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Harnessing Fluctuations in Thermodynamic Computing

via

Time-Reversal Symmetries

One Sentence Summary:

Distinct distributions of thermodynamic work identify signatures of successful and failed information

processing in a microscale flux qubit

Gregory Wimsatt,1, ∗ Olli-Pentti Saira,2, † Alexander B. Boyd,1, ‡ Matthew H.

Matheny,2, § Siyuan Han,3, ¶ Michael L. Roukes,2, ∗∗ and James P. Crutchfield1, 2, ††

1Complexity Sciences Center and Physics Department,

University of California at Davis, One Shields Avenue, Davis, CA 95616
2Condensed Matter Physics and Kavli Nanoscience Institute,

California Institute of Technology, Pasadena, CA 91125
3Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045

(Dated: July 3, 2021)

We experimentally demonstrate that highly structured distributions of work emerge

during even the simple task of erasing a single bit. These are signatures of a re-

fined suite of time-reversal symmetries in distinct functional classes of microscopic

trajectories. As a consequence, we introduce a broad family of conditional fluctua-

tion theorems that the component work distributions must satisfy. Since they identify

entropy production, the component work distributions encode both the frequency of

various mechanisms of success and failure during computing, as well giving improved

estimates of the total irreversibly-dissipated heat. This new diagnostic tool provides

strong evidence that thermodynamic computing at the nanoscale can be constructively

harnessed. We experimentally verify this functional decomposition and the new class of

fluctuation theorems by measuring transitions between flux states in a superconducting

circuit.

Keywords: Jarzynski integral fluctuation theorem, Crooks detailed fluctuation theorem, Landauer’s Principle,

thermodynamics of computation, information thermodynamics

I. INTRODUCTION

Physics dictates that all computing is subject to sponta-

neous error. These days, this truism repeatedly reveals

itself: despite the once-predictable miniaturization of

nanoscale electronics, computing performance increases

have dramatically slowed in the last decade or so. In large

measure, this is due to the concomitant rapid decrease

in the number of information-bearing physical degrees of

freedom, rendering information storage and processing

increasingly susceptible to corruption by thermal fluctua-

tions. Said simply, all physical computing is thermody-

namic.

Controlling the production of fluctuations and removing

heat pose key technological challenges to further progress.
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Practically, the challenge remains of how to probe and

diagnose information processing in overtly noisy systems.

The following introduces trajectory class fluctuation the-

orems to do this by identifying the thermodynamic sig-

nature of successful and failed information processing. It

then experimentally demonstrates how this is practically

implemented in a new microscale platform for thermody-

namic computing.

Only recently have tools appeared that precisely describe

what trade-offs exist between thermodynamic resources

and useful information processing—these are highly remi-

niscent of the centuries-old puzzle of how Maxwell’s “very

observant and neat-fingered” demon uses its “intelligence”

to convert disorganized heat energy to useful work [1]. In

our modern era, his demon has led to the realization that

information itself is physical [2–4]—or, most construc-

tively, that information is a thermodynamic resource [5,

and references therein]. This opened up the new paradigm

of thermodynamic computing [6] in which fluctuations play

a positive role in efficient information processing on the

nanoscale. We now conceptualize this via information

engines: physical systems that are driven by, manipulate,

store, and dissipate energy, but simultaneously generate,

http://arxiv.org/abs/1906.11973
mailto:gwwimsatt@ucdavis.edu
mailto:osaira@caltech.edu
mailto:abboyd@ucdavis.edu
mailto:matheny@caltech.edu
mailto:han@ku.edu
mailto:roukes@caltech.edu
mailto:chaos@ucdavis.edu; Corresponding author


2

store, lose, communicate, and transform information. In

short, information engines combine traditional engines

comprised of heat, work, and other familiar reservoirs

with, what we now call, information reservoirs [7, 8].

Reliable thermodynamic computing requires detecting

and controlling fluctuations in informational and ener-

getic resources and in engine functioning. To do so re-

quires a new generation of diagnostic tools. For these,

we appeal to fluctuation theorems that capture exact

time-reversal symmetries and predict entropy production

leading to irreversible dissipation [9–15]. As the follow-

ing demonstrates, these place us on the door-step of the

very far-from-equilibrium thermodynamics needed to un-

derstand the physics of computing. And, in turn, the

physical principles of how nature processes information

in the service of biological functioning and survival have

begun to emerge.

Proof-of-concept experimental tests have been carried out

in several substrates: probing biomolecule free energies

[16–18], work expended during elementary computing

(bit erasure) [19–24], and Maxwellian demons [25]. That

said, the suite of theoretical predictions and contemporary

principles (App. A) far outstrips experimental validation

to date.

To close the gap, we show how to diagnose thermodynamic

computing on the nanoscale by explaining the signature

structures in work distributions generated during informa-

tion processing. Previous efforts explored features in work

and heat distributions that track the mesoscale evolution

of a system’s informational states; see Refs. [26, 27] and

App. A. Here, we show that functional and nonfunctional

informational-state evolutions can be identified by appro-

priate conditioning and that their thermodynamics obey

a suite of trajectory-class fluctuation theorems. As such,

the latter give accurate bounds on work, entropy produc-

tion, and dissipation for computing subprocesses. The

result is a practical tool that employs mesoscopic (work)

measurements to diagnose microscopic thermodynamic

computing. For simplicity and to make direct contact with

previous efforts, we demonstrate the tools on Landauer

erasure [2] of a bit of information in a superconducting

flux qubit.

II. MODEL SYSTEM

As a reference, we first explore the thermodynamics of

bit erasure in a simple model: a particle with position

and momentum in a double-well potential V (x, t) and in

contact with a heat reservoir at temperature T . (Refer

to Fig. 1.) An external controller adds or removes energy

from a work reservoir to change the form of the potential

V (·, t) via a predetermined erasure protocol {(β(t), δ(t)) :

0 ≤ t ≤ τ}. β(t) and δ(t) change one at a time piecewise-

linearly through four protocol substages: (1) drop barrier,

(2) tilt, (3) raise barrier, and (4) untilt. (See App. B.) The

system starts at time t = 0 in the equilibrium distribution

for a double-well V (x, 0) at temperature T .

We use underdamped Langevin dynamics to simulate this

model:

dx = vdt

m dv =
√

2kBTγ r(t)
√

dt −
(

∂

∂x
V (x, t) + γv

)

dt , (1)

where kB is Boltzmann’s constant, γ is the coupling be-

tween the heat reservoir and system, m is the particle’s

mass, and r(t) is a memoryless Gaussian random variable

with 〈r(t)〉 = 0 and 〈r(t)r(t′)〉 = δ(t − t′).

The default potential, V (·, 0) = V (·, τ), has two sym-

metric wells separated by a barrier. Following common

practice we call the two wells, from negative to positive

position, the Left (L) and Right (R) informational states,

respectively. Initially being equiprobable, the informa-

tional states associated with each of the two wells thus

contain 1 bit of information [28].

The erasure protocol is designed so that the particle ends

in the R state with high probability, regardless of its

initial state. Simulating the protocol 3.5 × 106 times,

96.2% of the particles were successfully erased into the

R state. Thus, as measured by the Shannon entropy, the

initial 1 bit of information was reduced to 0.231 bits. We

intentionally designed the protocol to fail frequently at

erasure to better illustrate our main results on diagnosing

success and failure. But, crucially, the results we present

hold for arbitrarily-successful erasure protocols.

At all other times t, V (·, t) has either one or two local

minima, naturally defining metastable regions for a parti-

cle to be constrained and gradually evolve towards local

equilibrium. We therefore define the informational states

at time 0 ≤ t ≤ τ to be the metastable regions, label-

ing them R and, if two exist, L—from most positive to

negative in position.

Since the protocol is composed of four simple substages,

we coarse-grain the system’s response by its activity dur-

ing each substage at the level of its informational state.

Specifically, for each substage, we assign one of three

substage trajectory classes: the system (i) was always in

the R state, (ii) was always in the L state, or (iii) spent

time in each. Sometimes there is only one informational

state and so the latter two classes are not achievable for

all substages.
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FIG. 1. Inner plot sequence: Erasure protocol (Table I) evolution of position distribution Pr(x) from simulation. Potential
V (x, ts) at substage boundary times ts, s = 0, 1, 2, 3, 4. Starting at t = t0, the potential evolves clockwise, ending at t = t4 in the
same configuration as it starts: V (x, t0) = V (x, t4). However, the final position distribution Pr(x) predominantly indicates the
R state. The original one bit of information in the distribution at time t = t0 has been erased. Outer plot sequence: Substage
work distributions from simulation Pr(Ws, Cs) during substages s: (1) Barrier Drop, (2) Tilt, (3) Barrier Raise, (4) Untilt.
During each substage s, distributions are given for up to three substage trajectory classes Cs: red consists of trajectories always
in the R state, orange trajectories always in the L state, and blue the rest, spending some time in each state.

III. WORK CHARACTERIZATION

We then focus on a single mesoscopic observable—the ther-

modynamic work expended during erasure. An individual

realization generates a trajectory of system microstates,

with W (t, t′) being the work done on the system between

times 0 ≤ t < t′ ≤ τ ; see App. H. Let Ws = W (ts−1, ts)

denote the work generated during substage s and Cs

the substage trajectory class. Figure 1 (Outer plot se-

quence) shows the corresponding substage work distri-

butions Pr(Ws, Cs) obtained from our simulations. (See

App. I.)

The drop-barrier and tilt substage work distributions are

rather simple, being narrow and unimodal. The raise-

barrier distributions have some asymmetry, but are also

similarly simple. However, the untilt work distributions

(farthest right in Fig. 1) exhibit unusual features that

are significant for understanding the intricacies of erasure.

Trajectories that spend all of the untilt substage in either

the R state or L state form peaks at the most positive (red)

and negative (orange) work values, respectively. This is

because the R-state well is always increasing in potential

energy while the L-state well is always decreasing during

untilt. In contrast, the other trajectories contribute a

log-linear ramp of work values (blue) dependent on the

time spent in each. The ramp’s positive slope signifies

that more time is typically spent in the R state in this

last set of trajectories.

Looking at the total work Wtotal = W (0, τ) generated for

each trajectory over the course of the entire erasure pro-

tocol, we observe the strikingly complex and structured

distribution Pr(Wtotal) shown in Fig. 2(Rear). There

are two clear peaks at the most positive and negative

work values separated by a ramp. This highly structured

work distribution, generated by bit erasure, contrasts

sharply with the unimodal work distributions common in

previous studies of fluctuation theorems; see, for exam-

ple, Fig. 2(Inset) for the work distribution generated by

a thermodynamically-driven simple harmonic oscillator

translated in space or Fig. 2 in Ref. [13]. The total

average work was 0.634 kBT , satisfying Landauer’s bound

by being greater than the informational-state Shannon
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entropy decrease of 0.769 × ln 2 kBT = 0.533 kBT .
P

r(
W

to
ta
l,C

4
)

100

10-2

10-4

W
total

 (k
B
T)

0 2 4-4 -2-6

Failure

Success

Transitional

All

W
-4 0 4

10-4

100
Harmonic 

oscillator

P
r(
W

to
ta
l)

FIG. 2. (Rear, purple) Total work distribution of all tra-
jectories Pr(Wtotal) during erasure simulation: A histogram
generated from 3.5×106 trials for Wtotal ∈ [−6, 4] over 201 bins.
(Inset, gray) Typical unimodal work distribution illustrated for
spatially-translated thermally-driven simple harmonic oscilla-
tor. (Three front plots) Work distributions Pr(Wtotal, C4) for
the trajectory classes C4 determined by the untilt trajectory
partition in simulation: The red work distribution (middle)
is that of Success trajectories, the orange (rear) is that of
Fail trajectories, and the blue (front) is that of the remaining,
Transitional trajectories.

We can understand the mechanisms behind this structure

when decomposing Fig. 2(Rear)’s total work distribution

under the untilt substage trajectory classes C4. We label

trajectories that spend all of the untilting substage in

the R state Success since, via the previous substages,

they reach the intended R state by the untilting substage

and remain there until the protocol’s end. Similarly,

trajectories that spend all of the untilt substage in the

L state are labeled Fail. The remaining trajectories are

labeled Transitional, since they transition between the two

informational states during untilt, potentially succeeding

or failing to end in the R state.

Figure 2’s three front plots show the work distribution

for each of these three trajectory classes. Together they

recover the total work distribution over all trajectories

shown in Fig. 2(Rear). Though, now the thermodynamic

contributions to the total from the functionally-distinct

component trajectories are made apparent.

IV. TRAJECTORY-CLASS FLUCTUATION

THEOREM

Exploring the mesoscale dynamics of erasure revealed

signatures of a “thermodynamics” for each trajectory that

is uniquely associated with successful or failed information

processing. We now introduce the underlying fluctuation

theory from which the trajectory thermodynamics follow.

Key to this is comparing system behaviors in both forward

and reverse time [9–15]. (See Apps. C and F.)

This suite of trajectory-class fluctuation theorems

(TCFTs) applies to arbitrary classes of system microstate

trajectories obtainable during a thermodynamic transfor-

mation. Importantly, they interpolate between Jarzynki’s

equality [11] and Crooks’ detailed fluctuation theorem

[13] as the trajectory class varies from the entire ensemble

of trajectories to a single particular trajectory, respec-

tively. Accordingly, they unify a wide range of other

previously-established fluctuation theorems. (See App.

C.)

One TCFT presents a lower bound on the average work

〈W 〉C over any measurable subset C of the ensemble of

system microstate trajectories
−→Z , where W is the total

work for a trajectory:

〈W 〉C ≥ ∆F + kBT ln
P(C)

R(CR)

= 〈W 〉min
C , (2)

with ∆F the change in equilibrium free energy over the

protocol, P(C) the probability of realizing the class C dur-

ing the protocol, and R(CR) the probability of obtaining

the time reverse of class C under the time-reverse proto-

col. (kB is Boltzmann’s constant.) As detailed in App. G,

this allows accurate estimation of the work generated for

trajectory classes with narrow work distributions, such as

the Success and Fail classes of erasure, even with limited

knowledge (low sampling) of system response under the

protocol and its time reverse.

The TCFTs lead to additional consequences. First, they

more strongly bound the average work over all trajec-

tories compared to the equilibrium free energy change

∆F . Second, they provide a new expression for obtaining

equilibrium free-energy changes:

∆F = −kBT ln

( P(C)

R(CR)
〈e−W/kBT 〉C

)

. (3)

Remarkably, this only requires statistics for any particular

class C and its reverse CR to produce the system’s free

energy change. Since rare microstate trajectories may

generate sufficiently negative works that dominate the

average exponential work, this leads to a substantial sta-
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tistical advantage over direct use of Jaryznski’s equality

∆F = −kBT ln〈e−W/kBT 〉−→
Z

for estimating free energies

[29]. (See App. C.)

The erasure protocol’s 96.2% success rate is reflected in

the Success class’s dominance in the work distributions of

Fig. 2. We can adjust the protocol to exhibit arbitrarily-

higher success rate while still maintaining high efficiency;

i.e., keeping the total average work close to Landauer’s

bound. When done, we still observe the same qualitative

features of the work distribution: two peaks separated

by a log-linear ramp; each associated with the Success,

Fail, and Transitional classes. Though, of course, the

probabilities of the Fail and Transitional classes become

arbitrarily small.

That said, the contributions of the Fail and Transitional

classes to various fluctuation theorems—such as, Jarzyn-

ski’s Equality to mention one—remain significant since

the works generated by those classes compensate by be-

coming increasingly negative. In fact, the contribution

to the exponential average work of the Success class only

approaches the value 1/2 out of the required value of 1

when averaging over all trajectories! Thus, while the prob-

abilities of the Fail and Transitional classes can become

arbitrarily small by considering Erasure protocols with

higher success rates, we cannot ignore the existence of the

rare events due to Transitional and Fail trajectories unless

we employ particular fluctuation theorems; in particular,

a TCFT. (Again, see App. C.) In this way, one sees

that the TCFT provides a detailed diagnosis of successful

and failed information processing and of the associated

energetics.

V. REALIZING THERMODYNAMIC

COMPUTING

To explore these predictions, we selected a superconduct-

ing flux qubit composed of paired Josephson junctions

(Fig. 3(A)), resulting in a double-well nonlinear potential

that supports information storage and processing (Fig.

3(B)). Appendix J 1 explains the physics underlying their

nonlinear equations of motion, comparing the similari-

ties and differences with our model’s idealized Langevin

dynamics.

Despite control protocols for double-well potentials that

perform accurate and efficient bit erasure [30], we run

the flux qubit in a mode that yields imperfect erasure

(Fig. 3(C)). As with the simulations, our intention is

to illustrate how trajectory classes and the TCFT can

be used to diagnose and interpret success and failure in

microscopic information processing using only mesoscopic

measurements of work, which is done more clearly by

increasing the probabilities of rare events.

Interplay between the geometric, linear magnetic, and the

nonlinear Josephson inductances gives rise to a potential

landscape that can be controlled with external bias fluxes.

It is natural to call the φx and φxdc fluxes, threading the

differential mode and the small SQUID loop, respectively,

the tilt and barrier controls. (See (Fig. 3(A) caption.)

Appendix J presents a derivation of the flux qubit poten-

tial and details its calibration. All experiments presented

here were carried out at a temperature of 500 mK.

To execute an erasure protocol, we first choose an

information-storage state with a tall barrier and two equal-

depth wells. The two-dimensional potential for this at

the calibrated device parameters is depicted in Fig. 3(B).

We implement the bit erasure protocol as a time-domain

deformation imposed by the two control fluxes that starts

and ends at the storage configuration. In contrast to

the simulation, the flux qubit maintains two metastable

regions and, hence, two informational states L and R at

all times, though they are shallow enough to allow transi-

tions as the barrier drops. The amplitudes of the control

waveforms in reduced units are small; see Fig. 3(C). Due

to this, the microscopic energetics change linearly as a

function of the control fluxes.

We use a local dc-SQUID magnetometer to continuously

monitor the trapped flux state in the device—Readout

1 in Fig. 3(A). The digitized signal has a rise time of

100 µs, after which the two logical states are discriminated

virtually without error. A typical magnetometer trace

V (t) acquired during the execution of the erasure protocol

is shown in Fig. 3(C). We operate the magnetometer with

a low-amplitude AC current bias at 10 MHz to avoid an

increase in the effective temperature during continuous

readout of the flux state due to wideband electromagnetic

interference.

To collect work statistics, we repeat the erasure protocol

105 times. We identify the logical-state transitions from

the magnetometer traces as zero-crossings, recording the

direction δi—sign convention: +1 (−1) for a L-to-R (R-

to-L) transition—and the time ti relative to the start of

the protocol. We evaluate a single-shot work estimate

W =
∑

i δiULR(ti), where ULR(t) = UR(t) − UL(t) is

the biasing of the potential minima at time ti. Mak-

ing use of the linearity of the system energetics and

the choice of offsets and compensation coefficients, we

find ULR(t) = A (φx(t) − φx(0)), with the coefficient

A = 210K × kB evaluated from the calibrated poten-

tial. The above work estimate based on the logical-state

transitions is an accurate estimate of the true microscopic

work assuming that the timescales for the state transi-

tions and for changes in the control parameters are much

slower than the intra-well equilibration. (See App. H.)

The total work distribution estimated from the flux qubit

experiments is shown as the rear-most distribution in Fig.
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FIG. 3. Superconducting implementation of metastable memory and bit erasure driven by thermal fluctuations: (A) Optical
micrograph of a gradiometric flux qubit with control lines and local magnetometers for state readout. The flux φx, threading the
large U-shaped differential-mode loop, controls the potential’s tilt and flux φxdc, threading the small SQUID loop, controls the
potential barrier height. Currents in the barrier control and tilt control lines modulate those fluxes. (B) Calculated potential
energy landscape at the beginning of the erasure protocol; see Eqs. (J1) and (J2). (C top) Sequence of tilt and barrier control
waveforms implementing bit erasure and (C bottom) sample of resulting magnetometer traces tracking the system’s internal
state. Note that for this experiment, in contrast to the simulation, two possible informational states were present at all times
during the protocol. So, though the barrier was reduced sufficiently to allow transitions to the target R state, the trace is
attracted to either a positive or negative value at all times. (D) Work distributions Pr(Wtotal|C4) over trajectories conditioning
on the Success, Fail, and Transitional classes. Experimental distributions obtained from 105 protocol repetitions.

3(D). Using the previous microstate trajectory partition-

ing into the Success, Fail, and Transitional trajectory

classes reveals a decomposition of the total work distri-

bution given by Fig. 3(D)(Three front panels). The

close similarity with our simulations (Fig. 2) is notable.

Especially so, given the rather substantial differences

between the simulated system (idealized double-well po-

tential, thermal noise, exactly one-dimensional system,

...) and the experimental system (complex potential in

two dimensions, nonideal fluctuations, ...). A priori it

is not clear that the TCFT predictions should apply so

directly and immediately to the real-world qubit. That

is, until one recalls that trajectory-class membership is

a topological property and that trajectories carry their

probabilities and so the thermodynamics.

In point of fact, these differences serve to emphasize

the descriptive power and robustness of the mesoscopic-

work TCFT: Despite substantial differences in system de-

tail they successfully diagnose the information-processing

classes of microscopic trajectories.

Indeed, looking to thermodynamic transformations be-

yond bit erasure, the essential requirement of our analysis

is for the protocol to be slow enough compared to the

time-scales of oscillations due to the potential and of the

thermal fluctuations. With this, the system is always near

metastable equilibrium—what we call metastable quasis-

tationarity. This ensures that in an amount of time, small

on the time-scale of the protocol, the system visits every

point in the potential in proportion to the metastable

distribution for the metastable region it occupies. Since
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the work rate for a particle is determined by the rate of

change in potential at its location, the work rate must

then be that of the metastable distribution’s. We then

need only describe which metastable region a particle is

in as a function of time to characterize its total work. The

specific shape and dimensionality of these metastable re-

gions are then insignificant for determining the shape and

qualitative features of the total work distribution. Under

these conditions, there is substantial robustness. This will

be especially helpful when using the TCFT to monitor

thermodynamic computing in biological systems where,

in many cases, information-bearing degrees-of-freedom

cannot be precisely modeled.

VI. CONCLUSION

We experimentally demonstrated that work fluctuations

generated by information engines are highly structured.

Nonetheless, they strictly obeyed a suite of time-reversal

symmetries—the trajectory-class fluctuation theorems in-

troduced here. The latter are direct signatures of how

a system’s informational states evolve and they identify

functional and nonfunctional microscopic trajectory bun-

dles. We showed that the trajectory-class fluctuation

theorems naturally interpolate between Jarzynski’s inte-

gral and Crooks’ detailed fluctuation theorems, providing

a unified diagnostic probe of nonequilibrium thermody-

namic transformations that support information process-

ing.

The trajectory-class fluctuation theorems gave a detailed

thermodynamic analysis of the now-common example

of erasing a bit of information as an external protocol

manipulated a stochastic particle in a double-well poten-

tial (simulation) and the stochastic state of a flux qubit

(experiment). To give insight into the new level of mech-

anistic analysis possible, we briefly discussed the untilt

trajectory-class partitioning. Though ignoring other pro-

tocol stages, this was sufficient to capture the basic trajec-

tory classes that generate the overall work distribution’s

features. Partitioning on informational-state occupation

times during barrier raising and untilting—an alternative

used in follow-on studies—yields an even more incisive

decomposition of the work distributions and diagnosis of

informational functioning. Practically, the corresponding

bounds on thermodynamic resources obtained via the

TCFT also improve on current estimation methods. The

net result is that trajectory-class fluctuation analysis can

be readily applied to debug thermodynamic computing

by engineered or biological systems.
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Appendix A: Principles of Thermodynamic

Computing: A recent synopsis

A number of closely-related thermodynamic costs of com-

puting have been identified, above and beyond the house-

keeping heat that maintains a system’s overall nonequi-

librium dynamical state. First, there is the information-

processing Second Law [31] that extends Landauer’s origi-

nal bound on erasure [2] to dissipation in general comput-

ing and properly highlights the central role of information

generation measured via the physical substrate’s dynami-

cal Kolmogorov-Sinai entropy. It specifies the minimum

amount of energy that must be supplied to drive a given

amount of computation forward. Second, when coupling

thermodynamic systems together, even a single system

and a complex environment, there are transient costs as

the system synchronizes to, predicts, and then adapts to

errors in its environment [32–34]. Third, the very modu-

larity of a system’s organization imposes thermodynamic

costs [35]. Fourth, since computing is necessarily far out

of equilibrium and nonsteady state, there are costs due

to driving transitions between information-storage states

[36]. Fifth, there are costs to generating randomness [37],

which is itself a widely useful resource. Finally, by way

of harnessing these principles, new strategies for opti-

mally controlling nonequilibrium transformations have

been introduced [30, 38–40].
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Appendix B: Microscopic Stochastic

Thermodynamical System

For concreteness, we concentrate on a one-dimensional

system: a particle with position and momentum in an

external potential V (x, t) and in contact with a heat

reservoir at temperature T . An external controller adds

or removes energy from a work reservoir to change the

form of the potential V (·, t) via a predetermined erasure

protocol {(β(t), δ(t)) : 0 ≤ t ≤ τ}. (See App. H for details

on the alternative definitions of work.) The potential takes

the form:

V (x, t) = ax4 − b0β(t)x2 − c0δ(t)x ,

with constants a, b0, c0 > 0. During the erasure protocol,

β(t) and δ(t) change one at a time piecewise-linearly

through four protocol substages: (1) drop barrier, (2)

tilt, (3) raise barrier, and (4) untilt, as shown in Table

I. The system starts at time t = 0 in the equilibrium

distribution for a double-well V (x, 0) at temperature T .

Being equiprobable, the informational states associated

with each of the two wells thus contain 1 bit of information

[28]. The effect of the control protocol on the system

potential and system response is graphically displayed in

Fig. 1.

Stage Drop Barrier Tilt Raise Barrier Untilt

ts t0 t1 t2 t3 t4

β(t)

∣

∣

∣

∣

t1−t
t1−t0

∣

∣

∣

∣

0

∣

∣

∣

∣

t−t2

t3−t2

∣

∣

∣

∣

1

∣

∣

∣

∣

δ(t)

∣

∣

∣

∣

0

∣

∣

∣

∣

t−t1

t2−t1

∣

∣

∣

∣

1

∣

∣

∣

∣

t4−t
t4−t3

∣

∣

∣

∣

TABLE I. Erasure protocol.

We model the erasure physical information processing

with underdamped Langevin dynamics:

dx = vdt

m dv =
√

2kBTγ r(t)
√

dt −
(

∂

∂x
V (x, t) + γv

)

dt ,

where kB is Boltzmann’s constant, γ is the coupling be-

tween the heat reservoir and system, m is the particle’s

mass, and r(t) is a memoryless Gaussian random variable

with 〈r(t)〉 = 0 and 〈r(t)r(t′)〉 = δ(t − t′).

For comparison to experiment, we simulated erasure with

the following parameters, sufficient to fully specify the

dynamics: γτ/m = 500, 2kBTτ2a/(mb0) = 2.5 × 105,

b2
0/(4akBT ) = 7, and

√

8a/b3
0c0 = 0.4. The resulting po-

tential, snapshotted at times during the erasure substages,

is shown in Fig. 1(Inner plot sequence).

Reliable information processing dictates that we set time

scales so that the system temporarily, but stably, stores

information. To support metastable-quasistatic behavior

at all times the relaxation rates of the informational

states are much faster than the rate of change of the

potential, keeping the system near metastable equilibrium

throughout. The entropy production for such protocols

tends to be minimized.

Appendix C: Trajectory-Class Fluctuation Theorem

and Interpretation

Here, we describe the trajectory-class fluctuation theo-

rems, explaining several of their possible implications and

exploring their application to both the simulations and

flux qubit experiment. Their derivations are given in the

section following.

First, we treat each system trajectory −→z as a function

from time between 0 and τ (the time interval of a control

protocol) to the set of possible system microstates. Then

consider a forward process distribution P, defined by the

probabilities of the system microstate trajectories
−→Z due

to an initial equilibrium microstate distribution evolving

forward in time under the control protocol. Then, the

reverse process distribution R is determined by preparing

the system in equilibrium in the final protocol config-

uration and running the reverse protocol. The reverse

protocol is the original protocol conducted in reverse order

but also with objects that are odd under time reversal, like

magnetic fields, negated. The time-reversal of a trajec-

tory is −→z R
(t) = (−→z (τ − t))R, where for a microstate z the

time reverse zR is simply z but with time odd components

(e.g., momentum or spin) negated. In other words, time

reversing a trajectory runs the trajectory backwards while

also negating all time-odd components of the microstates.

For a measurable subset of trajectories C ⊂ −→Z , called

a trajectory class, let the class average 〈·〉C denote an

average over the ensemble of forward process trajectories

conditioned on the trajectories being in the class C. Let

P(C) and R(CR) denote the probabilities of observing

the class C in the forward process and the reverse class

CR = {−→z R|−→z ∈ C} in the reverse process, respectively.

We first introduce a trajectory-class fluctuation theo-

rem (TCFT) for the class-averaged exponential work

〈e−W/kBT 〉C :

〈e−W/kBT 〉C =
R(CR)

P(C)
e−∆F/kBT , (C1)

with ∆F the system equilibrium free energy change. We
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also introduce a class-averaged work TCFT:

〈W 〉C = ∆F (C2)

+ kBT

(

DKL

[

P(
−→Z |C)||R(

−→Z
R

|CR)
]

+ ln
P(C)

R(CR)

)

.

This employs the Kullback-Liebler divergence DKL[ · ]

taken between forward and reverse process distributions

over all class trajectories −→z ∈ C, conditioned on the

forward class C and reverse class CR, respectively. If we

disregard this divergence, which is nonnegative and can

generally be difficult to obtain experimentally, we then

find the lower bound 〈W 〉min
C on the class-averaged work

of Eq. (2).

If we choose the class C to consist of only a single tra-

jectory, we recover detailed fluctuation theorems. For

example, Eq. (C1) then simplifies to Crooks’ detailed

fluctuation theorem [13]:

e−W (−→z )/kBT =
R(−→z R

)

P(−→z )
e−∆F/kBT . (C3)

If, however, we take C to be the entire set of trajectories−→Z , we recover integral fluctuation theorems. In this case,

Eq. (C1) simplifies to Jarzynski’s Equality [11]:

〈e−W/kBT 〉−→
Z

= e−∆F/kBT , (C4)

exploiting the fact that
−→Z

R

=
−→Z and P(

−→Z ) = R(
−→Z ) = 1.

Furthermore, many other fluctuation theorems can be

seen as special cases of the TCFT. In particular, Eq. (9)

of Ref. [41] is closely related to Eq. (C1). Having a nearly

identical form, the former is a special case of the latter

in that the corresponding classes consist of trajectories

defined by restrictions on the visited microstates up to

only a finite number of times. Similarly, Eqs. (6) and (7)

of Ref. [42] derive from Eqs. (C1) and (2); by considering

a system with negligible contact with the thermal bath

during the protocol and coarse-graining on features of

the visited microstate at a single time. Along the same

lines, Eqs. (7) and (8) of Ref. [20] are obtained from Eq.

(C1) by considering a bit erasure process and trajectory

classes corresponding to ending in the target well and in

the opposite well, respectively. And, letting the trajectory

class be all trajectories that yield a particular value of

obtained work during the forward process, Eq. (C1)

reduces to Crooks’ Work Fluctuation Theorem [13]:

P(W )

R(−W )
= e(W −∆F )/kBT , (C5)

where P(W ) and R(−W ) are the probabilities of obtain-

ing values W and −W for the work when running the

forward and reverse process, respectively. Finally, yet

other fluctuation theorems arise directly from the TCFT

by particular class choices [16, 27, 43, 44].

In this way, one sees the TCFT is a suite that spans

the space of fluctuation theorems between the extreme

of the detailed theorems, that require very precise infor-

mation about an individual trajectory, and the integral

theorems, that describe the system’s entire trajectory

ensemble. It thus unifies a wide range of existing (and

future) fluctuation theorems. Appendix F below provides

proofs.

Appendix D: Empirical Use in Statistical Estimation

Beyond the synthesis of distinct fluctuation theorems,

the TCFT is empirically useful in greatly improving sam-

pling and errors in statistical estimation. And, this is its

primary role here—a diagnostic tool for thermodynamic

computing. We can rearrange Eq. (C1) to obtain Eq.

(3)—an expression for estimating equilibrium free energy

changes:

∆F = −kBT ln

( P(C)

R(CR)
〈e−W/kBT 〉C

)

. (D1)

Thus, to estimate free energy one sees that statistics

are needed for only one particular class and its reverse.

Generally, this gives a substantial statistical advantage

over direct use of Jaryznski’s equality:

∆F = −kBT ln〈e−W/kBT 〉−→
Z

,

since rare microstate trajectories may generate negative

work values that dominate the average exponential work

[29]. The problem is clear in the case of erasure. Recall

from Fig. 2(Three front panels) that Fail trajectories

generate the most-negative work values. In the limit of

higher success-rate protocols that maintain low entropy

production, failures generate more and more negative

works, leading them to dominate when estimating av-

erage exponential works despite becoming negligible in

probability.

In contrast, to efficiently determine the change in equi-

librium free energy from Eq. (3), its form indicates that

one should choose a class that (i) is common in the for-

ward process, (ii) has a reverse class that is common in

the reverse process, and (iii) generates a narrow work

distribution. This maximizes the accuracy of statistical

estimates for the three factors on the RHS. For example,

while the equilibrium free energy change in the case of

our erasure protocol is theoretically simple (zero); the

Success class fits the criteria.
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We can then monitor the class-averaged work in excess of

its bound:

EC = 〈W 〉C − 〈W 〉min
C

= kBTDKL

[

P(
−→Z |C)||R(

−→Z
R

|CR)
]

≥ 0 .

The inequality in Eq. (2) is a refinement of the equilibrium

Second Law and therefore the bound 〈W 〉min
C generally

provides a more accurate estimate of the average work of

trajectories in a class compared to the equilibrium free

energy change ∆F . More precisely, as we will see below,

an average of the excess EC over all classes C in a partition

of trajectories must be smaller than the dissipated work

〈W 〉 − ∆F . For trajectory classes with narrow work

distributions, this can be a significant improvement. We

can see this by Taylor expanding the LHS of Eq. (C1)

about the mean dimensionless work 〈W/kBT 〉C . This

shows that Eq. (2) becomes an equality when the variance

and higher moments vanish. Appendix G below delves

more into moment approximations. In any case, trajectory

classes with narrow work distributions have small excess

works EC .

Appendix E: Fluctuations in Thermodynamic

Computing: The Case of Erasure

Before applying the TCFT to analyze thermodynamic

fluctuations during erasure, we first explore both Jarzyn-

ski’s Equality Eq. (C4) and Crooks’ Work Fluctuation

Theorem Eq. (C5).

Since the erasure protocol is cyclic, the change in equilib-

rium free energy ∆F vanishes. Jarzynski’s Equality then

predicts that the average exponential work 〈e−W/kBT 〉−→
Z

must be 1. From simulation, we obtain a value of

1.0025±5×10−5; which is very close to the predicted value.

From experiment, we obtain a value of 0.89 ± 5 × 10−5—

within 10% of the prediction, but falls somewhat outside

the expected error.

Crooks’ Work Fluctuation Theorem predicts that the

quantity ln (P(W )/R(−W )) must equal βW at each W .

We verify this experimentally by building probability

histograms for P(W ) and R(−W ), taking their log ratios,

and plotting against their binned work values expressed in

units of kBT . Figure 4 shows that the experiment follows

the theoretical prediction quite closely. Though, as for the

case of Jarzynski’s Equality, the experimental results are

not all within expected errors. The discrepancies appear

to arise in the statistical errors in estimating the obtained

work values for each trajectory. Due to the complicated

nature of the approximations (see App. H 3), estimating

the corresponding error is challenging and will be left for

future detailed investigation.

5 4 3 2 1 0 1 2 3
W (kBT)

4

2

0

2

4

ln
(W

)/
(
W
)

FIG. 4. Flux qubit experiment work fluctuations: Crooks
Work Fluctuation Theorem prediction (green dashed line),
measured values (blue), and 1-σ statistical errors (red).

We now turn to analyze work fluctuations in various trajec-

tory classes during the erasure operation, demonstrating

that the TCFT allows analyzing the thermodynamics of

trajectories falling between the Jarzynski and Crooks ex-

treme classes. The main point here being that the classes

between these extremes consist of “functionally” inter-

pretable trajectories—e.g., successful and failed erasure.

In this way, one can diagnose the energetics and gen-

eral thermodynamics of this functioning in the physical

computing device.

To estimate R(CR) for the three chosen classes C ∈
{Success, Failure, Transitional} of our simulated Erasure

process, we ran 3.5 × 106 simulations of the reverse pro-

cess. Table II shows that the Success and Fail classes have

small excesses and, as seen in Fig. 2(Three front panels),

these classes indeed have narrow work distributions. Else-

where, we explore these and additional partition schemes,

finding that the Transitional trajectories can be further

partitioned to yield narrow work distributions so that all

trajectory classes have small excesses EC . In short, this

demonstrates how well-formulated trajectory classes allow

accurate estimates of the works for all trajectories.

To measure the efficacy of a given partition Q of trajec-

tories into classes, we ask what the ensemble-average of

class-average excess works is:

EQ =
∑

C∈Q

P(C)EC

= 〈W 〉−→
Z

−
∑

C∈Q

P(C)〈W 〉min
C

= 〈W 〉−→
Z

− 〈W 〉min
Q ,
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Class C 〈W 〉C 〈W 〉min
C EC

All
−→Z 0.634 0.0 0.634

Success 0.713 0.683 0.030

Fail -3.885 -3.951 0.066

Transitional -0.546 -1.650 1.170

TABLE II. Class-average works and bounds for different tra-
jectory classes during erasure: All trajectories

−→
Z , Success

trajectories, Fail trajectories, and Transitional trajectories.
These are identified in Fig. 2 (Four front panels). From left
to right, columns give the estimated class-average work 〈W 〉C ,
TCFT lower bound 〈W 〉min

C , and their difference EC . 3.5×106

simulations were run for each of the forward and reverse pro-
cesses, with 96.2% trajectories successfully ending in the R

informational state under the forward process.

Partition Q 〈W 〉−→
Z

〈W 〉min
Q EQ

Trivial
{−→Z

}

0.634 0.0 0.634

Untilt-Centric I 0.634 0.560 0.074

Untilt-Centric II 0.634 0.601 0.032

TABLE III. Ensemble-average work and bounds due to dif-
ferent partitions: Trivial partition; Untilt-Centric I partition,
composed of Success, Fail, and Transitional; and Untilt-Centric

II partition, described in follow-on work. From left to right,
columns give the estimated ensemble-average work, the par-
tition bound 〈W 〉min

Q , and their difference EQ. All values in
units of kBT .

with 〈W 〉min
Q =

∑

C∈Q P(C)〈W 〉min
C .

From Eq. (2), we see that 〈W 〉min
Q is the coarse-grained

lower bound on ensemble-average dissipation from Ref.

[45]:

〈W 〉min
Q = ∆F + kBTDKL [P(Q)||R(QR)] ,

where DKL [ · ] is the Kullback-Liebler divergence be-

tween forward and reverse process distributions over the

trajectory classes C ∈ Q. Since Kullback-Liebler diver-

gences are nonnegative, such a bound always provides an

improvement over the equilibrium Second Law. Table III

shows both 〈W 〉min
Q and EQ for the trivial partition {−→Z },

where 〈W 〉min
Q = ∆F , our three-class partition, labeled

Untilt-Centric I, and the improved partition described

in follow-on work, labeled Untilt-Centric II. Application

of the first partition simply implies the equilibrium Sec-

ond Law. In this case, the latter two improve on the

nonequilibrium Second Law that, calculated by assuming

metastable starting and ending distributions, provides

a lower bound on the average work equal to 0.533, the
change in nonequilibrium free energy ∆F .

We can appeal to Landauer’s erasure bound—kBT ln 2 ≈
0.693 kBT—to calibrate the excesses EC and EQ. We

see for the simulation data that our three-class partition

Untilt-Centric I provides class-average work bounds that,

on average, are only about 11% of kBT ln 2 from the actual

class-average works. The more refined Untilt-Centric II

partition reduces this excess to about 5% while the trivial

partition fails by about 91% of kBT ln 2.

We also recover the equality of Ref. [45] for the ensemble-

average work by averaging Eq. (C2) over each class:

〈W 〉 =
∑

C

P(C)〈W 〉C

= ∆F + kBT

(

∑

C∈Q

P(C)DKL

[

P(
−→Z |C)||R(

−→Z
R

|CR)
]

+ DKL [P(Q)||R(QR)]

)

,

which of course is lower bounded by 〈W 〉min
Q .

These results suggest the criterion for optimal trajectory

partitions: Select a partition sufficiently refined to yield

tight bounds on class-average works, but no finer. Ma-

chine learning methods for model-order selection provide

a basis for a natural classification scheme for trajectories

that captures all relevant thermodynamics and informa-

tion processing. Moreover, by changing the forward and

reverse processes P and R to begin in system microstate

distributions other than equilibrium, a yet-broader class

of TCFTs emerge. We can then find analogous results for

heats and comparisons with works and nonequilibrium

free-energy changes. We explore these extensions in depth

elsewhere.

Appendix F: TCFT Derivations

We now present derivations for the two TCFTs introduced

in Eqs. (C1) and (C2).
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Assume that the system dynamics is described by a Hamil-

tonian specified in part by an external control protocol,

as well as by a weak coupling to a thermal environment

that induces steady relaxation to canonical equilibrium.

Start the system in equilibrium distribution π0 for Hamil-

tonian H0 and run a protocol until time τ , causing the

system Hamiltonian to evolve to Hτ . If we then hold the

Hamiltonian at Hτ for a long time, the system relaxes into

the equilibrium distribution πτ . The system’s ensemble

entropy change from t = 0 to t = ∞ is then:

∆Ssys =
∑

z

[−πτ (z) ln πτ (z) + π0(z) ln π0(z)] .

The trajectorywise system entropy difference is defined

to be:

∆ssys(
−→z ) = ln

π0(z0)

πτ (zτ )
,

where z0 and zτ are the initial and final microstates of sys-

tem microstate trajectory −→z , respectively. Averaged over

all trajectories −→z ∈ −→Z , this then becomes the ensemble

entropy change.

Let p(−→z |z0) denote the probability of obtaining system

microstate trajectory −→z via the protocol conditioned on

starting the system in state z0 = −→z (0).

Now, start the system Hamiltonian at Hτ and run the

reverse protocol, ending the Hamiltonian at H0. We

then obtain the trajectory −→z with a different conditional

probability: r(−→z |z0).

Assuming microscopic reversibility and given a system

trajectory −→z , the change in the heat bath’s entropy is:

∆Sres(
−→z ) = −βQ(−→z ) (F1)

= ln
p(−→z |z0)

r(−→z R|zR
τ )

, (F2)

where β = 1/kBT , Q(−→z ) is the net energy that flows out

of the heat bath into the system given the trajectory −→z ,

and (·)R denotes time-reversal. This holds for systems

with strictly finite energies and Markov dynamics that

induce the equilibrium distribution when control param-

eters are held fixed [46]. Both our simulated Duffing

potential system and flux qubit obey these requirements

at sufficiently short time scales. Then we can express the

total trajectorywise change in entropy production due to

a trajectory −→z as the sum of system and heat reservoir

entropy changes:

∆Stot(
−→z ) = ∆ssys(

−→z ) + ∆Sres(
−→z ) .

Since πt(z) = e−β(Ht(z)−Ft), with Ft the system’s equilib-

rium free energy at time t, we can write:

∆Stot(
−→z ) = − ln πτ (zτ ) + ln π0(z0) − βQ(−→z )

= β (Hτ (zτ ) − Fτ ) − β (H0(z0) − F0) − βQ(−→z )

= β (∆H(−→z ) − Q(−→z ) − ∆F )

= β (W (−→z ) − ∆F ) .

Using Eq. (F1), we also have:

∆Stot(
−→z ) = ∆ssys(

−→z ) + ∆Sres(
−→z )

= ln
π0(z0)

πτ (zτ )

p(−→z |z0)

r(−→z R|zR
τ )

= ln
P(−→z )

R(−→z R
)

with:

P(−→z ) = π0(z0)p(−→z |z0) and

R(−→z R
) = πτ (zτ )r(−→z R|zR

τ ) .

Combining, we obtain Crooks’ detailed fluctuation theo-

rem [13]:

R(−→z R
) = P(−→z )e−β(W (−→z )−∆F) . (F3)

From here, we derive our first TCFT by integrating each

side of Eq. (F3) over all trajectories −→z in a measurable

set C ⊂ −→Z . Starting with the LHS and recalling the

Iverson bracket [·], which is 1 when the interior expression

is true and 0 when false, we have:

∫

d−→z [−→z ∈ C]R(−→z R
) =

∫

d−→z R
[−→z ∈ C]R(−→z R

)

=

∫

d−→z R
[−→z R ∈ CR]R(−→z R

)

=

∫

d−→z [−→z ∈ CR]R(−→z )

= R(CR) .

The first three steps used the unity of the Jacobian in

reversing a microstate, the definition CR = {−→z R|−→z ∈ C},

and swapping all instances of −→z R
with −→z , respectively.

Integrating the RHS of Eq. (F3) then gives:

∫

d−→z [−→z ∈ C]P(−→z )e−β(W (−→z )−∆F)

= eβ∆F

∫

d−→z P(−→z , C)e−βW (−→z )

= P(C)eβ∆F

∫

d−→z P(−→z |C)e−βW (−→z )

= P(C)eβ∆F 〈e−βW 〉C .
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Combining, we have our first TCFT, Eq. (C1).

To obtain the second TCFT, we first change the form of

Eq. (F3):

W (−→z ) = ∆F + β−1 ln
P(−→z )

R(−→z R
)

.

Then we calculate the class-average. The equilibrium

free energy change is unaffected while the rightmost term

becomes:

β−1

〈

ln
P(−→z )

R(−→z R
)

〉

C

= β−1

∫

C

d−→z P(−→z |C) ln
P(−→z )

R(−→z R
)

= β−1

∫

C

d−→z P(−→z |C) ln
P(−→z |C)P(C)

R(−→z R|CR)R(CR)

= β−1

(
∫

C

d−→z P(−→z |C) ln
P(−→z |C)

R(−→z R|CR)
+ ln

P(C)

R(CR)

)

= β−1

(

DKL

[

P(−→z |C)||R(−→z R|CR)
]

+ ln
P(C)

R(CR)

)

,

which gives Eq. (C2)’s TCFT.

Appendix G: Class-Averaged Work Approximation

for Narrow Distributions

Here, we demonstrate that the class-averaged work 〈W 〉C

approaches its bound 〈W 〉min
C when the variance and

higher moments of the class’ distribution of works vanish.

One concludes that 〈W 〉min
C is a good approximation for

〈W 〉C when the class’ work distribution is narrow.

We first express the LHS of Eq. (C1) in terms of the

unitless distance of work from its class-average:

〈e−βW 〉C = 〈e−x〉C e−β〈W 〉C ,

with x = β(W − 〈W 〉C). Then, we Taylor expand the

exponential inside the class-average:

〈e−x〉C =
∞

∑

n=0

(−1)n

n!
〈xn〉C

= 1 + a ,

with a =
∑∞

n=2
(−1)n

n! 〈xn〉C . Equation (C1) then gives:

(1 + a)e−β〈W 〉C =
R(CR)

P(C)
e−β∆F .

Since e−x is convex,

(1 + a) = 〈e−x〉C ≥ e−〈x〉C = 1 ,

so a ≥ 0. Then:

〈W 〉C = ∆F + β−1 ln
P(C)

R(CR)
+ β−1 ln(1 + a)

≥ ∆F + β−1 ln
P(C)

R(CR)

= 〈W 〉min
C .

The second line becomes an equality when a goes to zero,

which occurs as the variance and higher moments vanish.

Appendix H: Work Definitions and Experimental

Estimation

Properly estimating the required works and devolved

heats from experimental devices undergoing cyclic control

protocols requires explicitly and consistently accounting

for energy and information flows between the system, its

environment, and the controlling laboratory apparatus.

To this end, we construct a model Hamiltonian universe

for common processes involving small systems interacting

with laboratory apparatus and a thermal environment.

After deriving key equalities for two definitions of work,

the inclusive and exclusive works, we define a method of

approximating them in appropriate cyclic protocols.
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1. The Model Universe and Hamiltonian

To study a small system that exchanges energy with its

environment in the forms of heat and work, we introduce

a model universe: a system of interest, a heat bath, and a

lab (laboratory apparatus) that controls the system and

derives any needed energy from a work reservoir. The

system directly interacts with both the heat bath and the

lab, but the heat bath and lab are not directly coupled.

We assume that a Hamiltonian H describes the universe’s

evolution and that there is a set of generalized coordinates

which can be sensibly partitioned into those for the system,

heat bath, and lab. Then, we decompose the universe

Hamiltonian into the following form:

H(s, b, l) = HB(b) + hS,B(s, b) + HS(s) + hS,L(s, l) + HL(l) ,

where s, b, and l denote both the generalized coordinates

and conjugate momenta for the system, bath, and lab,

respectively. For any universe Hamiltonian H, there can

be many choices for this decomposition.

We also define the system Hamiltonian H′ as the three

components that depend on the system coordinates:

H′(s; b, l) = hS,B(s, b) + HS(s) + hS,L(s, l) .

First, consider the subset of lab coordinates l for which

hS,L has nontrivial dependence. These so-called protocol

parameters λ are often simple and much fewer than the

entire set of l. We often assume that we have total control

of their evolution. More precisely, under an appropriate

preparation for the lab at time t = 0, a specific trajectory

for the protocol parameters {λ(t)}t for 0 ≤ t ≤ τ is

guaranteed for all preparations of the heat bath and

system coordinates. We refer to the parameter trajectory

as the protocol.

Suppose the heat-bath degrees of freedom that interact

with the system change much faster than the system’s.

We can assume that the system response to the bath

resembles Brownian motion. On the time scale of changes

in the system coordinates, then, we ignore the system-bath

interaction term hS,B in writing the system Hamiltonian

H′:

H′(s; λ) = HS(s) + hS,L(s, λ)

= T (s) + V (s, λ) .

The latter decomposition into kinetic energy T and po-

tential energy V can be used to write Langevin equations

of motion for the system. Furthermore, if the heat bath

has a relaxation time sufficiently short that it is roughly

in equilibrium at all times with fixed temperature, then

its influence on the system will be memoryless.

2. Inclusive and Exclusive Works and Heats

The basic scenario for executing a protocol is as follows.

The universe coordinates begin according to a given initial

distribution Pr(s) at time t = 0 and they evolve in isola-

tion until t = τ . As above, we assume that a well-defined

protocol {λt}t emerges due to our preparation of the lab

coordinates.

We label all energy exchanged between the system and

lab as work and all energy exchanged between the system

and heat bath as heat. Since the lab is directly coupled

only to the system, the work they exchange is given by

the change in energy of the lab’s work reservoir. Similarly,

since the heat bath is directly coupled only to the system,

the heat exchanged is given by the change in the heat

bath’s energy.

Note that this requires choices as to what constitute the

energies of the three universe subsystems. While HB, HS,

and HL define energies for the heat bath, system, and

work reservoir, respectively, what of hS,L and hS,B? If

all subsystems were macroscopic, these interaction terms

would be negligible. While it may be desirable to assume

that the system is only weakly coupled to the heat bath—

so that hS,B can be ignored—hS,L can be significant in

many important small systems.

And so, in general, we define the system energy to be

HS plus any portions of hS,L and hS,B. Then the work

reservoir energy is HL plus the rest of hS,L, while the

heat bath energy is HB plus the rest of hS,B. To make

these distinctions clear we label two types of works, each

corresponding to the two extremes for allocation of hS,L

between the system and work reservoir: the inclusive

work W and the exclusive work W0 [47]. Specifically:

dW

dt
= − d

dt
(HL) =

d

dt
(HB + hS,B + HS + hS,L)

dW0

dt
= − d

dt
(hS,L + HL) =

d

dt
(HB + hS,B + HS) .

We can similarly define the inclusive heat Q and exclusive

heat Q0 depending on how we allocate hS,B between the

system and heat bath:

dQ

dt
= − d

dt
(HB) =

d

dt
(hS,B + HS + hS,L + HL)

dQ0

dt
= − d

dt
(HB + hS,B) =

d

dt
(HS + hS,L + HL) .

The inclusive work corresponds to fully including hS,L in

the system energy, while the exclusive work corresponds

to excluding it. Inclusive and exclusive heat correspond

similarly with respect to hS,B.

There is a key relation between the inclusive and exclusive
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works:

dW

dt
=

dW0

dt
+

dhS,L

dt
. (H1)

That is, the inclusive work for an interval of time equals

the sum of the exclusive work and the change in the

system-lab interaction term hS,L.

In the above expressions, calculating the rate of change of

a work or heat requires the time derivative of one or more

of HL and HB. This can be problematic. Fortunately,

there are alternate forms that are amenable. One can

show that the inclusive work rate is given by:

dW

dt
= −dHL

dt

=
∂hS,L

∂λ

dλ

dt
. (H2)

This is a more common definition for the work rate in

small-system nonequilibrium thermodynamics. And, it

allows the work to be calculated as:

W (t, t′) =

∫ t′

t

dt′′ dλ

dt′′

∂hS,L(s, λ)

∂λ
|s=s(t′′),λ=λ(t′′) . (H3)

The exclusive work W0 has a corresponding form:

dW0

dt
= −d(hS,L + HL)

dt

= −∂hS,L

∂s

ds

dt
, (H4)

For the case where hS,L is a scalar potential for s, this is

the product of the corresponding force with velocity. This

makes the exclusive work equal to a familiar mechanics

definition of work as the integral of the dot product of

force and displacement:

W0(t, t′) = −
∫ t′

t

dt′′ ds

dt′′

∂hS,L(s, λ)

∂s
|s=s(t′′),λ=λ(t′′) .

In this way, we write the inclusive and exclusive work

rates in terms of the rates of change of the system and

work-reservoir interaction term hS,L with respect to either

the system or work reservoir coordinates.

3. Approximating Inclusive Work Experimentally

For the flux qubit experimental system investigated here,

we assume the following:

HS(s) + hS,L(s, λ) = T (s) + V (s, λ) .

That is, as far as the flux qubit and work reservoir are

concerned, the only relevant energies at least partially

ascribable to the flux qubit are its kinetic energy and the

potential energy with the work reservoir. hS,L must then

capture the change in the potential V due to changes

in the protocol parameters. We could simply define

hS,L(s, λ) = V (s, λ) so that HS(s) = T (s). However,

it is more useful to allocate the initial potential energy to

HS. That is:

HS(s) = T (s) + V (s, λ0) and

hS,L(s, λ) = V (s, λ) − V (s, λ0) .

For cyclic protocols where V (·, λ0) = V (·, λτ ), such as

in our erasure operation, hS,L(s(t), λ(t)) vanishes for all

trajectories at t = 0, τ . By Eq. (H1) we then have the

useful equality W = W0 between inclusive and exclusive

works taken over the entire protocol.

Estimating W for a system trajectory is then equivalent

to estimating W0 for the cyclic protocols we consider.

In the flux qubit, the form of hS,L is known and the

specific protocol {λt}t∈[0,τ ] is known. Unfortunately, we

lack sufficient information about its instantaneous state

s at all times to estimate the total inclusive work from

Eq. (H3), since the device’s physics precludes precise

measurements of system flux φ—the relevant part of s

for determining the potential hS,L. Instead, we do have

reliable measurement of large and stable changes in the

flux φ. This specifically monitors when the system moves

between wells in a double-well potential V (·, λ(t)), if the

rate of transition between wells is sufficiently slow.

And so, we can use information about the flux φ to approx-

imate the exclusive work contribution at each moment

in time. Then, adding up these contributions yields an

approximation to the total exclusive work W0 over the

entire protocol and therefore of the inclusive work W over

the entire protocol. Note that the protocols used here

maintain two wells at all times for the system flux φ. We

develop the approximation in two steps.

a. First-Order Approximation

We first partition the potential in flux space into three

segments. Two segments constitute the wells for the flux

in which that state spends all its time, except for very

brief transitions between wells. Then, the third segment

connects the two wells, capturing the dynamics arising

from crossing the barrier that separates them.

We require that the partitioning allows the following two

approximations. First, the particle spends negligible total

duration in between the two wells. Second, the wells do
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not change shape over the protocol, but instead simply

raise or lower in potential at different times, if they change

at all. This means that the shape of the system-lab

interaction term hS,L(·, λ(t)) at any time t is very simple

in the two wells—flat.

The result is that the exclusive work over any time du-

ration is easily calculable from the experimental data.

During times when the flux remains in a well, the exclu-

sive work rate must be zero, since hS,L does not change

with s. During a transition, the shape of hS,L does not

change significantly due to the first approximation. Then,

the exclusive work during a transition is the difference in

heights of the two wells as measured by hS,L:

∆W trans
0 =

∫

dφ

(

−∂hS,L

∂φ

)

≈ hS,L(w0, λ(t)) − hS,L(w1, λ(t)) , (H5)

where λ(t) is the protocol parameter setting at any time

during the transition and w0 and w1 are arbitrary flux

values in the starting and ending wells, respectively.

Thus, the total inclusive work W over the protocol for a

trajectory is simply the sum of the jump contributions

above for each transition.

b. Second-Order Approximation

In point of fact, the potential wells do change shape.

Fortunately, our method for calculating the inclusive work

over the protocol remains valid under weaker constraints

on the protocol.

We first require the protocol to maintain two metastable

regions, the informational states, at all times; each pos-

sessing a unique local potential minimum continuously in

time. We denote the flux value at the potential minima of

informational state i at time t as φt
i. The protocol must

also evolve slowly enough so that the potential landscape

changes slowly compared to the system’s relaxation rate

in each metastable region. Both of these criteria are met

by our erasure protocol.

Consider a short duration ∆t during which the potential

V (·, t) changes little but long compared to the relaxation

rates of the informational states. Consider two cases:

either the system crosses the barrier between the two

informational states during this time or it remains in one

informational state.

First, suppose that the system transitions from one infor-

mational state i to the other j. Denote the system flux

at the beginning of the transition as φt and at the end

as φt+∆t. By Eq. (H1), the exclusive work contribution

∆W trans
0 is the difference of the inclusive work contribu-

tion and the change in system-lab interaction term ∆hS,L.

Our protocol ensures that the total number of transitions

is so small and the time durations ∆t so narrow that

we can ignore the total contributions of inclusive works

∆W trans due to these transition durations. The change

∆hS,L can itself be broken down into two terms, one for

the difference in hS,L between the informational-state

minima and the other for the change in hS,L local to the

respective minima. In other words:

∆hS,L = hS,L(φt+∆t) − hS,L(φt)

=
[(

hS,L(φt+∆t) − hS,L(φt+∆t
j )

)

+ hS,L(φt+∆t
j )

]

−
[(

hS,L(φt) − hS,L(φt
i)

)

+ hS,L(φt
i)

]

=
[

hS,L(φt+∆t
j ) − hS,L(φt

i)
]

+
[(

hS,L(φt+∆t) − hS,L(φt+∆t
j )

)

−
(

hS,L(φt) − hS,L(φt
i)

)]

(H6)

= ∆mt + ∆lt , (H7)

where ∆mt, Eq. (H6)’s first term, is the change in hS,L

at the informational-state minima and ∆lt, Eq. (H6)’s

second term, is the change in hS,L of the system with

respect to the informational-state minima. We can there-

fore approximate the exclusive work contribution during

a transition as follows:

∆W trans
0 = −∆hS,L

= −∆mt − ∆lt .

Suppose, now, that the system remains in one informa-

tional state i during a time interval ∆t. Since the relax-

ation rate is fast compared to the duration ∆t, we assume

that the system visits all microstates in the informational

state roughly in proportion to the local equilibrium distri-

bution. Then, the inclusive work contribution ∆W stay is

approximately independent of the specific system trajec-

tory during this time and, instead, is determined by the

time duration and the informational state i. If during this

time we had additionally simultaneously shifted the entire
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potential up or down by a given amount, we would have

added an inclusive work contribution equal to the poten-

tial shift but the system trajectory would have remained

unchanged since adding a term constant over position to

the potential does not affect dynamics. Thus, the actual

inclusive work contribution is equal to an amount due

to the change in the system-lab interaction term at the

informational-state minimum plus an amount due solely

to the change in potential shape at the informational state

with respect to its minimum. That is:

∆W stay = ∆Ws + ∆mt , (H8)

where ∆Ws is the inclusive work contribution due to the

change in potential shape at the informational state and

∆mt is defined as above. Equation (H7) applies equally

well here in describing the change in system-lab interaction

term. Thus, first using Eq. (H1) once more, the exclusive

work contribution ∆W stay
0 for a time interval where the

particle remains in one informational state is as follows:

∆W stay
0 = ∆W stay − ∆hS,L (H9)

= ∆Ws − ∆lt . (H10)

The result is that we have exclusive work contributions

for both durations when the system transitions between

informational states and when it remains in one.

To find the total exclusive work over the protocol for a

given trajectory we add up these contributions. The sum

of all local hS,L changes ∆lt over all durations is the net

local change in hS,L. Recall, though, that the minima

of the informational states begin and end at the same

values. And so, the total local change in hS,L reduces

to the absolute change in hS,L. However, since we chose

hS,L(·, 0) = hS,L(·, λ(t)) = 0, this must vanish:

∑

t

∆lt = 0 .

We can now specify our final approximation: For any

time interval ∆t, the inclusive work contribution ∆Ws

due to the change in potential shape is independent of

the informational state. This is reasonable for our erasure

protocol since the asymmetric contribution to the change

in potential—the tilt—is slight. While it clearly breaks

the symmetry of the double-well potential by changing

the well heights, it has less effect on the well shapes and

even less in making those shapes distinct.

Then, we can assume that the sum of ∆Ws for any tra-

jectory is the same as that for a particle that stays in

either informational state the entire time. But since the

protocol is cyclic and very slow compared to the infor-

mational states’ relaxation rates, a particle that stays

in one informational state the entire time must receive

approximately zero inclusive work W . Given that the sum

over all ∆Ws must be equal to W for such a trajectory,

the former must also be negligible.

Altogether, the total exclusive work is approximately

given by the sum over all transitions between infor-

mational states of the difference in potential at the

informational-state minima:

W0(0, τ) = −
∑

trans

∆mt . (H11)

To reiterate, since ∆hS,L = 0, this is also the total inclu-

sive work W (0, τ) for a trajectory over the entire protocol.

Appendix I: Substage Work Distributions

Commentary

Here, we briefly interpret several features of the substage

work distributions observed in Fig. 1(Outer left plots).

The distributions for barrier dropping and tilting are

narrow, symmetric peaks; see Fig. 1 (Outer left plots).

Barrier raising also has a rather narrow peak, composed

primarily of trajectories always in the R state, but also

exhibits a bulge toward positive work; see Fig. 1 (Top

right). Note that the L state is created mid-way through

barrier raising, allowing for trajectories that spend some

time in either informational state, but disallowing tra-

jectories that spend all time in the L state. The former

induce the positive work bulge toward less negative works,

which while notable will not be further explored here.

The substage work distributions for untilting presents the

most striking picture; see Fig. 1 (Bottom right). Always-

R trajectories induce a large positive work peak (red),

always-L trajectories induce a large negative work peak

(orange), and all other trajectories induce a ramp between

them (blue).

These features can be directly interpreted by following the

locations of the potential minima over time and noting

how the shifting potential adds or removes energy from a

particle. During barrier dropping, to take one example,

the protocol raises both minima by over 7 kBT , resulting

in a narrow, peaked work distribution with a mean near

7 kBT .

Most interesting is the untilt substage. Since most parti-

cles start and then stay in the R state for this substage, a

large positive work is probable, due to the rising R-state

well. However, it is also possible for the system to start

in and then get stuck in the L-state well, resulting in a

large negative work. The final possibility is transitioning

between states during untilting, resulting in an interme-

diate range of less-likely work values. For trajectories
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that do transition between states during untilting, it is

more likely to spend more time in the R state, since it is

energetically favored, resulting in the rising probability

with increasing work in their work distribution—giving

rise to the log-linear ramp in the work distribution.

Note that there are small peaks on each end of this third

class’ distributions that require a more nuanced explana-

tion. When a particle crosses a barrier—due to random

thermal excitation—the surplus energy may quickly send

the particle back to the previous well before it can be

dissipated. Such particles then spend almost all of the

substage in this first well, generating a work value accord-

ingly. Statistics of the ramp proper are due to particles

that have time to locally equilibrate before crossing any

barriers.

Follow-on work develops the theory underlying this de-

tailed mechanistic analysis and analyzes similar behavior

in all metastable-quasistatic processes.

Appendix J: Flux Qubit Device, Calibration, and

Measurement

The benefits of the flux qubit device are several-fold.

First, their physics provide a genuine two-degree of free-

dom dynamics, while other comparable experiments on

Maxwellian demons and bit erasure are very high dimen-

sional, only indirectly providing an effectively few-degree

of freedom dynamics [20, 22, 48]. Second, they operate

at very high frequency and so one readily captures the

substantial amounts of data required to accurately es-

timate rare-fluctuation statistics. Third, they leverage

recent advances in superconducting-device manufacturing

technology led by efforts in quantum computing. Fourth,

being constructed via modern integrated circuit technol-

ogy they form the basis of a technology that even-today

is ready to scale to large, multicomponent circuit devices

for more sophisticated thermodynamic computing. And,

finally, in the near future flux qubits will facilitate experi-

ments that probe the thermodynamics of the transition

from classical to quantum information processing.

At the microscopic level, a fraction of the electrons in

a superconducting metal form bosonic Cooper pairs—a

quantum-coherent condensate. For designing supercon-

ducting electronic circuits, though, one can forgo the

microscopic description and work with higher-level phe-

nomena, such as flux quantization and the Josephson

relations for weak links. Importantly, the circuit-level

degrees of freedom are not coarse-grained quantities, but

display a full range of quantum behavior, including quan-

tized excitations, coherent superpositions, and entangled

states in such circuits. For our purposes here, however, we

run the device so that it exhibits only classical stochastic

dynamics, reserving quantum information thermodynamic

explorations for the future.

This section lays out the basic physics of the flux qubit

device and details of the experimental implementation.

A fuller discussion of the platform and its calibration is

found in Ref. [49].

1. Flux qubit physics

Our experimental information processor is a special type

of superconducting quantum interference device (SQUID)

with two degrees of freedom—a gradiometric flux qubit or

the variable-Ic rf SQUID introduced by Ref. [50]. Notably,

the energies associated with the motion perpendicular to

and along the escape direction differ substantially by

about a factor of 12. Practically, this asymmetry reduces

the two-dimensional potential to one dimension. The

net result is a device with an effective double-well po-

tential with barriers as low as ∆U ∼ kBT that operates

at frequencies in the GHz range. The potential shape is

controlled by fluxes that are readily controlled by cur-

rents. SQUID device parameters, used to determine the

potential shape and energy scales, were all independently

determined.

The variable-Ic rf SQUID replaces the single Josephson

junction in a standard rf SQUID with a symmetric dc

SQUID with small inductance βdc = 2πℓIc0/Φ0 ≪ 1,

where 2ℓ is the loop inductance, Ic0 = ic1 + Ic2 is the

sum of critical currents of the two junctions, and Φ0 is

the flux quantum h/2e. This architecture gives a device

whose parameters can be accurately measured and that

can be selected to exhibit a range of phenomena includ-

ing thermal activation, macroscopic quantum tunneling,

incoherent relaxation, photon-induced transitions, and

macroscopic quantum coherence. It also allows us to

perform, as we demonstrate, nanoscale thermodynamic

computing.

Its macroscopic dynamical variables are the magnetic

flux Φ through the rf SQUID loop and Φdc through the

dc SQUID loop. Based on the resistively-capacitively-

shunted junction model of Josephson junctions, in the

classical limit the variable-Ic rf SQUID’s deterministic

equations of motion are [50]:

2CΦ̈ +
Φ̇

R/2
= −∂U(Φ, Φdc)

∂Φ
and

C

2
Φ̈dc +

Φ̇

2R
= −∂U(Φ, Φdc)

∂Φdc

. (J1)

In units of Φ0/2π, the 2D potential for the variable-Ic rf

SQUID is U(φ, φdc) = U0f(φ, φdc) with:
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f(φ, φdc) = 1
2 (φ − φx)2 + γ

2 (φdc − φxdc)2 − β0 cos φdc

2 cos φ + δβ sin φdc

2 sin φ , (J2)

where U0 = Φ2
0/(4π2L). Here, γ = L/(2ℓ) is the ratio of

rf and dc SQUID inductances; φx (φxdc) is the external

flux applied to the rf (dc) SQUID loop; φ (φdc) is the

flux enclosed in the rf (dc) SQUID loop; β0 = 2πLIc0/Φ0;

and δβ = 2πL(Ic2 − Ic1)/Φ0.

For large-amplitude tuning of the external controls, the

system response to φx (φxdc) is 2π (4π) periodic. We

make use of the global features to accurately determine

the coefficients of the potential.

In the experiment, cross-coupling between the barrier

and tilt controls was canceled by an affine transformation

(φx, φxdc) → (φx + αφxdc, φxdc), with the coefficient α

chosen such that the equilibrium population of the left

and right wells was unaffected to first order by the barrier

control φxdc.

Operating the magnetometer generates wide-band local

electromagnetic interference that can affect the dynamics

of the flux qubit. A careful study of the back-action indi-

cates that low-amplitude operation of the magnetometer

can induce transitions in a manner that corresponds to a

shift in the effective tilt and flux controls. Importantly,

the effective temperature under magnetometer operations

was not elevated from 500 mK.

The dynamical variable φ describes the in-phase motion

of the two junctions that results in a current circulating in

the rf SQUID loop. The dynamical variable φdc describes

the out-of-phase motion, resulting in a current circulat-

ing in the dc SQUID loop. The shape of the effective

potential is completely determined by the dimensionless

function f(φ, φdc) and the energy scale of the potential

is determined by U0. With suitable device parameters

and applied fluxes (φx and φxdc) one obtains a smooth

family of double-well potentials. The barrier height ∆U

separating the two wells is readily adjusted by varying

φxdc. The effective potential is plotted in Fig. 3(B) with

parameters: β0 = 6.2, γ = 12 and δb = 0.2.

2. Experimental implementation

The junctions were 1 × 1µm2Nb/Al2O3/Nb tunnel junc-

tions of very low subgap leakage, typically having a quality

factor of Vm ≈ 70 mV at 4.2 K.

We followed a standard procedure (see, e.g., Ref. [50])

for calibrating the flux qubit parameters. An outline of

the steps is given below. A complete description of the

measurements is presented in Ref. [49].

First, by executing wide-range sweeps of the coil currents

Itilt and Ibarrier, parameter values corresponding to single-

valued and bistable potential landscapes are recorded. A

linear transformation from Itilt and Ibarrier to (φx, φxdc)

is established by matching the experimental periodicity

with the theoretical one (2π, 4π). Linear cross-talk from

Ibarrier to Itilt is calibrated by orthogonalizing the global

response. Cross-talk from Itilt to Ibarrier can be assumed

to be small due to the symmetry of the on-chip flux lines

and is taken to be zero.

The parameter values β0 = 6.2, γ = 12, and δb = 0.2

are determined by equating the observed extent of hys-

teresis at φxdc = 0 and the differential flux response

d 〈φ〉 /dφx at φxdc = 2π to theoretical predictions. The

prefactor U0 = 56.3 K is determined by equating the

observed escape energy for inter-well transitions at high

temperatures with kBT . The plasma frequency ωp =

1/
√

LC = 2π ×13.7 GHz is determined from the observed

low-temperature cross-over temperature Tcr = 103 mK

to macroscopic quantum tunneling (MQT) dominated

dynamics. We obtain an upper bound Q = ωpRC < 130

from the coupling to the passive shunt resistor of the

magnetometer. Parameter calibration measurements are

performed in such a way that the effect of magnetometer

back-action is nulled through pulsing of the readout or

otherwise minimized. The effective temperature under

continuous magnetometer operation was determined by

repeating the measurement for escape energy for interwell

transitions and comparing the result to that obtained

under pulsed magnetometer operation.
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