[XτB(x,r) 6∈ B(x, ar)] ≤ crαdw/2
�

B(x,ar)c

|x− y|−dα dµ(y)

= crαdw/2
∞∑

m=0

�

ar2m≤|y−x|≤ar2m+1

|x− y|−dα dµ(y)

≤ crαdw/2
∞∑

m=0

µ(B(x, ar2m+1))(ar2m)−d−αdw/2

≤ crαdw/2(ar)−αdw/2
∞∑

m=0

2−mαdw/2

and the assertion follows.

Remark. That the constant c1 does not depend on r and a > 2 may
be viewed as an instance of weak scaling for our process.

For the rest of this section let Bn = B(x, k−n).

Proposition 8.2. There exists p = p(D) > 0 such that

P x[τD ≤ τBn ] ≥ p, x ∈ Dn.

Proof. We only need to prove the inequality for n ≥ 1. Fix x ∈ Dn and
let x0 ∈ Dc be such that |x − x0| ≤ k−n. Define rn = 1/kn and An =
B(x0, rn) ∩Dc. Then we have

P x[τD ≤ τBn ] ≥ P x[X(τBn) ∈ Dc] ≥
�

An

PB(x,rn)(x, y) dµ(y).

We choose k large enough so that 1/k < R0 in (64). Observe that if (64)
holds for all points in ∂D then, by (1), it holds for x0 as well. Also, we have
|x− y| ≤ |x− x0|+ |x0 − y| ≤ 2k−n, y ∈ An. Therefore, by (50), for n ≥ 1
we have

P x[τD ≤ τBn ] ≥ c
�

An

rαdw/2n |x− y|−dα dµ(y) ≥ ckndµ(An) ≥ cc1,

where the constant c1 comes from (64). This completes the proof.

Theorem 8.3. There exist β = β(D) ∈ (0, 1) and c0 = c0(D) such that

ExτD ≤ c0δ(x)β, x ∈ D.
Proof. Fix x ∈ D. Let rn be as in the proof of the preceding proposition.

Define
un = sup{ExτD : x ∈ Dn}.

Clearly, it is enough to show

un ≤ c3c
n
4 , n = 0, 1, . . . ,
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with c3 = c3(D), c4 = c4(D) ∈ (0, 1). By the strong Markov property we
have

ExτD = Ex[τD; τBn ≥ τD] + Ex[τD; τBn < τD]

≤ ExτBn + Ex[EX(τBn )τD; τBn < τD].

By Proposition 4.4, the first term is not greater than cr
αdw/2
n = ck−nαdw/2.

The second one is equal to
n−2∑

j=0

Ex[EX(τBn )τD;X(τBn) ∈ Pj ]+Ex[EX(τBn )τD;X(τBn) ∈ Dn−1] = A+B.

By Proposition 8.2,

B ≤ un−1P
x[τBn ≤ τD] ≤ (1− p)un−1.

Suppose that n ≥ 2, for otherwise the term A is absent. Then

A ≤
n−2∑

j=0

ujP
x[X(τBn) ∈ Pj ] =

n∑

j=2

un−jP x[X(τBn) ∈ Pn−j].

Let x0 ∈ Dc be a point closest to x. Note that |y − x| ≤ 1/(2kn−j+1) yields

δ(y) ≤ |y − x0| ≤ |y − x|+ |x− x0| ≤ 1/(2kn−j+1) + 1/kn ≤ 1/kn−j+1,

provided k ≥ 2 and j ≥ 2. In other words, Pn−j ⊆ B(x, rnkj−1/2)c. Conse-
quently,

P x[X(τBn) ∈ Pn−j] ≤ P x[X(τBn) 6∈ B(x, rnkj−1/2)]

≤ ck−(j−1)αdw/2 ≤ ck−(j−1)αdw/2,

by Lemma 8.1. We conclude that

un ≤ c1k
−n
0 + (1− p)un−1 + c2

n∑

j=2

un−jk
−(j−1)
0 , n = 2, 3, . . . ,(65)

where k0 = kαdw/2. Let c4 = c4(D) be such that 1 − p < c4 < 1. Fix any
n0 ≥ 3. We now choose the value of k large enough to satisfy the following:

(a) k1/4
0 c4 > 1,

(b) c2 < k
1/4
0 ,

(c) (k0c4)−n0 + (1− p)/c4 + (k1/4
0 − 1)−1 < 1.

Moreover, we may and do choose c3 ≥ c1 such that for m = 0, 1, . . . , n0,

um ≤ c3c
m
4 .(66)

We now extend (66) to all m by induction. Assume that (66) holds for
m = 0, 1, . . . , n− 1. From (65) it follows that
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un ≤ c1k
−n
0 + (1− p)c3c

n−1
4 + c2

n∑

j=2

c3c
n−j
4 k−j+1

0

≤ c3c
n
4 (1/(c4k0)n + (1− p)/c4) + c2c3k

−1/4
0 k

5/4
0

n∑

j=2

cn−j4 k
−j/4
0 k

−3j/4
0

≤ c3c
n
4 (1/(c4k0)n0 + (1− p)/c4) + c3c

n
4k

5/4
0

∞∑

j=2

k
−3j/4
0 ≤ c3c

n
4 ,

by our assumptions on k0. This ends the proof.

The above method also applies to harmonic functions. Analogous results
are used in [B], [JK] in proofs of the Boundary Harnack Principle. In what
follows we will assume the following inner fatness property of D.

There exist constants θ = θ(D) ∈ (0, 1) and R0 = R0(D) such that for
every r ∈ (0, R0) and Q ∈ ∂D there is a point A = A(Q, r) ∈ D ∩ B(Q, r)
such that

B(A, θr) ⊆ D ∩B(Q, r).(67)

Since we can always take a smaller localization radius R0, it is convenient
to use the same symbol as in (64). It is clear that the interiors of a natural
cell (or a finite sum of cells) in the Sierpiński gasket satisfy this condition
(see below).

Theorem 8.4. There exist constants β = β(D), r0 = r0(D) and c0 =
c0(D) such that for all Q ∈ ∂D and r ∈ (0, r0), and functions u ≥ 0 regular
α-harmonic in D ∩ B(Q, r) and satisfying u(x) = 0 on Dc ∩ B(Q, r), we
have

u(x) ≤ c0(|x−Q|/r)βc(u), x ∈ D ∩B(Q, r),

where c(u) = sup{u(y) : y ∈ D ∩B(Q, r)}.
Proof. Let Dn = D∩B(Q, r/kn), n = 0, 1, . . . , with k ≥ 2 to be specified

later. Define un = supx∈Dn u(x). We fix n ≥ 1 and x ∈ Dn. Define rn =
r/(4kn) and Bn = B(x, rn). We have

u(x) = Exu(X(τD0))

= Ex[u(X(τD0)); τBn > τD0 ] + Ex[u(X(τD0)); τBn ≤ τD0 ].

On the set {τBn > τD0} we have

X(τD0) ∈ Dc
0 ∩Bn ⊆ Dc

0 ∩B(Q, r) = Dc ∩B(Q, r),

so that u(X(τD0)) = 0. Hence, by the strong Markov property

u(x) =Ex[EX(τBn )u(X(τD0)); τBn ≤ τD0 ]

≤ Exu(X(τBn))

=Ex[u(X(τBn)); X(τBn) 6∈B(Q, r)]+Ex[u(X(τBn));X(τBn)∈B(Q, r)].
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By our assumption, there is a ball B(A, θr) ⊆ D ∩ B(Q, r). Let BA =
B(A, θr/2). Then

(68) Ex[u(X(τBn)); X(τBn) 6∈ B(Q, r)]

=
�

B(Q,r)c

u(z)
PBn(x, z)
PBA(A, z)

PBA(A, z) dµ(z).

For x ∈ Dn and z ∈ B(Q, r)c we have |x − z| ≥ r − r/(4kn) ≥ r/2 ≥ 2rn.
Also |A − z| ≥ θr = 2rA, where rA = θr/2. It follows that we can apply
Proposition 6.4, which gives

PBn(x, z)
PBA(A, z)

≤ c r
αdw/2
n |x− z|−dα
r
αdw/2
A |A− z|−dα

≤ c

knαdw/2
|x− z|−dα
|A− z|−dα .(69)

If |z −Q| ≥ r then

|x− z| ≥ |z−Q| − |Q− x| ≥ |z−Q| − r/kn ≥ |z−Q|(1− 1/kn) ≥ 1
2 |z−Q|

and
|A− z| ≤ |z −Q|+ |Q− A| ≤ |z −Q|+ r ≤ 2|z −Q|.

Combining this with (68) and (69) we obtain

Ex[u(X(τBn)); X(τBn) 6∈ B(Q, r)] ≤ ck−nαdw/2
�

B(Q,r)c

u(z)PBA(A, z) dµ(z)

≤ ck−nαdw/2u(A) ≤ ck−nαdw/2u0.

We need to estimate Ex[u(X(τBn)); X(τBn) ∈ B(Q, r)]. This can be done
exactly as in the proof of Theorem 8.3. Consequently, we arrive at (65) and
the same argument as before completes the proof.

Proposition 8.5 below is an analogue of the Carleson estimate. We adapt
the proof from [BBy] (see also [B]). Our contribution is the control of the
scale parameters in the computations. Since the process does not prefer any
particular scale, the result cannot depend on it, and the weak scaling suffices
to prove that independence.

Proposition 8.5. Let α < 2/dw. There exists a constant c1 = c1(θ)
such that for all Q ∈ ∂D and r ∈ (0, R0/2), and functions u ≥ 0 regular
α-harmonic in D ∩ B(Q, 2r) and satisfying u(x) = 0 on Dc ∩ B(Q, 2r), we
have

u(x) ≤ c1u(A), x ∈ D ∩B(Q, r),

where A is as in (67).

Proof. We assume Q = 0. Let K(z0, s) be as in Lemma 7.5 and for
σ ∈ (r, 2r) define

uσ(z) = Ezu(X(τK(z0,σ))), z ∈ F.
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Then
u(z) ≤ uσ(z), z ∈ F.(70)

Indeed,

u(z) =Ezu(X(τD∩K(z0,σ)))=Ez[u(X(τD∩K(z0,σ))); X(τD∩K(z0,σ)) 6∈K(z0, σ)]

=Ez[u(XτK(z0,σ)); X(τD∩K(z0,σ)) 6∈ K(z0, σ)]

≤Ezu(XτK(z0,σ)) = uσ(z).

We claim that there is σ0 in (7r/4, 2r) such that

uσ0(0) ≤ crαdw/2
�

|y|>r
u(y)|y|−dα dµ(y).(71)

Indeed, by Lemma 7.5 and Remark 4, the process does not hit the boundary
of K(z0, σ) for almost all σ ∈ (7r/4, 2r). Thus, we have

2r�

7r/4

uσ(0) dσ =
2r�

7r/4

�

|y|>r
PK(z0,σ)(0, y)u(y) dµ(y) dσ(72)

=
( �

|y|∈(r,4r)

+
�

|y|>4r

)
u(y)

2r�

7r/4

PK(z0,σ)(0, y) dσ dµ(y)

= A+B.

We estimate the integral A. Since |y| � r, similarly to (59) we obtain
2r�

7r/4

PK(z0,σ)(0, y) dσ ≤ cr1−d � r1+αdw/2|y|−dα.

It follows that
A ≤ cr1+αdw/2

�

|y|∈(r,4r)

u(y)|y|−dα dµ(y).

To estimate the integral B in (72), observe that for |y| > 4r we have
|y − z0(s− r)/r| > 3r > 2(σ + r)/2 and by Proposition 6.4 we get

2r�

7r/4

PK(z0,σ)(0, y) dσ ≤ c
2r�

7r/4

((σ + r)/2)αdw/2|y|−dα dσ ≤ cr1+αdw/2|y|−dα.

It follows that
B ≤ cr1+αdw/2

�

|y|>4r

u(y)|y|−dα dµ(y).

Consequently, we can estimate the mean value of uσ(0) over σ ∈ (7r/4, 2r),

(4/r)
2r�

7r/4

uσ(0) dσ ≤ crαdw/2
�

|y|≥r
u(y)|y|−dα dµ(y),

which gives our claim (71).
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By the assumption (67), we fix a point A such that B(A, θr) ⊆ D ∩
B(Q, r). Since u is regular α-harmonic in B(A, θr) by (50) we obtain

u(A) ≥
�

|y−A|>θr
PB(A,θr)(A, y)u(y) dµ(y)

≥ c(θr)αdw/2
�

|y−A|>θr
|y − A|−dαu(y) dµ(y)

≥ c2r
αdw/2

�

|y|>r
|y − A|−dαu(y) dµ(y),

where c2 = c2(θ). If |y| > r then |A| < r < |y|, and consequently |y − A| ≤
|y|+ |A| ≤ 2|y|. Hence, by the above inequality and (71),

u(A) ≥ cc2r
αdw/2

�

|y|>r
|y|−dαu(y) dµ(y) ≥ c3uσ0(0),(73)

with c3 = c3(θ). From (70), Corollary 7.7 for the ball B(0, σ0) and z ∈
B(0, r), and (73) it follows that

u(z) ≤ uσ0(z) ≤ cuσ0(0) ≤ c4u(A), z ∈ B(0, r),(74)

where c4 = c4(θ). This ends the proof.

8.1. Boundary Harnack Principle. Below we present a proof of the
Boundary Harnack Principle for the Sierpiński gasket. For the sake of con-
venience, we recall here briefly the construction of the set (we introduce an
unbounded version). Let F0 be the closed convex triangle with vertices at
(0, 0), (1, 0) and (1/2,

√
3/2). Let A be the interior of the triangle whose

vertices are the midpoints of the edges of F0. Let F1 = F0 \ A. Then F1
consists of three closed triangles of sides 1/2. To obtain F2 we apply the
above procedure to the triangles in F1, and so on. Set

F∞ =
∞⋂

n=0

Fn, F =
∞⋃

n=0

2nF∞.

We call F the (unbounded) Sierpiński gasket . The collection of those
triangles in

⋃∞
k=0 2kFn+k (of sides 2−n) is denoted by Sn, n = 0, 1, . . . Note

that F lies between the x-axis and the line y =
√

3x.
By a natural cell (or simply cell) we mean the intersection of F with a

triangle from Sn for some n = 0, 1, . . .
We assume that our region D is the interior of the sum of a finite number

of natural cells (possibly of different sizes). In other words, there exist n0 ∈
N ∪ {0}, ni ∈ N ∪ {0}, i = 1, . . . , n0, and Si ∈ Sni such that

D = int
(
F ∩

n0⋃

i=1

Si

)
.
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Note that the interior is taken with respect to the topology of F (inherited
from RN ) and since Si are closed, any two adjacent cells always make a
connected set. It is clear that (64) and (67) hold for our D (with some
R0 = R0(D)). Moreover, observe that the distance between any two disjoint
cells in D is at least R1 = R1(D) > 0. We may and do assume that R0 < R1.
Since in the proof of the Boundary Harnack Principle we consider local
neighborhoods of a boundary point, it is enough to deal with a single cell.

The result can be stated as follows.

Theorem 8.6 (Boundary Harnack Principle). Let 0 < α < 2/dw or
ds < α < 2. There exists a constant c1 = c1(D) such that for all Q ∈ ∂D,
r ∈ (0, R0), and functions u, v ≥ 0 regular α-harmonic in D∩B(Q, 2r) which
vanish on Dc∩B(Q, 2r) and satisfy u(A1) = v(A1), where A1 satisfying (67)
is defined below , we have

c−1
1 v(x) ≤ u(x) ≤ c1v(x), x ∈ D ∩B(Q, r/4).(75)

Before the proof we make some clarifying remarks. Without losing gen-
erality we assume that our d-measure µ is the d-dimensional Hausdorff
measure. As usual, we assume Q = 0 and let Ω = D ∩ B(Q, r). For ar-
bitrary r ∈ (0, R0) we can always find r̃ = 2−n, for some n ∈ N, such that
r/2 ≤ r̃ < r. Thus, it is enough to prove (75) for x ∈ D ∩B(Q, r̃/2). There-
fore, we may and do assume that r itself is of the form r = 2−n with n
fixed. This implies that a ball with center at any vertex of any triangle from
Sn and of radius 2−ir, i ∈ N, consists of triangles from Sn+i (intersected
with F ). In particular, Ω is the intersection of D with a triangle from Sn
whose one vertex is at 0 (see Figure 1).
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Let Ω1 = 1
2Ω = D ∩ B(0, r/2) and set {A1, A2} = ∂Ω1 \ {0} and

{S1, S2} = ∂Ω \{0}, so that Si = 2Ai, i = 1, 2. Define Ri = B(Si, r/2)∩Ωc,
i = 1, 2, and R = R1∪R2. Moreover, let Ti = B(Si, 3r/4)\(Ω∪Ri), i = 1, 2,
and T = T1 ∪ T2.

Proof of the Boundary Harnack Principle. Let u1, u2 be functions such
that

u1(y) =
{
u(y), y ∈ R,
0, y ∈ Ωc \R, u2(y) =

{
u(y), y ∈ Ωc \R,
0, y ∈ R,

and u1 and u2 are regular α-harmonic in Ω. Note that u1, u2 ≥ 0 and
u1 + u2 = u. We define v1 and v2 analogously. By the Harnack inequality
for B(Si, r), i = 1, 2, we have

u(y) � u(Ai), y ∈ Ri ∪ Ti, i = 1, 2, u(A2) � u(A1).

Consequently,

u(y) � u(A1), y ∈ R ∪ T.(76)

Fix x ∈ Ω. From (76) it follows that

u1(x) = Ex[u(XτΩ); XτΩ ∈ R] � u(A1)P x[XτΩ ∈ R].

From the analogous relation for v1 and our assumption u(A1) = v(A1) we
get

u1(x) � v1(x) ≤ v(x), x ∈ Ω.(77)

Since v2 = 0 on R we have

v2(A1) = EA1v2(XτΩ)(78)

= EA1 [v(XτΩ); XτΩ ∈ T ]

+ EA1 [v(XτΩ); XτΩ ∈ (Ω ∪R ∪ T )c].

By the relation for v analogous to (76) we obtain

inf
z∈T

v(z) ≥ inf
z∈T∪R

v(z) � v(A1) � sup
z∈T∪R

v(z),

which yields

EA1 [v(XτΩ);XτΩ ∈ T ] ≥ c sup
z∈T∪R

v(z)PA1[XτΩ ∈ T ].(79)

On the other hand,

v(A1) = EA1 [v(XτΩ); XτΩ ∈ R ∪ T ] +EA1 [v(XτΩ); XτΩ ∈ (Ω ∪R ∪ T )c]

≤ sup
z∈T∪R

v(z)PA1[XτΩ ∈ R ∪ T ] + EA1 [v(XτΩ); XτΩ ∈ (Ω ∪R ∪ T )c].

Observe that
PA1 [XτΩ ∈ R ∪ T ] ≤ c0P

A1 [XτΩ ∈ T ].
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Indeed, for y ∈ T1 we have |A1 − y| ≤ 2r and by (50) we obtain

PA1 [XτΩ ∈ T ] ≥ PA1 [XτB(A1,r/2) ∈ T1] ≥ crαdw/2
�

T1

|A1 − y|−dα dµ(y)

≥ crαdw/2(2r)−dαµ(T1) ≥ c−1
0 .

Hence, we get

v(A1) ≤ c sup
z∈T∪R

v(z)PA1[XτΩ ∈ T ](80)

+EA1 [v(XτΩ);XτΩ ∈ (Ω ∪R ∪ T )c]

Combining (78), (79) and (80) we get

v2(A1) ≥ cv(A1).(81)

Let K = Ω ∪ R ∪ (Dc ∩ B(0, 2r)). Observe that for z ∈ Ω and y ∈ Kc

we have |y − z| � |y|. Therefore, for x ∈ Ω we obtain

u2(x) =
�

Kc

PΩ(x, y)u(y) dµ(y)

�
�

Kc

( �

Ω

GΩ(x, z)|z − y|−dα dµ(z)
)
u(y) dµ(y)

�
�

Kc

( �

Ω

GΩ(x, z) dµ(z)
)
u(y)|y|−dα dµ(y)

= ExτΩ
�

Kc

u(y)|y|−dα dµ(y)

and the analogous relation for v2. It follows that

u2(x)/u2(A1) � ExτΩ/EA1τΩ � v2(x)/v2(A1).(82)

Denote the last quotient by q0. Then, by (82), the definition of u2, the
assumption u(A1) = v(A1) and (81),

u2(x) ≤ cq0u2(A1) ≤ cq0u(A1) = cq0v(A1) ≤ cq0v2(A1) = cv2(x), x ∈ Ω.
Together with (77) and symmetry this completes the proof.

Remark 5. We want to emphasize that in the particular case of the
Sierpiński gasket, the Boundary Harnack Principle is a consequence of the
Harnack inequality alone. It seems that a similar approach works for nested
fractals. On the other hand the Boundary Harnack Principle for the
Sierpiński carpet should be available by other, more complicated methods
used in [B] for Lipschitz domains in RN .
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Note added in proof. After the paper was submitted we learned that Z.-Q. Chen
and T. Kumagai [CK] studied general stable-like processes on fractals defined by means of
appropriate Dirichlet forms. Their paper contains very interesting results, which partially
overlap ours; however, their methods of proof are completely different, based on tightness
results and the parabolic Harnack inequality.
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[BB1] —, —, Brownian motion and harmonic analysis on Sierpiński carpets, Canad.
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