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Abstract 

 

Objective: Vast amounts of injury narratives are collected daily and are available electronically 

in real time and have great potential for use in injury surveillance and evaluation.  Machine 

learning algorithms have been developed to assist in identifying cases and classifying 

mechanisms leading to injury in a much timelier manner than is possible when relying on manual 

coding of narratives.  The aim of this paper is to describe the background, growth, value, 

challenges and future directions of machine learning as applied to injury surveillance.  

 

Methods: This paper reviews key aspects of machine learning using injury narratives, providing 

a case study to demonstrate an application to an established human-machine learning approach.   

 

Results: The range of applications and utility of narrative text has increased greatly with 

advancements in computing techniques over time.  Practical and feasible methods exist for semi-

automatic classification of injury narratives which are accurate, efficient and meaningful.  The 

human-machine learning approach described in the case study achieved high sensitivity and 

positive predictive value and reduced the need for human coding to less than one-third of cases 

in one large occupational injury database.   

 

Conclusion: The last 20 years have seen a dramatic change in the potential for technological 

advancements in injury surveillance. Machine learning of ‘big injury narrative data’ opens up 

many possibilities for expanded sources of data which can  provide more comprehensive, 

ongoing and timely surveillance to inform future injury prevention policy and practice.   
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Introduction 

Injury narratives have long been recognized as valuable sources of information to 

understand injury circumstances and are increasingly available in the era of ‘big data’.  Narrative 

text mining and machine learning techniques have been developed that take advantage of greatly 

increased computing power and ‘big data’ to make predictions based on algorithms constructed 

from the data.  However, along with the opportunities, challenges in adequately accessing and 

utilizing injury narratives for public health surveillance and prevention exist.  In this paper the 

authors describe the background, growth and utility of machine learning of injury narratives. A 

case study is also provided to demonstrate the application of an established human-machine 

learning approach. The authors then discuss the challenges and future directions of machine 

learning as applied to injury surveillance. 

 

Background 

The 1990’s marked the beginning of the electronic era, e-mail and the internet were 

surfacing and electronic records took the form of .dbf files transcribed from hard copy files.  In a 

1997 article Sorock and colleagues identified innovative approaches to improvements in work-

related injury surveillance that reflected the utility of electronic records at this time (1).  These 

include: (1) the use of narrative text fields from injury databases to extract useful epidemiologic 

data; (2) data set linkage for aiding in incidence rate calculations and (3) the development of 

comprehensive company-wide injury surveillance systems.  Now almost 20 years later, the 

opportunities have expanded greatly;  Large amounts of coded injury data and text descriptions 

of injury circumstances (injury narratives) are being collected daily and are available in real 

time. However, while there have been some collective efforts to standardize injury data 

collection and classification systems, very little has been done to develop and standardize 

machine learning approaches using injury narratives. 

WHO guidelines specify the following requirements for injury surveillance: to facilitate 

ongoing data collection, in a systematic way, which enables analysis and interpretation for timely 

dissemination which can be applied to prevention and control (2).  However, often injury 

information (for morbidity and mortality incidence reporting) is collected and may be classified 

without considering these requirements.  While the data may be coded according to a 
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standardized classification protocol (e.g.  ICD coding in hospitals) the people assigning the codes 

are often administrative staff classifying the case for billing purposes (not for prevention), with 

little profession training although hospital discharge data is usually coded by a professional 

nosologists.  In order to get these data re-coded in such a way as to satisfy the requirements of 

surveillance requires significant investment and resources. 

On the other hand there are some national agencies such as the National Center for 

Health Statistics which in addition to mortality coding use their  nosologists to classify medical 

conditions, drugs and injuries reported in their  large national health surveys in the United States 

(e.g. the National Health and Nutrition Examination Survey and the National Health Survey).  

Coding systems useful to injury epidemiologists include:  the International Classification of 

Diseases (ICD), International Classification of External Causes (ICECI) (3), and Nordic 

Classification of External Causes (NOMESCO) (4).  Occupational injury surveillance systems 

however usually assign and utilize separate coding strategies aimed at identifying work 

exposures such as the National Institute for Occupational Safety and Health (NIOSH) 

Occupational Injury and Illness Classification System (OIICS) (5) and the Type Of Occurrence 

Classification Scheme (TOOCS) (6). These codes are often used for surveillance.  However,  

even if the time and resources have been allotted to having trained coders assign these codes, 

there are still limitations in using the coded data alone. These include the limited scope, breadth 

and depth of injury mechanisms and scenarios captured from the codes (specifically reducing  

their value for injury prevention and control) and reliance on predetermined circumstances that 

may not capture all or the very unique case scenarios (7), nor all relevant injury factors (host, 

agent, vector, environment) contributing to an injury event as defined by Haddon(8).   

 

The utility of injury narratives for surveillance 

Two recent reviews (9, 10) outlined a range of benefits for using narratives as a 

supplement to the restrictions of coded data,  including: the identification of cases not able to be 

detected from coded data elements alone, extracting more specific information than codes allow, 

extracting data fields which aren’t part of the prior coding schemas, establishing chain-of-events, 

identifying causes without specific codes, and assessing coding accuracy.   

Narrative text analyses also enables the identification of rare or emerging events usually 

not found using administratively assigned codes, a critical concern in injury surveillance (11-14).  
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Incident narratives in their raw form can also be available in a more ‘timely’ manner than coded 

data and are now being used in novel applications such as syndromic surveillance (15, 16).   

 

The range of applications and utility of narrative text has also increased with recent 

advancements in computing techniques. However, some of the earliest applications predate the 

ability to search text electronically and were simply to identify cases to overcome the lack of 

reported or coded data. These include using newspaper clipping services where people were paid 

to read newspapers and identify articles that reference any of the injury or fatality topics on a list 

related to clients’ interests who had paid the service to look for articles containing target words 

about specific companies (17) (18). Now that news articles are on the web, computerized search 

has greatly simplified the process of searching for injury incidents using services such as Nexus.  

Nowadays, with significant increases in the technological capabilities and capacity of 

computer systems, injury narratives which contain essential information about how the injury 

event occurred are more widely available in an ‘ongoing’ manner across a range of agencies 

[including but not limited to emergency services/first responders (ambulance, fire service, 

police), emergency departments/hospitals/trauma registries, coronial systems, occupational 

health and safety, insurance/compensation agencies (workplace/health/motor vehicle), consumer 

safety agencies, news services and even social networking sites (twitter/facebook) etc].   

However, utilizing these data for surveillance has historically proven cost-prohibitive and 

fraught with human error. Bertke et al (2012) reported that it took a single researcher 10 hours 

(over the course of a few weeks to mitigate fatigue) to code 2,400 workers’ compensation 

injuries (19). Taylor et al reported 100 total hours for three coders to discern cause of injury and 

reconcile differences from firefighter near-miss and injury narratives (20). As a database grows, 

the additional resources required to code the records become increasingly labor, cost, and time 

prohibitive. Only recently has the use of computerized coding algorithms enabled large-scale 

analysis of narrative text, presenting an efficient and plausible way for individuals to code large 

narrative datasets with accuracies of up to 90% (19, 21).  While auto-coding increases accuracy 

and efficiency, but it does not eliminate the need for human review entirely as humans must 

initially train the algorithm and conduct post-hoc quality review.   

There have been some limited situations where automated classification of injury 

narratives has become integrated into routine processes for national statistical purposes to reduce 

the amount and costs of manual coding, improve coding uniformity and reduce the time taken to 
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process records. For example, many countries use software to automatically process injury text 

recorded on death certificates for broad ICD cause of death coding (22) and the National Institute 

for Occupational Safety and Health in the USA has made available an online tool to aid state 

public health organizations in determining  NIOSH occupation and industry codes (23).  These 

software programs built over several decades allow a substantial subset of records to be 

automatically coded usually with the caveat of limited accuracy.  The accuracy however can 

often be improved if the algorithm is able to identify those which would be more accurately 

coded by humans (or should be unclassifiable) or that the software cannot confidently assign a 

code.   

Over the past two decades, several authors of this paper have completed a number of 

studies ((1, 24) (25) (21, 26, 27) (20)) on the utilization of computer algorithms to streamline the 

classification of the event (or causes) documented in injury narratives for surveillance purposes.  

Their focus has been to create machine learning techniques to quickly filter through hundreds of 

thousands of narratives to accurately and consistently classify and track high magnitude, high 

risk and emerging causes of injury, information which can be used to guide the development of 

interventions for prevention of future injury incidents (28). The results of this work has enabled 

the annual classification of very large batches of workers compensation (WC) claim incident 

narratives into Bureau of Labor Statistics (BLS) occupational injury and illness classification 

(OIIC) event codes for input in deriving the annual Liberty Mutual Workplace Safety Index --a 

surveillance metric ranking the leading causes (in terms of direct cost WC cost) of the most 

disabling work-related injuries in the U.S. every year (29).    

Table 1 also provides examples of other studies, describing both early uses and other 

more complex uses of narrative text.  These examples include the integration of machine 

learning techniques to demonstrate the changing nature of this field.   
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Table 1: Examples of original and complex applications of narrative text over time 

Original applications More complex applications 

Article 

details 

Technique  Application Article 

details 

Technique Application 

Archer et 

al, 1998 

(18) 

Newspaper clipping service 

used to manually identify 

cases of firearm-related 

injuries (unintentional and 

intentional) along with other 

sources obtained from 

hospital, police and vital 

statistics. 

Newspaper clipping 

service identified almost 

one-third of firearm-

related cases (but only 

17% of suicides) and 

were a cheap, accessible 

and simple data source 

albeit incomplete, 

especially for suicide. 

Homan 

et al, 

2014 

(30) 

Extracted 200 tweets from 

2.5 million tweets which 

noted suicide terms, used 

expert and novice ranks of 

tweets for distress levels, and 

used support vector machine 

approach to topic model data. 

Automated tweet classification 

by distress levels to enable 

identification of individuals at 

risk of suicide through social 

media, with use of expert 

coders for training data and 

machine learning model choice 

important factors affecting 

performance of model. 

Hume, 

Chalmers 

and 

Wilson, 

1996 

(31) 

Free text search of emergency 

department data from one New 

Zealand hospital for one year 

for one product (trampoline). 

Identified the number of 

trampoline-related 

incidents and allowed 

case identification to 

enable further review of 

text and manual coding of 

extra circumstance 

details. 

Chen, 

Nayak 

and 

Vallmuur 

2015 

(32) 

Automatic classification of 

mechanism and object  

categories for 15,000 

emergency department cases 

across multiple hospitals 

using machine learning 

(matrix factorization 

approach). 

Classified mechanism and 

objects quickly with accuracy 

of 0.93, showing potential for 

use to reduce need for manual 

coding for injury surveillance, 

though need for expert input 

into modelling required 

throughout process to improve 

algorithm performance. 

Sorock, 

Ranney 

and 

Lehto, 

1996 

(33), and 

Lehto 

and 

Sorock 

1996 

(24) 

Free text search of motor 

vehicle insurance claims 

database for 4 years to identify 

claims where road work 

occurring and key word 

categorization of pre-crash 

activities and crash types 

through word frequency count 

and manual grouping of 

similar words to prepare key 

word search strategy. 

Expanded to test a Bayesian 

modelling approach in second 

paper. 

First paper identified 

number of incidents and 

categorized pre-crash 

activities and crash types 

to examine patterns of 

incidents. 

Second paper established 

Bayesian approach more 

accurately classified cases 

than keywords and 

pointed to the early 

potential for Bayesian 

approaches to be 

developed in this field.  

Taylor et 

al (2014) 

(20)  

Classified 2285 fire fighter-

occupation specific 

narratives (longer narratives 

with average of 216 words), 

with near-misses & injury 

into injury mechanism and 

injury outcome using fuzzy 

and naïve Bayesian models 

with single word predictors. 

Classified external causes with 

accuracy of 0.74 using fuzzy 

model and 0.678 using Naïve 

model, with increased training 

set size producing higher 

sensitivity. Showed that 

Bayesian methods can be used 

for coding long narratives for 

both injury incidents and near 

misses. 

Bauer 

and 

Sector 

(2003) 

(34) 

Development of a keyword 

based search to identify extent 

of product involvement in 

injury from emergency 

department based injury 

surveillance database, as well 

as use of expert panel to assess 

preventability and potential for 

product safety responses. 

Ability to flag cases 

where high likelihood of 

consumer product 

involvement (defective, 

maladapted or 

intrinsically risky) and 

identify products most 

commonly associated 

with each category. 

Pan et al, 

2014 

(35) 

Use of named entity 

recognition techniques to 

automatically parse 

unstructured data from a 

range of databases (including 

RAPEX, CPSC and product 

safety databases in China and 

Japan). Used Bayesian 

network approach to identify 

and code safety factors 

pertaining to electric shock. 

Automated extraction and 

coding of relevant cases 

incorporating a number of 

large publically available 

databases from different 

regions. Identification of the 

key safety factors involved in 

electric shock incidents (near 

miss and injuries), showing 

potential of multiple databases 

to extract common scenarios. 

Bondy et 

al, 2005 

(36) 

Manual review of 4000 injury 

text reports from construction 

of Denver International 

Airport, and expert 

classification of case details 

according to Haddon’s Matrix 

framework. 

Classification of text 

reports according to 

Haddon’s Matrix 

framework provided a 

more complete injury 

description than only 

coding certain injury 

elements, as well as 

providing richer data to 

understand injury 

scenario and target 

prevention activity. 

Zhao et 

al 2015 

(37) and 

Zhao et 

al 2015 

(38) 

Use of electrocution text 

reports in national 

occupational injury database 

to extract either key features 

according to hierarchy of 

control framework or 

Haddon’s Matrix framework. 

Used narrative text analysis 

(such as word clusters, entity 

extraction, word tagging and 

“textual tag clouds” using 

NVivo qualitative software.  

Automated extraction and 

tagging of key features of 

reports and grouping according 

to overarching injury 

prevention frameworks, to 

examine main prevention foci 

as well as illustrate decision 

making chains. Demonstrates 

the utility of text analysis to 

extract and elucidate more 

complex injury causation 

scenarios. 
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Case study 

To demonstrate one successful  approach to the use of machine learning to classify injury narratives, the 

following case study briefly summarizes a recent study by Marucci-Wellman et al (26) that accurately classifed 

30,000 workers compensation (WC) narratives into injury events using a human-machine learning approach in 

order to match cost of claims by event category with national counts from the BLS Survey of Occupational 

Injury and Illness data.  Coders who had been trained extensively on the BLS Occupational Injury and Illness 

Classification System (OIICS) read each claim accident narrative on the case and classified the event that led to 

work-related injury into one of approximately 40 2-digit event codes.  The dataset was divided into a training 

set of 15,000 cases, used for model development, and a prediction dataset of 15,000 cases used for evaluating 

the algorithms performance on new narratives.   A sample of WC claims accident narratives with BLS OIICS 

code assignments are shown below: 

1. “STANDING UP FROM BENDING OVER STRUCK BACK ON MAID CART” -> Classified as BLS OIICS event code 63 

- struck against object or equipment. 

2. “FELT PAIN WHILE PULLING LOAD OF WOOD WITH PALLET JACK” -> Classified as BLS OIICS event code 71 – 

overexertion involving outside sources. 

3. “STOPPED AT STOP SIGN WHEN REAR-ENDED BY ANOTHER VEH.” -> Classified as BLS OIICS event code 26 - 

Roadway incidents involving motorized land vehicle. 

4. “SLIPPED AND FELL ON UNK SURFACE TWISTING HIS ANKLE SPRAININGIT”.-> Classified as BLS OIICS event 

code 42 - Falls on same level.  

5. “EMPLOYEE WAS WALKING ON THE STREET WHEN HIS RIGHT KNEE POPPED” ->Classified as BLS OIICS event 

code 73 - Other exertions or bodily reactions. 

 

Using the 15,000 narratives and manually assigned codes from the training set, a keyword list was created 

by parsing the words in each narrative (e.g., standing, up, from, bending, etc.).  The occurrence or probability  

of each word in each category (Pnj/Ci) was calculated as well as the marginal probability of each event category 

in the training data set (P(Ci); These are the two parameters necessary for the reduced Naïve Bayes algorithm 

((26)).  These statistics calculated from the training narratives were stored in a probability table and used to 

train the algorithm.  A similar word list and probability table was constructed for 2, 3 and 4 word sequences 

(each sequence considered as a keyword, e.g. standing-up, up-from, from-bending, standing-up-from etc.).  The 

Naïve Bayes model was used to assign a probability to each event code based on the keywords present in a 

particular narrative.  The event code with the largest estimated probability was then chosen as the prediction for 

the words present.  

The theoretical basis for the Naïve Bayes classifier and detailed instructions on how to implement the 

algorithm with narrative data have been thoroughly defined previously (21, 26).  Various software packages are 

now publically available for training (or building) the models based on the training dataset and then making 

subsequent predictions. Weka (39) and Python (40) are two examples of publically available, easily 

downloadable and easily adaptable packages for development of the Naïve Bayes Model.  For this study, the 

Textminer software developed by one of the authors (ML) was used.  The narratives were used in their raw 
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form; although improved performance can be expected when misspellings are cleaned and words that have the 

same meaning are morphed into one syntax, the aim was to demonstrate what could be achieved by machine 

learning with little pre-processing of the narratives.   However, a small list of frequently occurring “stop  

words” believed to have little meaning for the classification assignment (e.g. a, and, left, right) was removed 

from the narratives prior to calculating probabilities.    

Two Naïve Bayes algorithms were run on each of the 15,000 prediction narratives using first the set of 

single keyword probabilities and second the sequenced keyword probabilities (stored in probability tables) from 

the training narratives in order to assign two independent computer generated classifications to the 15,000 

prediction narratives. 

 

 The authors (26) found while the overall sensitivity of the two independent models was fairly good (0.67 

naivesw, 0.65 naiveseq), both algorithms independently predicted some categories much better than others, 

skewing the final distribution of the coded data (χ² P<0.0001), and most of the cases in the smaller categories 

were not found.  The sequence-word model showed improved performance where word order was important for 

differentiating causality.  Still many categories had low performance.  We consequently integrated a rule where 

we would  only use the computer classifications when the two models agreed and then would manually code the 

remaining narratives.  Implementing this rule resulted in an overall sensitivity  of codes for the final coded 

dataset of 87% with high sensitivity and positive predictive values across all categories (See Table 2 and 3 and 

Marucci-Wellman et al (26) for more details ).  Note, both high sensitivity and positive predictive value is 

important for resulting in a final unbiased distribution of the coded data for surveillance and targeting 

prevention efforts.  Also using this human-machine pairing resulted in 68% of the narratives coded by the 

algorithm leaving only 32% to be coded by humans. 

The authors found the accuracy of the human-machine system was at least as good and likely was even 

better than manual coding alone of all 15,000 records as the system uses consistent rules.  This was 

demonstrated by comparing the results with inter-rater reliability data for four well trained human coders.  

While the evaluation of inter-rater reliability relies on different metrics, the inter-rater reliability performance of 

the four coders does not appear to be as systematically high and consistent as what is projected from the 

sensitivity and positive predictive value (PPV) values of the human-machine pairing method for the very large 

categories, nor the very small categories. Other readily available and easily adaptable machine learning 

techniques for narrative text analyses other than the Bayesian algorithms exist such as support vector machine 

(SVM) and logistic regression (LR) and could also be incorporated to improve accuracy.   Work has begun to 

investigate ensembles consisting of agreement between these various algorithms with some slightly improved 

results over the ones presented in the case study summary (See Table 4).  Overall, this case study demonstrates 
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that a practical and feasible method exists for human-machine learning of short injury narratives.  The computer 

was able to accurately classify many of the narratives of a large WC dataset leaving one-third for human review 

and resulting in a very high overall accuracy and very high accuracy across almost all categories (large and 

small) in the final coded dataset. Accuracy can be further improved when a percent of difficult cases, predicted 

by the algorithm with a low confidence, are rejected for manual coding.  
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Table 2. The Accuracy of the Human-Machine Classification System: Implementation of a Strategic Filtera Based on Agreement Between Two Naïve Bayes Algorithms 

Adapted from Accident Analyses and Prevention.  Marucci-Wellman, Lehto, Corns. A practical too for public health surveillance : Semi-automated coding of short injury narrative 

from large administrative databases using Naïve Bayes algorithms. 2015 

BLS OIICS 2-Digit Event Code 
 

Gold 

Standardc  
Human-Machine System Coding of all Narrativesd 

 

%Agreement 

Between 2 

Manual 

Codersj 

Fleiss 

Kappak 

manual 

coders 
(n) npred

e %pred
f,g 

 
Senh 95% CI PPVi 95% CI 

1* Violence and other injuries by persons or animals 

11 Intentional injury by person 159 132 0.9 0.81 0.75, 0.87 0.98 0.95, 1.00 81%-97% 0.85 

2* Transportation incidents 

24 Pedestrian vehicular incidents 120 117 0.8 0.78 0.71, 0.86 0.80 0.73, 0.88 57%-78% 0.65 

26 Roadway incidents motorized land vehicle 650 672 4.5 0.98 0.97, 0.99 0.95 0.93, 0.97 93%-96% 0.94 

27 Nonroadway incidents motorized land vehicle 136 122 0.8 0.80 0.73, 0.87 0.89 0.84, 0.95 52%-84% 0.62 

4* Falls, slips, trips 

41 Slip or trip without fall 806 658 4.4 0.70 0.67, 0.73 0.86 0.83, 0.89 66%-89% 0.71 

42 Falls on same level 2,148 2386 15.9 0.92 0.91, 0.93 0.83 0.81, 0.84 85%-93% 0.86 

43 Falls to lower level 1,065 1176 7.8 0.89 0.87, 0.91 0.81 0.79, 0.83 78%-92% 0.81 

5* Exposure to harmful substances or environments 

53 Exposure to temperature extremes 141 130 0.9 0.86 0.8, 0.92 0.93 0.89, 0.97 82%-98% 0.88 

55 Exposure to other harmful substances 175 165 1.1 0.83 0.77, 0.88 0.88 0.83, 0.93 81%-96% 0.87 

6* Contact with objects and equipment 

62 Struck by object or equipment 1,651 1749 11.7 0.90 0.89, 0.92 0.85 0.83, 0.87 82%-90% 0.82 

63 Struck against object or equipment 466 397 2.6 0.74 0.7, 0.78 0.87 0.84, 0.91 66%-83% 0.68 

64 Caught in or compressed by equipment 505 532 3.5 0.90 0.87, 0.93 0.86 0.83, 0.89 72%-83% 0.75 

7* Overexertion and bodily reaction 

70 Overexertion and bodily reaction, uns 188 151 1.0 0.59 0.51, 0.66 0.73 0.66, 0.80 6%-48% 0.19 

71 Overexertion involving outside sources 4,189 4334 28.9 0.95 0.95, 0.96 0.92 0.91, 0.93 87%-95% 0.87 

72 Repetitive motions involving micro tasks 484 537 3.6 0.90 0.87, 0.92 0.81 0.77, 0.84 71%-83% 0.75 

73 Other exertions or bodily reactions 916 827 5.5 0.79 0.76, 0.82 0.88 0.85, 0.90 56%-85% 0.64 

X* All other classifiables (n<100) in training dataset 

xx 
Other small (n<100 cases) classifiable 

categoriesb  
632 

 
467 3.1 

 
0.68 0.64, 0.72 0.92 0.89, 0.94 

 
- - 

Nonclassifiable 

9999 Nonclassifiable 569 448 3.0 0.70 0.66, 0.74 0.89 0.86, 0.92 69%-84% 0.72 

Overall 15,000 15,000 100.0 0.87 0.87, 0.88 0.87 0.87, 0.88 77%-90% 0.78 
aA filter is a technique to decide which narratives the computer should classify vs. which should be left for a human to read and classify. bTwo-digit categories with <100 cases. cGold Standard codes were assigned to each 

narrative by expert manual coders. dHuman-Machine system: The computer assigns codes to narratives that the algorithms agreed on the classification (68% of the dataset), and the remainder are manually coded (32 % of the 

dataset). enpred = number predicted into category. f%pred = percent of cases in whole dataset predicted into category. gThe distribution of two-digit classifications will be skewed towards categories with high sensitivity, biasing 

the finally distribution of the coded datasets. hSen = Sensitivity: (true positives) the percentage of narratives that had been coded by the experts into each category that were also assigned correctly by the algorithm. iPPV = 

Positive Predicted Value: the percentage of narratives correctly coded into a specific category out of all narratives placed into that category by the algorithm. jTwo-coder agreement, e.g. 6 total comparisons, coder 1 compared 

to 2,3,4, coder 2 compared to 3,4 coder 3 compared to 4.kFleiss Kappa between 0 and 1, > 0.6 considered good agreement, >.8 considered very good agreement.  

Naivesw = Naïve Bayes Single Word Algorithm. Naiveseq = Naïve Bayes Sequence Word Algorithm 



 

 12 

 

Table 3. The Accuracy of the Human-Machine Classification System: Implementation of a Strategic Filtera Based on Agreement Between the Two Naïve Bayes 

Algorithms (Results for Small Categories Only, n< 100 Cases in Each Category) Adapted from Accident Analyses and Prevention.  Marucci-Wellman, Lehto, Corns. A 

practical too for public health surveillance : Semi-automated coding of short injury narrative from large administrative databases using Naïve Bayes algorithms. 2015 

BLS OIICS 2-Digit Event Code 

Gold Standardb Human-Machine System Coding of All Narrativesc %Agreement 

Between 2 

Manual 

Codersg 

Fleiss 

Kappah 

manual 

coders 
(n) 

 
npred

d 
 

Sene (95% CI) PPVf 95% CI 
 

1* Violence and other injuries by persons or animals 

12 Injury by person - intentional or intent unknown 96 78 0.66 0.56, 0.75 0.81 0.71, 0.88 47%-78% 0.57 

13 Animal and insect related incidents 99 79 0.80 0.71, 0.87 1.00 1.00, 1.00 79%-94% 0.87 

2* Transportation incidents 

20 Transportation incident, unspecified 3 3 1.00 1.00, 1.00 1.00 1.00, 1.00 0%-0% 0.00 

21 Aircraft incidents 22 15 0.68 0.47, 0.89 1.00 1.00, 1.00 0%-75% 0.17 

22 Rail vehicle incidents 6 4 0.67 0.12, 1.00 1.00 1.00, 1.00 0%-100% 0.67 

23 Animal & other non-motorized vehicle transport incidents 14 13 0.86 0.65, 1.00 0.92 0.76, 1.00 0%-0% 0.00 

25 Water vehicle incidents 11 5 0.45 0.1, 0.81 1.00 1.00, 1.00 0%-88% 0.25 

3* Fires and explosion 

31 Fires 22 20 0.91 0.78, 1.00 1.00 1.00, 1.00 55%-88% 0.58 

32 Explosions 21 18 0.86 0.69, 1.00 1.00 1.00, 1.00 44%-83% 0.46 

4* Falls, slips, trips 
40 Fall, slip, trip, unspecified 4 2 0.50 0.00, 1.00 1.00 1.00, 1.00 0%-0% 0.00 

44 Jumps to lower level 57 39 0.61 0.48, 0.74 0.90 0.80, 1.00 51%-90% 0.65 

45 Fall or jump curtailed by personal fall arrest system 3 2 0.67 0.00, 1.00 1.00 1.00, 1.00 0%-0% 0.00 

5* Exposure to harmful substances or environments 

50 Exposure to harmful substances or environ, unspecified 23 18 0.78 0.6, 0.96 1.00 1.00, 1.00 21%-88% 0.33 

51 Exposure to electricity 27 18 0.67 0.48, 0.86 1.00 1.00, 1.00 65%-88% 0.81 

52 Exposure to radiation and noise 38 36 0.87 0.76, 0.98 0.92 0.82, 1.00 54%-100% 0.80 

54 Exposure to air and water pressure change 1 0 0.00 . 0.00 . 0%-100% 0.40 

57 Exposure to traumatic or stressful even nec 32 23 0.72 0.55, 0.88 1.00 1.00, 1.00 73%-85% 0.80 

59 Exposure to harmful substances or environments, nec 1 7 0.00 . 0.00 . 0%-100% 0.12 

6* Contact with objects and equipment 

60 Contact with objects and equipment, uns 78 43 0.54 0.43, 0.65 0.98 0.93, 1.00 12%-63% 0.25 

61 Needle stick 1 1 1.00 1.00, 1.00 1.00 1.00, 1.00 - - 

65 
Struck/caught/crush in collapsing structure, equip or 

material  
5 

 
3 

 
0.60 0.00, 1.00 1.00 1.00, 1.00 

 
0%-0% 0.33 

66 Rubbed or abraded by friction or pressure 16 12 0.69 0.43, 0.94 0.92 0.73, 1.00 0%-50% 0.11 

67 Rubbed abraded or jarred by vibration 7 4 0.57 0.08, 1.00 1.00 1.00, 1.00 0%-67% 0.14 

69 Contact with objects and equipment, nec 1 1 1.00 1.00, 1.00 1.00 1.00, 1.00 - - 

7* Overexertion and bodily reaction 

74 Bodily conditions nec 20 10 0.50 0.26, 0.74 1.00 1.00, 1.00 0%-75% 0.33 

78 Multiple types of overexertions and bodily reactions 23 13 0.39 0.18, 0.61 0.69 0.40, 0.98 0%-0% 0.00 

79 Overexertion and bodily reaction and exertion, nec 1 0.00 . 0.00 . - - 

Overall 437 467 0.68 0.64, 0.72 0.92 0.89, 0.94 
aA filter is a technique to decide which narratives the computer should classify vs. which should be left for a human to read and classify.  bGold Standard codes were assigned to each narrative by expert manual coders  
cHuman-machine system consisted of human coding 32% of the dataset, machine coding 68% of the dataset. dnpred = number predicted into category. eSen = Sensitivity: (true positives) the percentage of narratives that had been 

coded by the experts into each category that were also assigned correctly by the algorithm. fPPV = Positive Predicted Value: the percentage of narratives correctly coded into a specific category out of all narratives placed into 

that category by the algorithm. gTwo-coder agreement, e.g. 6 total comparisons, coder 1 compared to 2,3,4, coder 2 compared to 3,4 coder 3 compared to 4. hFleiss Kappa between 0 and 1, > 0.6 considered good agreement, 

>.8 considered very good agreement. Naivesw = Naïve Bayes Single Word Algorithm. Naiveseq = Naïve Bayes Sequence Word Algorithm. 



 

 13

Table 4. The Accuracy of the Human-Machine Classification System: Implementation of a Strategic Filtera Based on 

Agreement of Predictions Between Selected Combinations of Different Algorithms (Naïve Bayes Single Word, Naïve Bayes Bi-

gram, SVM, Logistic Regression) 

 

                  

  Two Model Agreement   Three Model Agreement 

Models  

SVM= 

Naïve 

Bayes 

Single 

Word 

SVM = 

Naïve 

Bayes Bi-

gram 

SVM= 

Logisti

c 

Logistic= 

Naïve 

Bayes 

Single 

Word 

Logistic= 

Naïve 

Bayes Bi-

gram   

 SVM = 

Naïve Bayes 

Single Word 

=Logistic 

SVM=Naïve 

Bayes Single 

Word = Naïve 

Bayes Bi-gram 

Overall 

Sensitivity/PPV 87% 89% 81% 86% 88% 89% 93% 

Manual Coded 28% 33% 14% 24% 29% 31% 43% 
aA filter is a technique to decide which narratives the computer should classify vs. which should be left for a human to read and 

classify 

 

Discussion: Challenges and future directions 

As illustrated in the previous case study, the use of off-the-shelf machine learning methods combined 

with human review of weakly predicted cases is an effective, easily applied method.  However, this approach 

still required developing  a large training set of previously coded cases to develop the model and then 

subsequent human review of around 1/3 of the cases to attain high sensitivities across all categories in the 

prediction set. In practice, obtaining a good training set and the need for human review (which could be 

substantial if 1/3 of a very large data set still requires manual coding) may both be major application 

bottlenecks. Numerous strategies and approaches for tailoring methods to address this problem exist. For the 

most part, these strategies and approaches can be roughly divided as: focusing on obtaining more data (a larger 

training set), applying better learning algorithms, or going beyond the training set, using other sources of 

information, causal models, or human knowledge to preprocess the information used by the learning algorithm. 

The following discussion briefly builds on ideas generated by the case study and introduces some of these other 

approaches, their effectiveness, and emerging trends in their use.  

Obtaining more data or applying better algorithms 

The use of a larger training set and better learning algorithms are both commonly suggested strategies 

for improving model predictions. Previous work (32) has shown that model performance improves for short 

injury narratives with larger training sets. The latter study also showed that SVM algorithm performed better 

than Naïve Bayes and several other learning algorithms. However, the improvements were clearly slowing 

down as the increase of training data continued. Furthermore, smaller categories were often poorly predicted by 

the algorithm, just as found in the case study above for Naïve Bayes, Logistic Regression, and SVM. Some 

further improvements in the SVM model performance were also observed by Chen et al. (32) after model 



 

 14

factorization using Singular Value Decomposition to map the word vectors to a lower dimensional space. The 

latter result was consistent with earlier studies showing improvements after feature space reduction using 

Singular Value Decomposition (SVD) (41, 42), and SVD approaches are likely to be especially useful in ‘big 

data’ applications where there is substantial training data available for mapping the lower dimensional space. 

Preprocessing data 

Overall though, the results using thousands of training examples across multiple studies suggest that it is 

doubtful that the need for human review will be completely eliminated with more data or by better learning 

algorithms alone for complex multi-class coding schemes and especially so when there is a need to assign rarely 

occurring categories (i.e. needle stick injuries in the case study). One potentially promising strategy for 

improving performance for smaller categories is to go beyond the training set, using other sources of 

information, causal models, or human knowledge to preprocess the information used by the learning algorithm. 

Numerous approaches have been used for preprocessing injury text prior to applying the learning algorithms 

such as word stemming, lemmatization, dropping infrequent or frequent words, or weighting schemes such as 

TF-IDF (32). One advantage of such approaches is that they provide an easy way of reducing the dimensionality 

of the word vector, which can speed learning of any machine learning algorithm. However, this may sacrifice 

accuracy, with the authors preliminary work using Naïve Bayes, Logistic Regression, and SVM showing that 

these pre-processing approaches have the potential to reduce the overall detection (distinguishing between 

categories) capability, and especially for small categories (43). Part of the problem is that such approaches do 

not consider the meaning of words. For example, in related as yet unpublished work, the authors found that 

stemming or lemmatizing the words “lifting” and “lifts” to their root “lift” reduces the ability of SVM, NB, and 

LR to distinguish injuries related to exertion from those caused by man lifts or fork lifts. Similarly, dropping 

infrequent words in this large word set of 10,000 words such as “muggers” or “rape” reduced the ability to 

identify assault cases.  

Targeted mapping of only certain words to a common meaning, on the other hand, tended to improve 

performance (for example, HOT and SCALDING or bike and bicycle). The latter approach was especially 

useful for finding predictive word sequences (for example, “all words that mean a person” followed by the word 

“fell” separates struck by events from fall events). Based on the author’s preliminary results, systematic 

development of a lexicon mapping words, word-sequences, and word combinations that relate to important 

concepts can greatly improve the sensitivity across categories of any machine learning algorithm.  For example, 

the authors found the generic concept “hit body part on” identified as a sequence of words that can mean hit, 

followed by words that can mean a body part, followed by either the frequent words “or” or “against”, greatly 

improved the ability of Naïve Bayes, SVM, and LR alike to distinguish struck against events from both falls and 
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struck against events. The finding that a good lexicon can improve the performance of machine learning 

algorithms for short injury narratives is not surprising.  The caveat is that manually developing a good lexicon is 

very time consuming, since datasets will contain thousands of unique words and words will have different 

meanings depending on what other words are present (really requiring topic appropriate linguist experts to do 

this work).  Further complicating the matter, a causal model may be necessary to organize the concepts into a 

predictive model.  Illustrating recent developments in this direction, Abdat, et al (44) developed a causal model 

of construction accidents using a Bayesian network to identify the probable explanation of accidents based on 

generic factors extracted by expert from accident scenarios.  Other work in this direction included the use of 

automated named entity recognition techniques to automatically parse unstructured data from several databases 

which were then used in a Bayesian network to identify and code safety factors (35). 

An interesting conjecture is that these findings suggest a lexicon or causal factors generated from one 

text mining project can be used to help code another project’s uncoded narratives.  Transfer of results would 

seem to be especially promising when data sets have the same focus, like occupational hazards. For example, if 

the results obtained using the database from the National Firefighter Near-Miss Reporting System (NFFNMRS) 

(20) were applied to narratives from the Fire Fighter Fatality Investigation and Prevention Program (FFFIPP), 

one would expect falls to be predicted with fairly good accuracy because the language firefighters use to 

describe their hazards is similar (“roof, spongy” are precise predictors for firefighter falls caused from a 

weakening roof on fire).  Similarly, a multitude of terms identified as toxic chemicals (e.g. hydrogen sulfide, 

toluene) in one data set could be directly mapped to the concept “toxic chemical” used in a new application, 

rather than relying on the training set alone.  Future studies might also explore how well key words and word 

predictors in a home and leisure injury database (25) would predict injuries in occupational narratives.  If one 

wanted to auto code causes of injury in firefighter narratives using results obtained from a knowledge database 

(meaning a collection of either narratives linked to manually assigned codes or word lists with corresponding 

probability weights) created from a home and leisure population level database, the terms used to describe 

important concepts in a fire fighter database could be nodes in a Bayesian network retrained using the home and 

leisure injury database to estimate probability weights (Pnj/Ci) for the new database. The new weights would 

adjust the original weights for terms such as “roof, spongy” used as a precise predictor for firefighter falls but 

unlikely to indicate a fall  when at home or in leisure activities.  This approach will enable the development of 

weighting coefficients (as adjustments) to the probabilities that comprise the knowledge database before it is 

transferred from population narratives to occupational narratives.  This work – while currently hypothetical – 

would, if feasible, provide critical proof of concept: if high specificity, sensitivity, and positive predictive value 

are able to be attained, there would be good evidence that weighting of probabilities would be the next step in 
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making machine learning algorithms more broadly transferrable helping to reduce resources needed for human 

coding. 

Building an open source knowledgebase 

For machine learning algorithms to be broadly utilized, they need to be accessible and refined in an open 

source manner.  Ideally, researchers could share both data and algorithms, perhaps in a cloud-based shared-

access knowledge database.  Along these lines, Purdue University (ML) is in the process of creating an open 

source framework that can serve as a repository for shared injury coding knowledge databases. This framework 

would allow remote access to datasets of coded and uncoded narratives, machine learning algorithms, lexicons, 

and other information, enabling researchers to share their results, develop better models more quickly, and 

ultimately reduce the need to manually code in the traditionally resource-dependent manner.  The expectation is 

that as the open source repository grows, new models will be developed that accurately code injury narratives 

within specific content areas.  As more narratives are put into the knowledge database such models should 

perform more precisely and accurately. The end product would be an open-sourced knowledge repository that 

stores words and associated probabilities in order to code injury narratives, where researchers and other 

organizations may upload their injury narratives, select what rubric and algorithm to apply, and then run the 

model to obtain injury codes for their narrative data.  

Providing better access to training data and cloud-based computer coding methods would enable 

researchers without previous access to computerized coding software and/or without a training set for the 

algorithm to code their data.  This has global implications because health systems in the developing world have 

yet to move to computerized information systems and their only option may be narratives as trained coders are 

often scarce.  

A shared knowledge database would enable injury researchers, organizations, and government health 

agencies to code and analyze large injury narrative datasets without the need for substantial resources as 

previously required, liberating these untapped data sources to be used for surveillance, policy, and 

implementing interventions.  Ultimately, the future of injury surveillance must address who funds such a data 

warehouse and how it is financially sustained with appropriate technical assistance. 

One of the challenges in building a knowledgebase of narratives and moving from privately used 

datasets to publically available datasets is the issue of confidentiality.  Injury narratives may contain personally 

identifiable information (such as patient names) or company identifiable information (such as brands of 

products).  To enable sharing of narratives more publically, language parsing techniques which can 

automatically de-identify details from narrative text (without losing the context of the narrative) will need to be 

incorporated into text mining methods, and there have already been significant advances in such techniques 

(See for example Deleger, 2013 et al (45)).   
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 Human-directed learning 

Nevertheless, algorithms do only what humans tell them.  The human factors of manual review, quality 

assurance, and "knowing your data" will still be required especially to identify new or emerging hazards and to 

understand the complex interaction of contributory factors - a principle of surveillance.  Text mining for injury 

surveillance stands apart from other data mining efforts such as that used by generic search engines. Generic 

search engines allow algorithms to find whatever they can, while human-directed injury surveillance through 

text mining is looking for particular outcomes – injuries, and particular features (for example, host, agent, 

vector environment), classifiable to specified categories defined by the end-user. The role of the human in 

teaching the algorithm how to behave is vital to getting it right.  

It is difficult for an algorithm on its own to be able to assign classifications in all categories with the 

same level of confidence and very difficult to improve the accuracy of computer generated codes for the small 

categories or for identifying emerging hazards.  Improvement beyond simply modeling of a training data set to 

use on a prediction dataset requires either sophisticated filtering or tailoring of the algorithm (with natural 

language processing) to identify small categories or other nuances of the coding protocol and the latter approach 

will still not allow for emerging risks to surface.     

It was stated from the beginning (25) that manual coding should never be completely replaced and 

therefore a best practice approach should incorporate some manual coding, assigning a computer classification 

only for more repetitive events where the models are able to confidently predict the correct classification.  This 

will be especially important for rare events and/or emerging hazards that appear only a very small number of 

times or not at all in a training dataset.  For example, a new motor vehicle crash hazard (exploding magnesium 

steering column) would cause a human reviewer to query why steering columns explode on impact and if they 

represent a new material hazard to drivers and first responders.  An algorithm would simply say this does not 

happen enough to be coded with certainty and would flag it for manual review.  For large administrative 

datasets, incorporation of methods based on human-machine pairings such as presented in this paper utilizing 

readily available off the shelf machine learning techniques result in only a fraction of narratives that require 

manual review.   

Conclusion 

Machine learning of ‘big injury narrative data’ opens up many possibilities for expanded sources of data 

that can provide more comprehensive, ongoing and timely surveillance to inform injury prevention policy and 

practice in the future.  This paper has demonstrated the significant value that injury narratives provide beyond 

structured coded datasets. It is critically important that, as an injury prevention community, we continue to 

advocate for the need for narratives to be included (or introduced) in routine data sources to capitalize on this 
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potential as computing and technical capacity expands and not just rely on coded checkboxes. Secondly, the 

authors have argued for the need for a more systematic and incremental approach to developing machine 

learning approaches for the specialized purpose of injury surveillance, as distinct from other applications of 

machine learning more broadly.  Modelling techniques (and research applications) vary in terms of levels of 

specificity and sensitivity, simplicity and complexity, and the building and refinement of these techniques 

require input from content experts and technical experts.  The authors proposed future steps towards developing 

a ‘big injury narrative data’ platform to allow for the building, testing and refinement of machine learning 

algorithms.  Finally, the need for human-machine pairings was reiterated to ensure machine learning approaches 

continue to reflect the underlying principles of injury surveillance.   

The last 20 years has seen a dramatic change in the potential for technological advancements in injury 

surveillance and we have many examples of successful applications of such technology to injury narratives. It is 

now time to consolidate these learnings to build more sustainable, reliable and efficient approaches which will 

ensure the most robust use of the evidence-base for injury prevention. 
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Key Messages 

 

What is already known on this subject  

 Large amounts of coded injury data and injury narratives are being collected universally daily and are 

available real time, yet the development and standardization of machine learning approaches using injury 

narratives is nascent. 

 Injury narratives provide opportunities to a) identify the cases not able to be detected due to coding 

limitations, b) extract more specific information than codes allow, c) extract data fields which aren’t part of 

the coding schema, d) establish chain-of-events scenarios, and e) assess coding accuracy. 

 The main focus of machine learning techniques using injury narratives have been to quickly filter large 

numbers of narratives to accurately and consistently classify and track high magnitude, high risk and 

emerging causes of injury, to guide the development of interventions for prevention of future injury 

incidents. 

 

What this study adds 

 Reiteration of the significant value that injury narratives provide beyond structured coded datasets and 

evidence for the continued need to advocate for narratives to be included (or introduced) in routine data 

sources to capitalize on this potential as computing and technical capacity expands.   

 Demonstration of a practical and feasible method for semi-automatic classification using human-machine 

learning of injury narratives which is accurate, efficient and meaningful and applicable to different injury 

domains. 

 The opening of a dialogue within the injury surveillance community regarding future steps towards 

developing a ‘big injury narrative data’ knowledgebase to allow for the building, testing and refinement of 

machine learning algorithms.   
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