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The current paradigm within genetic diagnostics is to test individuals only at loci known to affect risk of com-
plex disease—yet the technology exists to genotype an individual at thousands of loci across the genome.
We investigated whether information from genome-wide association studies could be harnessed to improve
discrimination of complex disease affection status. We employed genome-wide data from the Wellcome Trust
Case Control Consortium to test this hypothesis. Each disease cohort together with the same set of controls
were split into two samples—a ‘Training Set’, where thousands of SNPs that might predispose to disease risk
were identified and a ‘Prediction Set’, where the discriminatory ability of these SNPs was assessed. Genome-
wide scores consisting of, for example, the total number of risk alleles an individual carries was calculated for
each individual in the prediction set. Case–control status was regressed on this score and the area under the
receiver operator characteristic curve (AUC) estimated. In most cases, a liberal inclusion of SNPs in the
genome-wide score improved AUC compared with a more stringent selection of top SNPs, but did not per-
form as well as selection based upon established variants. The addition of genome-wide scores to known
variant information produced only a limited increase in discriminative accuracy but was most effective for
bipolar disorder, coronary heart disease and type II diabetes. We conclude that this small increase in discri-
minative accuracy is unlikely to be of diagnostic or predictive utility at the present time.

INTRODUCTION

Genetic testing of monogenic diseases where there is a strong cor-
relation between risk genotype and disease has been employed
successfully in a diverse range of applications from prenatal
and newborn screening, to carrier testing and medical diagnostics
(1,2). With the advent of genome-wide association studies
(GWAS) and the subsequent identification of well over 150
genetic loci contributing to common complex disease (3), atten-
tion has now turned to whether genetic testing could also be
applied successfully in diagnosing/predicting complex disease,
and in so doing, herald a new era of personalized medicine.

Despite some of the initial enthusiasm regarding the poten-
tial of genetic testing in common complex diseases (4–6),
much of the excitement has been tempered by the realization

that the small effect sizes and the often low to moderate her-
itabilities of common diseases, mean that the predictive utility
of genetic testing is likely to be limited (7,8). A major problem
is that the effect sizes of individual alleles are small, typically
in the range 1.1–2. The predictive value afforded by a single
variant of small effect is therefore likely to be negligible. This
has led to the idea of testing multiple genetic loci simul-
taneously, also called ‘genomic profiling’, which collectively
may result in superior prediction of complex disease (9,10).
At the current time, it is too early to say whether genomic pro-
filing will prove to be clinically useful, but preliminary results
for some complex diseases such as adult macular degeneration
(11) together with simulation studies suggest that genomic
profiling may have at least some utility in identifying high
risk groups in screening programs (12).
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In an ideal scenario, each and every variant contributing to
disease susceptibility as well as its associated relative risk
would be known a priori. However, for the vast majority of
complex disorders, our knowledge of the genetic architecture
underlying disease susceptibility is far from complete. For
most common diseases, only a few risk predisposing variants
of small to moderate effect are known, and together they
explain only a small amount of the total phenotypic variation.
Indeed, most of the heritability is still unaccounted for even in
the case of ‘well-characterized’ diseases for which upwards of
30 predisposing loci have been identified (13). One possibility
is that at least some of this ‘missing heritability’ is attributable
to variants of small effect spread widely across the genome.

In this study, we investigate whether information from
GWAS could be harnessed to improve discrimination of
complex disease affection status. The current paradigm within
genetic diagnostics is to test individuals only at loci known to
affect disease risk—yet the technology exists to genotype an
individual at hundreds of thousands of loci across the
genome. In this regard, large case–control studies that
employ the genome-wide association approach contain infor-
mation on thousands of loci that display nominal levels of sig-
nificance. Although many of these nominal associations will
represent statistical fluctuation and type I error, others will
reflect true loci of small effect that do not meet the stringent
levels required for statistical significance. We investigate
whether this information can be exploited to improve the discri-
minative ability of genetic testing for complex diseases, if an
individual was to be genotyped across their genome. Such an
approach has an inherent appeal, since explicit knowledge of
the identity of loci that contribute to disease risk is unnecessary.

RESULTS

Table 1 displays median area under the curve (AUC) values
for the seven diseases using the count and log odds methods.

The values in plain font are the AUC statistics produced
when nominally associated SNPs are used to discriminate
case–control status for the same disease (i.e. the ‘profiling
conditions’). The values in parenthesis are the AUC statistics
produced in the ‘baseline conditions’, i.e. when nominally
associated bipolar SNPs are used to discriminate case–
control status in the other disease groups (or coronary heart
disease SNPs in the case of bipolar cases). A full set of
results including the range of AUC values produced across
the ten prediction sets is presented in Supplementary Material,
Table S1.

Median AUC values were relatively low across all con-
ditions for bipolar disorder, coronary heart disease, hyperten-
sion, Crohn’s disease, rheumatoid arthritis and type II
diabetes, suggesting that at least for these diseases, genome-
wide scores have little discriminative ability on their own. In
contrast, the median AUC scores for the type I diabetes data
were moderate, often in excess of 0.7. Repeating the analysis
of type I diabetes with SNPs in and around the major histo-
compatibility complex (MHC) excluded from calculation of
the genome-wide score resulted in median AUC values from
0.568 to 0.594, suggesting that SNPs within the MHC were
primarily responsible for the increased levels of discriminatory
accuracy (data not shown).

Interestingly, in the case of bipolar disorder, coronary heart
disease, hypertension and type II diabetes, the genome-wide
scores had most discriminative utility when liberal cut-offs
were used to select SNPs in the training set (i.e. a ¼ 0.8 or
a ¼ 0.5). Indeed for these diseases, there was a trend for the
median AUC to decrease as the threshold for including loci
in calculation of the score became more stringent. In contrast,
for rheumatoid arthritis and type I diabetes, the best discrimi-
nation was achieved using stringent thresholds, although not
when the calculations were repeated with MHC SNPs
excluded when a liberal threshold resulted in better discrimi-
nation (data not shown). We also note that for most diseases

Table 1. Median AUC values for the seven diseases using the count and log odds methods

Threshold BD CHD HT CD RA T1D T2D

Count method
0.8 0.653 (0.527) 0.599 (0.527) 0.602 (0.538) 0.617 (0.554) 0.591 (0.522) 0.620 (0.513) 0.589 (0.520)
0.5 0.664 (0.527) 0.598 (0.533) 0.600 (0.534) 0.622 (0.553) 0.594 (0.528) 0.624 (0.515) 0.593 (0.513)
0.1 0.646 (0.537) 0.570 (0.532) 0.587 (0.534) 0.596 (0.524) 0.592 (0.515) 0.637 (0.515) 0.578 (0.516)
0.05 0.625 (0.537) 0.552 (0.525) 0.589 (0.532) 0.591 (0.521) 0.599 (0.524) 0.673 (0.537) 0.576 (0.529)
0.01 0.570 (0.555) 0.588 (0.508) 0.566 (0.518) 0.561 (0.514) 0.625 (0.522) 0.697 (0.531) 0.556 (0.516)
0.001 0.539 (0.534) 0.590 (0.534) 0.570 (0.521) 0.581 (0.532) 0.645 (0.546) 0.712 (0.544) 0.567 (0.549)
0.0001 0.533 (0.518) 0.551 (0.542) 0.568 (0.526) 0.624 (0.542) 0.647 (0.540) 0.716 (0.540) 0.565 (0.543)
0.00001 0.521 (0.525) 0.553 (0.509) 0.526 (0.536) 0.607 (0.558) 0.642 (0.528) 0.717 (0.540) 0.545 (0.515)
Log odds method
0.8 0.668 (0.529) 0.595 (0.534) 0.610 (0.530) 0.614 (0.541) 0.646 (0.530) 0.721 (0.531) 0.601 (0.518)
0.5 0.668 (0.531) 0.592 (0.531) 0.610 (0.525) 0.618 (0.536) 0.642 (0.534) 0.724 (0.518) 0.601 (0.513)
0.1 0.636 (0.547) 0.580 (0.534) 0.599 (0.523) 0.598 (0.519) 0.652 (0.522) 0.743 (0.515) 0.574 (0.522)
0.05 0.620 (0.537) 0.560 (0.527) 0.596 (0.524) 0.592 (0.521) 0.656 (0.526) 0.747 (0.526) 0.568 (0.523)
0.01 0.567 (0.548) 0.600 (0.509) 0.585 (0.517) 0.574 (0.522) 0.666 (0.530) 0.749 (0.525) 0.569 (0.529)
0.001 0.533 (0.527) 0.590 (0.528) 0.580 (0.519) 0.597 (0.535) 0.661 (0.547) 0.749 (0.545) 0.575 (0.558)
0.0001 0.528 (0.520) 0.545 (0.544) 0.571 (0.534) 0.627 (0.544) 0.658 (0.557) 0.748 (0.534) 0.569 (0.549)
0.00001 0.529 (0.521) 0.556 (0.522) 0.520 (0.531) 0.612 (0.555) 0.655 (0.533) 0.749 (0.533) 0.544 (0.526)

The values in plain font are the median AUC statistics produced when nominally associated SNPs are used to discriminate case–control status for the
same disease. The values in parenthesis are median AUC statistics produced when nominally associated bipolar SNPs are used to discriminate case–
control status in other diseases (or coronary heart disease SNPs for bipolar cases). BD, bipolar disorder; CHD, coronary heart disease; HT, hypertension;
CD, Crohn’s disease; RA, rheumatoid arthritis; T1D, type I diabetes; T2D, type II diabetes.
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there was little difference between using the count method and
the log odds method to generate a genome-wide score,
although the log odds method tended to perform better when
predicting type I diabetes and rheumatoid arthritis (again
when MHC SNPs were excluded from the calculation, the
count and log odds method performed similarly—data not
shown).

It is also revealing to examine how well genome-wide
scores discriminated case–control status in the baseline ana-
lyses. Median AUC values for the baseline analyses tended
to be low across most of the diseases and conditions (i.e.
AUC , 0.55) suggesting that although not a major factor, at
least some of the discriminative utility of the genome-wide
scores might reflect batch effects, genotyping error and/or
population stratification in the control sample. The difference
between the profiling and baseline conditions tended to be
greatest at liberal thresholds (i.e. a ¼ 0.8 or a ¼ 0.5) in the
case of bipolar disorder (0.13–0.14 difference in AUC), cor-
onary heart disease (0.06 difference in AUC), hypertension
(0.07–0.09 difference in AUC) and type 2 diabetes (0.06–
0.07 difference in AUC). Examination of the full range of
possible AUC values across the ten prediction sets, suggested
that liberal thresholds tended to produce a large difference
between profiling and baseline conditions, whereas this differ-
ence was not apparent when strict thresholds were employed
(Supplementary Material, Table S1). In contrast, in the case
of Crohn’s disease, type I diabetes and rheumatoid arthritis
the difference in AUC between the profiling and baseline con-
ditions was most apparent and reliable at stringent thresholds.
Although there was little difference in median AUC between
profiling and baseline conditions for Crohn’s disease, examin-
ation of the ranges of possible AUC values suggested that

this difference was most reliable for stringent thresholds
particularly for the log odds method (Supplementary Material,
Table S1).

Supplementary Material, Table S2 displays median odds
ratios obtained by comparing individuals in the highest and
lowest genetic-score quintiles. The highest median odds ratios
for each disease (i.e. according to the best threshold and allele
scoring method) varied widely from moderately large (�3–4)
for hypertension, type II diabetes and coronary heart disease,
to very large for type I diabetes (more than 10). The pattern
of odds ratios mirrored the AUC results closely. Similar to the
AUC, relaxing the P-value threshold tended to increase the
median odds ratio for bipolar disorder, coronary heart disease,
hypertension, Crohn’s disease and type II diabetes, but
reduced it for rheumatoid arthritis and type I diabetes.

The top row of Table 2 displays median AUC values gener-
ated by genotyping known variants in the prediction set (i.e.
the row labelled ‘Known’). In general, discrimination was
poor for bipolar disorder, coronary heart disease and type II
diabetes, but moderate for Crohn’s disease, rheumatoid arthri-
tis and type I diabetes where AUC values reached more than
0.7. Comparing median AUC scores between Table 1 and
the top row of Table 2 showed that genotyping known variants
resulted in better discrimination of affection status than using
genome-wide scores in the case of Crohn’s disease, rheuma-
toid arthritis, type I diabetes and type II diabetes, but not
bipolar disorder or coronary heart disease.

Table 2 also displays the median AUC values resulting from
adding genome-wide scores to known variant information.
Including genome-wide information resulted in a substantial
gain in median discriminative accuracy relative to just using
known variants in the case of bipolar disorder (þ0.13 AUC),

Table 2. Median AUC values for known variants and known variants plus genome-wide scores combined

Threshold BD CHD CD RA T1D T2D

Count method
Known 0.549 0.572 0.769 0.701 0.784 0.666
0.8 0.657 (0.564) 0.624 (0.579) 0.782 (0.770) 0.716 (0.703) 0.793 (0.784) 0.702 (0.670)
0.5 0.671 (0.566) 0.619 (0.576) 0.780 (0.770) 0.718 (0.704) 0.794 (0.785) 0.670 (0.667)
0.1 0.651 (0.561) 0.593 (0.581) 0.771 (0.770) 0.718 (0.712) 0.787 (0.785) 0.690 (0.667)
0.05 0.656 (0.556) 0.589 (0.580) 0.770 (0.771) 0.715 (0.712) 0.787 (0.785) 0.686 (0.667)
0.01 0.608 (0.584) 0.608 (0.569) 0.770 (0.771) 0.716 (0.708) 0.788 (0.785) 0.669 (0.665)
0.001 0.563 (0.561) 0.597 (0.572) 0.770 (0.770) 0.710 (0.709) 0.786 (0.785) 0.668 (0.665)
0.0001 0.574 (0.561) 0.576 (0.576) 0.771 (0.770) 0.709 (0.709) 0.785 (0.787) 0.669 (0.669)
0.00001 0.561 (0.562) 0.579 (0.578) 0.770 (0.769) 0.703 (0.712) 0.785 (0.786) 0.669 (0.668)
Log odds method
0.8 0.678 (0.572) 0.618 (0.585) 0.779 (0.770) 0.718 (0.708) 0.792 (0.786) 0.707 (0.668)
0.5 0.674 (0.566) 0.617 (0.580) 0.778 (0.770) 0.719 (0.709) 0.793 (0.786) 0.707 (0.666)
0.1 0.641 (0.562) 0.595 (0.583) 0.772 (0.770) 0.718 (0.715) 0.788 (0.785) 0.696 (0.667)
0.05 0.641 (0.562) 0.594 (0.579) 0.769 (0.771) 0.718 (0.715) 0.788 (0.786) 0.687 (0.667)
0.01 0.597 (0.579) 0.620 (0.573) 0.769 (0.772) 0.713 (0.711) 0.788 (0.785) 0.668 (0.666)
0.001 0.560 (0.563) 0.592 (0.576) 0.769 (0.770) 0.712 (0.714) 0.785 (0.784) 0.669 (0.667)
0.0001 0.569 (0.561) 0.577 (0.573) 0.770 (0.772) 0.710 (0.710) 0.784 (0.790) 0.667 (0.671)
0.00001 0.560 (0.562) 0.577 (0.581) 0.770 (0.770) 0.703 (0.713) 0.787 (0.785) 0.671 (0.673)

The first row displays the AUC achieved by using known variants only to discriminate case–control status. The values in the rows below this show the
AUC achieved using known variant information combined with genome-wide scores. The values in plain font are the median AUC statistics produced
when known variants plus nominally associated SNPs are used to discriminate case–control status for the same disease. The values in parenthesis are
median AUC statistics produced when known variants for the disease of interest are combined with genome-wide scores derived from nominally
associated bipolar SNPs (or coronary heart disease SNPs for bipolar cases). BD, bipolar disorder; CHD, coronary heart disease; HT, hypertension;
CD, Crohn’s disease; RA, rheumatoid arthritis; T1D, type I diabetes; T2D, type II diabetes.

Human Molecular Genetics, 2009, Vol. 18, No. 18 3527

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/18/18/3525/555520 by guest on 20 August 2022



coronary heart disease (þ0.05 AUC) and type 2 diabetes
(þ0.04 AUC) and was most apparent when liberal thresholds
were used to select SNPs. In addition, the small increase in
AUC using known variants and genome-wide scores derived
from unrelated bipolar SNPs relative to just using known var-
iants, suggested that the increased discriminative ability in the
profiling conditions was probably not a result of batch effects,
genotyping errors or stratification in the control group. Similar
results were observed when considering the full range of AUC
values across the ten prediction datasets (Supplementary
Material, Table S3). In contrast, the addition of genome-wide
information only produced a small increase in median AUC in
the case of rheumatoid arthritis, Crohn’s disease and type I
diabetes relative to using known variant information.

DISCUSSION

Our results indicate that genome-wide scores constructed via
the count and log odds methods provide a low to moderate
amount of discrimination in affection status, which are cur-
rently unlikely to be of diagnostic utility on their own. Never-
theless, this result is interesting because it implies that even if
the genetic variants contributing to disease risk are unknown,
it is still possible to derive a genetic score that has some dis-
criminative ability using genome-wide information. This fact
is highlighted particularly in the case of hypertension where
there are no known common risk predisposing loci and yet it
is still possible to construct a crude genome-wide measure
that provides a median AUC of 0.61. Both genome-wide
methods performed best in discriminating affection status in
type I diabetes. Type I diabetes is an auto-immune disease
that has a substantial MHC conferred susceptibility com-
ponent. It is likely that the genome-wide scores included a
strong contribution from the many strongly associated SNPs
in the MHC and this increased their discriminative ability.
Repeating the analyses with SNPs from the MHC excluded
confirmed this.

For most diseases, it mattered little in terms of discrimina-
tive accuracy whether genome-wide scores were constructed
using the count method or the log odds procedure. This
result is similar to Janssens et al. (14) who found little differ-
ence in discriminative accuracy when genomic profiling was
performed by counting the number of risk genotypes in each
profile or by calculating the associated disease risks. Our
result implies that for many conditions the differences in
effect sizes of individual loci were too minor to affect the dis-
criminative ability of whole genome profiling. The exceptions
were type I diabetes and to a lesser extent rheumatoid arthritis,
both diseases that have a major MHC contribution. The reason
is that at low P-value thresholds, genome-wide scores for
these diseases primarily reflect genuine risk loci of large
effect from the MHC, which provide good discrimination of
affection status. In contrast, as the P-value threshold
becomes less severe, the genome-wide scores become ‘con-
taminated’ by unassociated SNPs and markers that reflect a
much smaller risk contribution. As a result, the discriminatory
power provided by the MHC SNPs becomes attenuated.

Genotyping known variants resulted in median AUC values
that ranged from 0.549 in the case of bipolar disorder, to a

moderate 0.784 in the case of type I diabetes. Genotyping
known variants usually provided superior discrimination of
affection status compared with genome-wide scores. This is
not surprising since as well as including a small amount of
genuine signal from truly associated loci, the genome-wide
scores also include noise from hundreds or thousands of
other loci scattered throughout the genome that are not associ-
ated (or have only very minimal associations) with the disease.
In contrast, known variants provide ‘clean’ information that is
uncontaminated by this noise. The exceptions were bipolar
disorder and coronary heart disease where the genome-wide
scores did a better job of discriminating between cases and
controls than the known variants did, but in these diseases
only three and one confirmed variant of small effect have
been identified.

The inclusion of genome-wide scores in addition to known
variant information resulted in a small increase in the ability to
discriminate affection status. This result implies that there are
SNPs on the genome-wide chip, or variants tagged by them,
that are associated with disease and are still awaiting discov-
ery/confirmation. Interestingly, the largest increases in dis-
crimination tended to occur at liberal thresholds, suggesting
(consistent with quantitative genetics theory) that there are
many loci of small effect located in the lower part of the
test statistic distribution. This was most apparent in the case
of bipolar disorder where the increase in median AUC pro-
duced by adding the genome-wide scores was most pro-
nounced, and to a smaller extent also in coronary heart
disease and type II diabetes. In contrast, in the case of
Crohn’s disease, rheumatoid arthritis and type I diabetes,
little was gained from adding genome-wide information.
This makes sense intuitively, since many loci have been dis-
covered which influence risk of these conditions. It is likely
that most of the common loci with the largest effects and con-
sequently the greatest discriminatory power have been discov-
ered for these conditions, and the addition of genome-wide
information from such a small sample was unlikely to have
much predictive value. In contrast, only three and one con-
firmed loci have been discovered for bipolar disorder and cor-
onary heart disease, respectively, allowing for the possibility
that many undiscovered loci of moderate effect may still exist.

Although the discrimination of affection status was
improved with the addition of genome-wide information, it
is important to realise that an increase in discriminative accu-
racy does not mean that such a result will be potentially useful
clinically. In this study, the majority of conditions were associ-
ated with small changes in the AUC, which are unlikely to be
diagnostically useful, at this stage. However, the results are
encouraging that the diagnostic value of genome-wide infor-
mation will become increasingly useful in the future as
larger datasets become available (15). The results of GWAS
have demonstrated empirically that the first generation of
such studies were not powered, on the whole, to detect the
majority of variants with effect size equal to those confirmed
in the follow-up replication studies (16). The research commu-
nity has rallied to merge GWAS samples in mega-analyses.
For example, the psychiatric GWAS consortium aims to have
more than 13 000 cases and 13 000 controls for each of five
psychiatric disorders (17). Such large datasets are expected to
increase the number of known validated associated variants.
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However, they are also likely to make the genome-wide
information more useful since SNPs in the lower end of the
P-value distribution will more likely reflect truly associated
loci (15). With larger samples, we might also expect that the
stringency of the threshold for inclusion of SNPs may increase
since the distributions of true- and false-positive associations
will be pulled apart a little further.

We realise that there is likely to be a degree of bias associ-
ated with our results. First, many of the known variants were
discovered using the Wellcome Trust Case Control Consor-
tium (WTCCC) dataset and so are likely to fit the prediction
set better than they would in independent samples. We con-
sider this to be of minor concern since our focus is on the
genome-wide scores, not the discriminative ability of the
known variants. Secondly, it is possible that the known var-
iants and the genome-wide scores did not optimally discrimi-
nate between affected and unaffected individuals because
some of the unselected 1958 British Birth Cohort controls
were in fact affected. This issue should be relatively minor
since most of these diseases have low prevalence and so the
majority of control individuals will be truly unaffected,
although this may be a problem for more common conditions
such as coronary heart disease and type II diabetes where the
discriminative ability of the genetic tests may have been arti-
ficially reduced. This lower discrimination between cases and
controls represents lower effective power and may contribute
to the higher P-value thresholds for inclusion of SNPs in pre-
diction sets for these diseases compared with the low preva-
lence diseases of Crohn’s disease and type I diabetes.

We also acknowledge that our genome-wide scores will not
capture non-additive relationships (i.e. genetic dominance
within loci and epistasis between loci), as well as genetic vari-
ation that is not attributable to or tagged by SNPs on the
genome-wide chip (i.e. possibly including structural variation
and copy number variants). Although, we have used the AUC
measure to quantify the discriminative ability of our genome-
wide scores (as it is an accepted measure of the efficacy of
diagnostic tests), we acknowledge that it is a population
value, which may obscure the fact that some individuals at
high risk may be able to be identified (15,18). Moreover, its
maximum value will depend on the heritability of the
disease. For example, it is theoretically possible to obtain
excellent discrimination (i.e. maximum AUC . 0.95) for
rarer, highly heritable diseases like bipolar disorder, but not
for more common diseases where heritability is likely to be
less than 50% (e.g. coronary heart disease) in which case
only moderate levels of discrimination (e.g. AUC ¼ 0.8)
may be theoretically possible (12). The AUC values presented
in this study are still well below the theoretical maximums
reported in Janssens et al. (12) and suggest that there exists
more heritable information which could be utilized for diag-
nostic purposes. In addition, the inclusion of other information
such as sex, age, and well-known environmental risk factors is
likely to improve discriminative ability even further.

Finally, we acknowledge that some of the discrimination
afforded by genome-wide scores might be due to genotyping
error, batch effects and/or population stratification. We took
several steps to exclude the influence of these potential con-
founders including imposing strict filters on tests of Hardy–
Weinberg equilibrium and missingness. We also included

a baseline condition where we used SNPs from the bipolar
disorder 1958 Birth Cohort comparison to generate a list of
nominally associated SNPs to predict case–control status in
the other diseases. The fact that these conditions only produced
low-AUC values suggests that the discrimination afforded by
genome-wide scores was not due to genotyping confounders,
at least in the control group. However, we acknowledge that
these sources of variation may still be present within the case
samples and inflate the discrimination of case–control status
afforded by the genome-wide scores. We also cannot rule out
the possibility that bipolar SNPs genuinely contribute to the
genetic aetiology of the other diseases. If this was the case
then we would expect the AUC in the baseline bipolar con-
ditions to be inflated, and we would consequently overestimate
the role played by batch effects/genotyping error/population
stratification and conversely underestimate the degree to
which genome-wide scores discriminate case–control status.
Given the low-AUC values for most of the baseline bipolar con-
ditions in Table 1, any genuine effect of bipolar SNPs on the
other diseases is likely to be minor. We also note that this possi-
bility does not detract from our principal conclusion—that
genome-wide scores increase ability to discriminate between
cases and controls.

In conclusion, we have shown how the addition of genome-
wide information using the count and log odds methods results
in a small increase in discriminating case–control status. We
conclude that this small increase in discriminative accuracy
is unlikely to be of diagnostic or predictive utility at the
present time.

MATERIALS AND METHODS

We employed previously published data from the WTCCC
(16). Briefly, the WTCCC is a GWAS involving individuals
with one of seven diseases: bipolar disorder (1868 individ-
uals), coronary heart disease (1926 individuals), Crohn’s
disease (1748 individuals), hypertension (1952 individuals),
rheumatoid arthritis (1860 individuals), type I diabetes (1963
individuals) or type II diabetes (1924 individuals), as well as
a common set of 1480 unselected controls from the 1958
British Birth Cohort. Individuals were genotyped using the
Affymetrix 500K SNP chip. Genotype data were subjected
to rigorous quality control measures in order to remove poor
quality SNPs as well as putatively related individuals and
those of non-European ancestry [for a full description of the
cohorts and the data cleaning procedures applied to the data
see the original WTCCC article (16)]. In addition, in order
to ensure that only the cleanest genotype data contributed to
the calculation of the genome-wide scores, we also excluded
any SNP in Hardy–Weinberg disequilibrium (exact P-value
less than 0.05 in cases or controls), SNPs that differed in
missing rate between cases and controls (P , 0.05), and any
SNP with MAF , 1%. These stringent quality control criteria
were performed in order to increase the likelihood that genetic
differences between cases and controls were due to risk predis-
posing loci rather than batch effects, genotyping error and/or
population stratification.

Each disease sample together with the same set of 1958
British Birth Cohort controls were split into two samples—a
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‘Training Set’ (90% of cases and 90% of controls) and a
‘Prediction Set’ (the remaining 10% of cases and 10% of
controls). Individuals in the Training Set were used to identify
a genome-wide set of SNPs that might potentially predispose
to disease risk. Armitage trend tests were performed across
the genome in the training set using the PLINK program
(19). Loci with P-values lower than a certain threshold on
the Armitage trend test were then selected to discriminate
affection status in the Prediction Set. Allelic tests of associ-
ation were also performed on this subset of loci in the Training
Set individuals in order to estimate their allelic odds ratios.

We investigated two simple ways of combining information
from genome-wide SNP data. In the first method, the total
number of risk alleles an individual carries, both within and
across loci was counted:

N (risk) ¼
X

xi

where xi¼number of risk alleles (¼0, 1, 2) at SNP i (by ‘risk
allele’ we mean the allele which displays greater frequency in
cases than controls in the particular training set). We refer to
this method of combining genome-wide information as the
‘Count method’. As this method essentially assumes that all
risk alleles contribute equally to disease risk, we might
expect this method to perform poorly in diseases where
there are a mixture of different effect sizes (e.g. auto-immune
diseases).

The second method sums together the natural logarithm of
the allelic odds ratio for each risk allele within and across loci:

log (risk) ¼
X

xi � log (ORiÞ

where ORi is the allelic odds ratio as estimated in the Training
Set. We refer to this method as the log odds method. As this
procedure incorporates information about effect size, we
might expect it to perform better than the count method
when risk loci with a mixture of underlying effect sizes con-
tribute to disease. Loci with P-values for association that are
far from significant, add little to the overall log(risk) score,
since log(OR)�OR21!0.

A key question for both methods is whether there is an
optimal threshold for deciding which loci to include in the cal-
culation of the genome-wide score. A threshold that is too
liberal is likely to incorporate noise and hence obscure any
true signal, whereas a threshold that is too strict, risks discard-
ing loci that genuinely contribute to disease risk. As the effect
of the threshold on discriminative ability is likely to vary
across different diseases, we investigated the performance of
eight different thresholds ranging from very liberal to very
strict (i.e. a ¼ 0.8; a ¼ 0.5; a ¼ 0.1; a ¼ 0.05; a ¼ 0.01;
a ¼ 0.001; a ¼ 0.0001; a ¼ 0.00001). At each threshold, we
calculated the odds ratio obtained by comparing individuals
in the highest and lowest genetic-score quintiles.

In diagnostics, the discriminative ability of a diagnostic test is
usually evaluated in regard to two quantities: sensitivity and
specificity. Sensitivity is the probability of a positive-test
result given the individual examined is truly affected by
disease. Specificity is the probability of a negative-test result
given the individual is not affected by disease. A perfect diag-

nostic test has a sensitivity of one (i.e. all individuals who
develop the disease have a positive result) and a specificity of
one (i.e. all individuals who do not have the disease have a nega-
tive result). For composite tests, which involve a number of
different components (e.g. a panel of genetic tests), positive-
and negative-test results are defined by a cut-off value for the
probability of disease. The sensitivity and specificity of the
composite test varies depending upon the cutoff probability
chosen. It is possible to calculate the sensitivity and specificity
for each possible cutoff value and plot the results in a Receiver
Operator Characteristic Curve (20). The AUC quantifies the dis-
criminative ability of the diagnostic test and is equivalent to the
familiar C-statistic from logistic regression. The AUC ranges
from 0.5 indicating a total lack of discrimination to AUC ¼ 1
indicating perfect discrimination. The AUC can be considered
the probability of correctly identifying the diseased subject
from a pair of subjects, one diseased and the other not. For
example, an AUC of 0.95 means that 95% of such pairs are
classified correctly, where as an AUC ¼ 0.50, means that
only half of pairs are classified correctly—no better than
expected by chance (12). As a rough guide, a test with an
AUC�0.8 might be useful in screening individuals who are at
increased risk of disease, whereas much higher values of
AUC are needed to convincingly diagnose a disease before
the onset of observable symptoms (12).

We quantified the discriminative accuracy of the genome-
wide scores that were generated at each of the eight thresholds
in the Prediction Set using the AUC measure. This provided an
indication of the potential utility of the genome-wide score,
which did not rely on explicit knowledge of the risk variants
underlying the conditions. However, the predictive ability of
genome-wide scores might primarily reflect the influence of
known variants of moderate effect (or loci in LD with them),
rather than polygenic loci of smaller effect scattered throughout
the genome. We were therefore interested in whether the
genome-wide scores could improve diagnostic accuracy over
and above testing the known variants for each disease.

We calculated AUC values for each disease using known var-
iants or the best available proxy SNP that was present on the
Affymetrix 500K chip (Supplementary Material, Table S4).
Logistic regression models were fitted to the data assuming an
additive model for each known SNP on the logit scale (i.e.
equivalent to a score of 0, 1 or 2 for each SNP). The only
disease where this was not possible was hypertension, since
no confirmed loci have been associated with common forms
of this disease. We then reconstructed the genome-wide
scores excluding all known variants as well as SNPs 1 Mb
either side of the known variant to ensure there was no contami-
nation from loci in linkage disequilibrium with the known var-
iants. In the case of rheumatoid arthritis and type I diabetes that
are autoimmune diseases, we also excluded all SNPs around the
MHC on chromosome 6 from 25 to 35 Mb (based on Build 35
positions). We then recalculated the AUC measures. To
ensure proper comparability of the discriminative ability of
the known variants and the discriminative ability of the
genome-wide scores, we only performed analyses in individuals
that were genotyped successfully at all known loci (i.e. the loci
listed in Supplementary Material, Table S4).

As successful discrimination between case and control
samples might reflect batch effects, genotyping error and/or
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latent population stratification rather than genuinely associated
SNPs, we repeated all of our analyses using SNPs that were
nominally associated with bipolar disorder to generate
genome-wide scores and predict case–control status for the
other diseases (in order to predict individuals with bipolar dis-
order we used coronary heart disease SNPs to generate the
genome-wide scores). Since we would expect the majority
of SNPs underlying bipolar disease to be different from
those underlying risk of the other diseases, any ability to dis-
criminate between the other disease cases and controls using
bipolar SNPs (i.e. an AUC . 0.5) is likely to reflect the pres-
ence of batch effects, genotyping error and/or population stra-
tification. To facilitate ease of presentation, we refer to these
sets of analyses as the baseline analyses. We refer to analyses
where nominally associated SNPs are used to discriminate
case–control status for the same disease as the profiling con-
ditions.

Finally, in order to get an estimate of the precision of our
results, we used a 10-fold cross validation procedure. For
each of 10 analyses, the training set consisted of 90% of
samples and the prediction set was the remaining 10%. The
10 prediction sets were chosen to be mutually exclusive and
of equal size. From the results of these 10 analyses, the
median and range of AUC were estimated.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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