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Abstract

A Negishi cross-coupling of alkyl pyridinium salts and alkylzinc halides has been developed. This 

is the first example of alkyl–alkyl bond formation via cross-coupling of an alkyl amine derivative 

with an unactivated alkyl group, and allows both primary and secondary alkyl pyridinium salts to 

react with primary alkylzinc halides with high functional group tolerance. When combined with 

formation of the pyridinium salts from primary amines, this method enables the non-canonical 

transformation of NH2 groups into a wide range of alkyl substituents with broad functional group 

tolerance.

Graphical Abstract

Alkyl amines are abundant molecules ranging from simple starting materials to complex 

natural products and drug candidates.1 As an example of their prevalence, a search of 

Pfizer’s internal chemical store revealed over 47,000 alkyl primary amines vs. about 28,000 

primary and secondary alkyl halides.2 In addition, the use of alkyl amines as intermediates is 

advantageous, because they can be prepared directly and convergently with simultaneous 

formation of the amine and C–C bonds via classic reactions, such as Mannich, Petasis, 

Strecker, and others.3 Due to their ubiquity, methods that allow alkyl amines to be converted 

into electrophiles for cross-coupling reactions present an exciting opportunity for 

development. However, the utilization of amine-derived alkyl electrophiles remains limited 
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with cross-couplings largely restricted to alkyl amine derivatives with electronic or strain 

activation of the C(sp3)–N bond (Scheme 1A).4,5,6 We recently overcame this limitation by 

developing a Suzuki–Miyaura arylation of Katritzky pyridinium salts, which are easily and 

selectively prepared from primary alkyl amines (Scheme 1B).7,6m, 6n,5b, 8 This reaction was 

the first cross-coupling of an alkyl amine derivative with an unactivated alkyl group. 

Recognizing that our proposed alkyl radical intermediate could also be formed via 

photoredox catalysis, Glorius, Gryko, Aggarwal, Li and Shi then developed Minisci 

arylation, alkynylation, and borylations.9 These exciting reports demonstrate the potential of 

alkyl pyridinium salts in synthesis, and offer avenues to convert ubiquitous NH2 groups into 

C(sp2) and C(sp) substituents. However, no current methods enable C(sp3)–C(sp3) formation 

via cleavage of these unactivated alkyl pyridinium salts.10

The prevalence of C(sp3)–C(sp3) bonds in bioactive molecules has led to intense efforts to 

develop methods to incorporate fully saturated C–C bonds in complex products.11 In 

particular, Negishi cross-couplings have emerged as a reliable and functional group tolerant 

method.6a, 6d, 12 Motivated by the myriad advantages of alkyl amine derivatives as alkyl 

electrophiles, we envisioned a Negishi cross-coupling for the generation of C(sp3)–C(sp3) 

bonds from alkyl pyridinium salts (Scheme 1C). However, despite the precedent with other 

alkyl electrophiles, we were concerned that competitive nucleophilic addition of the 

organozinc to the pyridinium ring and/or deprotonation of the acidic α-proton of the alkyl 

pyridinium salts would prevent the desired cross-coupling. Overcoming these challenges, we 

have developed the first example of alkyl–alkyl bond formation via cross-coupling of an 

alkyl amine derivative with an unactivated alkyl group. This method allows both primary and 

secondary alkyl pyridinium salts to react with primary alkylzinc halides with high functional 

group tolerance. In combination with efficient pyridinium formation, this reaction enables 

the non-canonical transformation of amino groups into alkyl substituents, providing 

unprecedented entry to complex, saturated organic frameworks via versatile and attractive 

amine intermediates.

We selected the cross-coupling of phenethyl pyridinium salt 1a and commercially available 

(2-(1,3-dioxolan-2-yl)ethyl)zinc bromide for our initial studies. We prioritized the use of 

alkyl zinc halides, as opposed to dialkyl zinc reagents, due to their greater commercial 

availability, higher functional group tolerance, and ease of handling.13 Using 

bathophenanthroline (BPhen), the optimal ligand for our Suzuki–Miyaura arylation, resulted 

in <20% yield. However, with NiCl2·DME/4,4’,4’’-tri-tert-butyl terpyridine (ttbtpy) as 

catalyst and DMA as a polar co-solvent, 68% yield was observed (Table 1, entry 1).14 

Increasing the amount of organozinc halide further improved the yield (entry 2); however, 

more than 1.6 equivalents led to decreased product formation (see Supporting Information). 

The use of other redox non-innocent ligands also resulted in lower yields (entries 3–6). To 

maximize the practicality, less expensive NiII sources and lower catalyst loadings were 

examined. Although NiCl2·6H2O was ineffective (entry 7), Ni(acac)2·xH2O gave slightly 

higher yields than NiCl2·DME (entry 8). Lowering the Ni(acac)2·xH2O and ttbtpy loading to 

5 and 6 mol %, furnished a similar yield (entry 9). Control experiments confirmed that both 

nickel and ligand are required (entries 10 and 11).
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Although ttbtpy proved effective for primary alkyl pyridinium salts, only 18% yield was 

observed with secondary alkyl pyridinium salt 1b (Table 1, entry 12). However, 2,6-bis(N-

pyrazolyl)pyridine (1-bpp) promoted the cross-coupling with high efficiency (entry 14). This 

ligand has been used previously in Negishi cross-couplings, including those of bulky 

alkylzinc iodides.12f, 12g Notably, tpy also bested the more hindered ttbtpy (entries 12 vs. 

13), suggesting that steric hindrance of the ligand may be primarily responsible for the 

success of 1-bpp.12g

Wide scope of primary and secondary alkyl pyridinium salts was observed (Scheme 2). Aryl 

and heteroaryl groups were tolerated, including thiophene (4), benzodioxole (6), pyridine 

(7), and pyrimidine (15). Products with saturated heterocycles, such as piperazine 5, 

morpholine 16, pyrans 9 and 13, piperidines 11 and 15, pyrrolidine 12, and strained 

azetidine 8, also formed in good yields. Highlighting the potential for late-stage 

functionalization, pyridinium salts of several drugs, pharmaceutical intermediates, and 

natural products underwent alkylation. Alkylations of the pyridinium salts of amine 

intermediates in the synthesis of the gastrointestinal drug Mosapride (16) and Lipitor (18–

20) were effective.15 A single diastereomer of 19 was observed, indicating that stereocenters 

bearing acidic protons are not epimerized. The unprotected carboxylic acid of 20 is tolerated 

in both the pyridinium formation and cross-coupling, demonstrating orthogonality of the 

amine and carboxylate groups, either of which can be used to generate alkyl radicals.12h, 16 

The pyridinium salts of natural cis-myrtanylamine (17), pinanamine (21), the anti-

arrhythmic drug Mexiletine (22) and antiviral Tamiflu (23) also coupled well.17 The cross-

coupling of the Tamiflu pyridinium salt demonstrates that a high degree of steric hindrance 

and chemical complexity is tolerated. However, this method is limited to primary and 

secondary alkyl 2,4,6-triphenyl pyridinium salts, because we cannot yet form them from 

unconstrained tertiary alkyl amines.9e To simplify set-up, a single-component catalyst, Ni(1-

bpp)Cl2, can be used (see 11, 15).

Both commercial and prepared primary alkyl zinc halides proved effective (Scheme 2). We 

used Hou’s method to generate organozinc reagents due to its high functional group 

tolerance.18 In line with findings by Organ,19 a salt additive was crucial for maintaining high 

reactivity of non-commercial organozinc reagents, with NBu4I as the optimal additive.20 

Homemade organozinc halides were generated in DMA (no THF present). In terms of steric 

hindrance, β-branching is tolerated (6, 19), including quaternary carbons (13). However, 

secondary and tertiary alkylzinc halides do not undergo the desired cross-coupling. Instead, 

a non-nickel-catalyzed addition to the 4-position of the pyridinium ring occurs.21 Regarding 

functional group tolerance, various groups can be incorporated in the alkylzinc halide, 

including acetal (2, 3, 9, 20), ester (4, 16, 19), alkene (5, 17), nitrile (7, 11, 22), 

trifluoromethyl (12), and oxetane (13). Notably, the pyridinium group couples preferentially 

in the presence of an alkyl chloride (14). Methylzinc iodide is also effective (8, 23). When 

coupled with formation of the pyridinium salt, this strategy allows NH2 to be replaced with a 

steric isostere CH3, offering opportunities for efficient structure-activity relationship studies.
22 Finally, synthetically versatile α-methylpinacolboronate (CH2Bpin) can also be installed 

(10, 15, 21). To our knowledge, this is the first example utilizing α-methylpinacolboronate 

zinc bromide in a Negishi cross-coupling.23 Product 15 is formed in 83% yield on a 5-mmol 
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scale with the single-component catalyst. Further, we demonstrated the versatility of the 

newly installed Bpin by converting it to an alcohol (22),6g bromide (23),24 and thiophene 

(24, Scheme 3).25

To facilitate use of this chemistry in parallel medicinal chemistry and other synthesis efforts, 

we developed conditions for the one-pot transformation of amines directly to the alkylated 

products. By increasing the equivalents of alkylzinc halide, similar yields were obtained in 

this one-pot procedure as the two-step method (Scheme 4). Notably, these conditions are not 

sequential addition; primary amine and pyrylium tetrafluoroborate are simply added in place 

of the pyridinium salt under the previous conditions.

In analogy to Negishi cross-couplings of other alkyl electrophiles, our arylation of alkyl 

pyridinium salts,7, 12f, 12g and other reactions of alkyl pyridinium salts,9a, 9b, 26 we 

hypothesize that this reaction proceeds through single-electron transfer (SET) to the alkyl 

pyridinium salt from a Ni(I) intermediate or a Ni(II) cation with a reduced ligand.12g 

Fragmentation of the resulting neutral pyridyl radical then gives an alkyl radical, which 

recombines with a Ni(II) intermediate to then deliver the product. Consistent with an alkyl 

radical intermediate, we observe ring-opened 30 in the reaction of cyclopropylmethyl 

pyridinium salt and TEMPO-adduct 31 when TEMPO is added (Scheme 5). No cross-

coupled product 2 is observed upon addition of TEMPO.

In summary, we have developed the first example of an alkyl–alkyl cross-coupling of alkyl 

amine derivatives with unactivated alkyl groups, specifically alkyl pyridinium salts. When 

combined with chemoselective pyridinium formation from primary amines, this Negishi 

reaction provides the ability to convert NH2 into a range of alkyl groups with broad 

functional group tolerance. The reaction appears to proceed via an alkyl radical intermediate, 

likely generated after SET from a Ni species to the pyridinium cation. Future efforts will 

expand the scope of alkyl groups and pursue detailed mechanistic understanding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Alkyl amine derivatives in cross-coupling reactions.
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Scheme 2. 
Reaction Scopea
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Scheme 3. 
Elaboration of Boronic Ester
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Scheme 4. 
One-pot activation and cross-coupling
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Scheme 5. 
Support for Alkyl Radical Intermediate
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Table 1.

Reaction Optimization
a

entry [Ni] ligand yield (%)
b

1
c NiCl2·DME ttbtpy 68

2 NiCl2·DME ttbtpy 75

3 NiCl2·DME tpy 47

4 NiCl2·DME phen 14

5 NiCl2·DME dtbbpy 15

6 NiCl2·DME 1-bpp 49

7 NiCl2·6H2O ttbtpy 20

8 Ni(acac)2·xH2O ttbtpy 81

9
d Ni(acac)2·xH2O ttbtpy 80

10 none ttbtpy 3

11 Ni(acac)2·xH2O none 9

12 NiCl2·DME ttbtpy 18

13 NiCl2·DME tpy 68

14 NiCl2·DME 1-bpp 83

a
Conditions: Pyridinium salt 1a (0.1 mmol), [Ni] (10 mol %), ligand (12 mol %), AlkZnBr (1.6 equiv), THF/DMA (2:1, 0.2 M), 60 °C, 16–22 h, 

unless noted otherwise.

b
Determined by 1H NMR spectroscopic analysis using 1,3,5-trimethoxybenzene as internal standard.

c
AlkZnBr (1.4 equiv).

d
5 mol % [Ni], 6 mol % ligand.

J Am Chem Soc. Author manuscript; available in PMC 2020 February 13.


	Abstract
	Graphical Abstract
	References
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.
	Scheme 5.
	Table 1.

