
Harnessing the mode mixing in optical fiber-tip

cavities

Nina Podoliak1, Hiroki Takahashi2, Matthias Keller2, Peter

Horak1

1 Optoelectronics Research Centre, University of Southampton, Southampton SO17

1BJ, U.K.
2 Department of Physics and Astronomy, University of Sussex, Falmer, BN1 9QH,

U.K.

E-mail: N.Podoliak@soton.ac.uk

Abstract. We present a systematic numerical study of Fabry-Pérot optical cavities

with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can

be fabricated by laser machining of fiber tips and are promising systems for achieving

strong coupling between atomic particles and an optical field as required for quantum

information applications. Using a mode mixing matrix method, we analyze the cavity

optical eigenmodes and corresponding losses depending on a range of cavity-shape

parameters, such as mirror radius of curvature, indentation depth and cavity length.

The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We

investigate the effect of the mode mixing on the coherent atom-cavity coupling as

well as the mode matching between the cavity and a single-mode optical fiber. While

the mode mixing is associated with increased cavity losses, it can also lead to an

enhancement of the local optical field. We demonstrate that around the resonance

between the fundamental and 2nd order Laguerre-Gaussian modes of the cavity it is

possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center

while still maintaining low cavity losses and high cavity-fiber optical coupling.
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1. Motivation

In the ongoing search for novel systems to strongly couple atomic particles to an optical

field, especially in the context of quantum information networks [1, 2, 3, 4] and quantum

sensors [5, 6], fiber-tip cavities have attracted significant attention. Laser machined end

facets of optical fibers with high reflective coatings have been proposed to use as cavity

mirrors and employed in various experiments with atoms and ions [7, 8, 9, 10, 11, 12].

The potential applications of fiber tip cavities have led to several recent publications

on novel laser machining methods [13, 14] and on mode matching between the cavity

mode and the output mode of the optical fiber [15, 16]. In contrast to conventional

spherical mirrors, fiber-tip cavities usually have Gaussian-shaped surfaces, imprinted

by the intensity distribution of the machining laser. Even though for small separations

between the cavity mirrors (much smaller than the radius of curvature) the mirror

shapes can be considered as approximately spherical, for longer cavity lengths this is no

longer appropriate. For long cavities, and thus larger cavity mode field diameters at the

mirrors, the deviation from the spherical shape leads to mode mixing with associated

increase of optical losses [17]. Whereas this is usually an unwanted effect, in this article

we show that mode mixing can be utilized to enhance the coupling strength between the

cavity mode and atomic particles trapped at the cavity center. Eigenmodes of cavities

with Gaussian-shaped mirrors can exhibit strong enhancement of the cavity field in the

cavity center, leading to significantly increased coupling compared to spherical cavities.

In particular, we investigate the effect of mode mixing in cavities with Gaussian-shaped

mirrors on the cavity losses, the coherent coupling strength and the mode matching

efficiency between the cavity and the output mode of a single-mode optical fiber.

The coherent coupling between a particle, such as a cold ion or atom, located at a

coordinate r in an cavity with an optical field mode Ψ(r) is characterized by the coupling

strength

g(r) =

√
πµ2c

~ε0λL
Ψ(r) ≡ g0Ψ(r), (1)

where µ is the transition dipole moment of the particle, λ its transition wavelength,

L is the cavity length, and the cavity mode field Ψ(r) is normalized to satisfy∫
S
d2r|Ψ(r)|2 = 1 at any cross-section. If the particle is located at the center of the

cavity the coupling strength reduces to

g(0) = g0Ψ(0). (2)

To achieve strong atom-cavity coupling, the coherent coupling rate g(0) between the

atomic particle and the cavity must be larger than the strength of any incoherent

processes, such as the spontaneous decay rate Γ of the atomic particle and the loss

rate κ of the cavity field, i. e., the cooperativity parameter defined as

C =
g(0)2

κΓ
(3)
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must be larger than one. One of the methods to increase the coupling strength is

to decrease the cavity length. However, coupling atomic particles to an optical fiber

tip cavity often imposes constrains on the cavity length due to the requirement for

optical side access, delivery of atoms into the fiber cavity and integration of trapping

structures into the cavity. These limitations increase the minimal cavity length and thus

reduce the maximum coupling strength between the atomic particle and the fiber cavity

whilst maintaining low cavity losses. This is in particular true for combining optical

cavities with single ions held in a radio-frequency trap, as the dielectric mirrors forming

the cavity in the close vicinity of the ion trap electrodes can distort the ion trapping

fields [18, 19]. Another method is to increase the field amplitude in the center of the

cavity Ψ(0). Here, we numerically explore the latter method by taking advantage of the

Gaussian profile of the cavity mirrors which gives rise to highly localized cavity modes.

This paper is organized as follows. First, in Sec. 2, we describe our theoretical and

numerical model. In Sec. 3 we present the results of our simulations, in particular on

mode field amplitudes, optical losses and mode mixing in the cavity in Sec. 3.2 and

on output coupling efficiency into optical fiber in Sec. 3.3. Finally we summarize and

conclude in Sec. 4.

2. Modeling

2.1. Cavity geometry

We consider a symmetric optical cavity formed by two identical concave mirrors with a

Gaussian profile as fabricated by laser ablation [7, 13] on the tips of optical fibers, as

sketched in figure 1. The concave profile of the mirror is characterized by two parameters:

the radius of curvature at the center, R, and the indentation depth, D, with the radial

profile depth of the mirror being d(r) = D exp {− r2

2RD
}, where r is the radial distance

from the mirror center. The cavity length is L, the wavelength of the optical mode is λ.

For the simulations in Sec. 3 we choose the following system parameters. The mirror

profile has a radius of curvature R = 300, 500 or 700 µm. The depth D varies from 2 to

10 µm. The fiber external radius is Ra = 100 µm. These parameters correspond to the

mirrors experimentally fabricated by the modified laser oblation method as presented

in Ref. [13]. The cavity length L varies from a few µm up to 2R. The modes are

calculated at λ = 866 nm, the resonant wavelength of Ca+ ions frequently used in ion

trap experiments.

2.2. Modeling method

Here we follow the approach of Ref. [20] to calculate the eigenmodes of the fiber cavity.

Optical mode fields, Ψi(r), of a cavity with a Gaussian profile mirror can be expressed

as a superposition of a given set of basis modes, {ψn(r)},

Ψi(r) =
∑
n

Ci,nψn(r). (4)



Harnessing the mode mixing in optical fiber-tip cavities 4
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D

Figure 1. Schematic of a fiber tip cavity with Gaussian-shaped mirrors. Also indicated

are the cavity and fiber modes (red and blue shading) and their wave fronts (dashed

lines). L is the cavity length, R is the radius of mirror curvature at the center, and D

is the indentation depth.

We will consider only linearly polarized modes, thus the optical field can be described

by a scalar field Ψi(r). Due to the rotational symmetry of the cavity and its close

resemblance to a cavity with spherical mirrors we use the Laguerre-Gaussian modes as

the basis modes. Moreover, we asume cylindrical symmetry of the system and thus

restrict our model to the radially symmetric basis modes

ψ±
n (ρ, ζ) =

√
2

π
Ln(2ρ2) exp {−ρ2 ± i(−ζρ2 + (2n+ 1) tan−1 ζ)} (5)

where ρ = r/w(ζ) and ζ = z/z0 are the dimensionless radial and axial coordinates,

w(ζ) = w0

√
1 + ζ2 is the basis mode radius, w0 is the mode waist (minimal mode

radius), z0 = kw2
0/2 is the Rayleigh length, k = 2π/λ is the wave number, Ln are

Laguerre polynomials and n is the mode order. The index ± marks the propagation

direction. The longitudinal phase exp {±ikz} is not included in the basis mode field

but will be included explicitly.

The change of an optical mode undergoing one round trip through the cavity can be

represented by a mode-mixing operator M . Then finding the cavity eigenmodes reduces

to solving the eigenproblem [17, 20]

γiΨi = MΨi (6)

where the eigenvectors are the cavity modes and the eigenvalues γi define the field

amplitude changes of the corresponding modes acquired per round trip. Thus, the loss

per round trip Li for the mode Ψi can be evaluated as

Li = 1− |γi|2. (7)

The mode-mixing matrix of the cavity is given by

M = exp {2ikL}B+B−, (8)

where the exponent represents the longitudinal phase shift acquired over the cavity

round trip. The matrices B± represent the right- and left-side mirrors of the cavity
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positioned at coordinates z = ±L/2, respectively, and are given by the mode overlap

integrals taken over the finite extent of the mirrors,

B±
n,m =

∫ ρa

0

ψ∓
n ψ

±∗
m exp {−2ik|∆(ρ)|} 2πρ dρ, (9)

where ρa = Ra/w(ζm) with the mirror radiusRa and the axial mirror position ζm = ± L
2z0

.

∆(r) describes the deviation of the mirror profile from a plane surface, which in our case

is

∆(r) = D

(
1− exp {− r2

2RD
}
)
. (10)

The computation of the cavity modes consists of the following steps. First, a

suitable basis {ψn} is found for each cavity length, which is defined by the waist w0

of the fundamental basis mode. As we are mainly interested in the lowest order cavity

mode, the waist w0 is chosen by maximizing the M00 element matrix M calculated using

equations (8) and (9) with the size of the basis set of N modes. The full matrix M is then

calculated for the basis set (5) with this value of w0. We found that simulations with

N > 20 deviate by less than one percent and thus use N = 30 for all our simulations.

The cavity modes are then found by solving the eigenproblem (6), where the eigenvectors

contain the mode composition coefficients Ci,n and the eigenvalues define the mode losses

as per equation (7). Using the Ci,n coefficients, the field profile of any mode at any point

in the cavity can be found using equation (4).

3. Results and discussion

3.1. Cavity optical modes and losses

First we consider the optimal waist of the basis modes w0 as described above for cavities

with different mirror profile parameters. As we will show later, w0 corresponds to the

waist of the fundamental mode apart from cavities with lengths close to some discrete

resonances with increased mode mixing. The optimal waist for cavities with different

radii of curvature and the same depth, and for the same radius of curvature and different

depths are compared in figure 2(a) and (b), respectively. The results are also compared

to the mode waist of a cavity consisting of ideal spherical mirrors with radius of curvature

R = 500 µm. Here we can identify the scaling factor for the waist size as w/R1/2, and for

the cavity length as L/R. With this normalization, the deviation of the scaled waist size

from the mode waist of a spherical cavity depends only on the mirror depth parameter

D but not on R. This dependence can be explained by considering the expansion of the

Gaussian profile of the mirror given by equation (10) in paraxial approximation

∆(r) = D

(
1− exp {− r2

2RD
}
)
≈ r2

2R
− r4

8R2D
, (11)

where the first term describes the spherical profile with the radius of curvature R, and

the second term defines the deviation of the Gaussian shape from the spherical profile.

As the radial coordinate r scales with R1/2, the deviation of the Gaussian mirror from the
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spherical one in the first approximation is inversely proportional to the depth parameter

D.

For further comparison with the spherical cavity we also introduce an effective

radius of curvature for the equivalent spherical mirror with the same mode waist w0

as Reff = L
2

+
2π2w4

0

λ2L
(see figure 3(c) and (d)). The deviations of the mode waist size

and the effective radius of curvature from the ideal spherical mirror case are larger

for smaller D, which is consistent with the fact that for Gaussian-shaped mirrors with

smaller D the profile deviates more strongly from a spherical shape at smaller radius r,

see equation (11). The deviations from the spherical mirror cavity become pronounced

for L/R ≥ 1, i. e., for confocal to concentric cavity geometries. Moreover, we note

that the effective radius of curvature increases with increasing cavity length which, in

principle, allows formation of a stable cavity mode for cavity lengths above 2R.

Similarly, for L < R the cavity mode Ψ0 almost entirely consists of the fundamental

ψ0 mode. However, at L & R, mode mixing with higher order modes occurs, in particular

around certain discrete cavity lengths. The mode composition coefficients of the lowest

order mode Ψ0 of the cavity with R = 500 µm and D = 5 µm are shown in figure 3(a).

The most prominent of these resonances are marked by light blue dashed lines in the

figure. The first three lines mark resonances that involve mainly the fundamental and
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Figure 2. (a) Optimized waist of basis modes w0 for cavities with different radii of

curvature R and the same depth D = 5 µm (note that all three curves coincide). (b) w0

for cavities with R = 500 µm and different depths D. (c) Effective radius of curvature

Reff corresponding to (a). (d) Reff corresponding to (b). The dashed lines in (a) and

(b) are the mode waist of a cavity with spherical mirrors.
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the 2nd, 4th and 6th order modes with a small contribution of the higher order modes,

respectively. Due to the ρ dependence of the mode-mixing matrix (8), only modes with

the same parity mix. Apart from the fundamental order mode that mainly mixes with

the lowest even order modes, the 1st order mode has the strongest resonances with the

3th and 5th order modes, etc.

The loss for the fundamental cavity mode calculated for cavities with different radii

of curvature and the same depth D = 5 µm as a function of the dimensionless cavity

length is plotted in figure 3(b). Whenever mode mixing occurs, the losses increase

drastically, resulting in sharp peaks in the round trip loss. This is due to the increased

mode diameters of the higher order mode that lead to larger clipping losses on the

mirrors. Here we should stress that the mode composition coefficients as well as the loss

of the cavities that have the same depth D coincide in the dimensionless coordinates

and the small differences seen in figure 3(b) are due to the numerical resolution of our

simulations. Mixing between the fundamental and higher order modes also occurs at

the same dimensionless cavity lengths. However, this is not the case for cavities with

different depth parameters. Figure 4 shows the |C00| coefficient of the lowest order

mode and corresponding round trip loss of cavities with the same radius of curvature

R = 500 µm and different depths. The losses increase with increasing cavity length
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Figure 3. (a) Absolute value of the composition coefficients C0n of the fundamental

mode of a cavity with R = 500 µm and D = 5 µm versus cavity length L. (b) Loss per

round trip of the fundamental mode of cavities with different R and the same depth

D = 5 µm versus L (note that all three curves coincide; the differences between curves

are due to numerical resolution). Dashed lines mark regions where strong mode mixing

occurs.



Harnessing the mode mixing in optical fiber-tip cavities 8

0.2       0.4        0.6       0.8         1        1.2        1.4        1.6       1.8         2

L
o
s
s
 p

e
r 

ro
u
n
d
 t
ri
p
,
L

c
lip

|
|

C
0
0

10

10

10

10

10

10

10

10

0

-2-2

-4

-6

-8

-10

-12

-14

1

0.5

(a)

(b)

0.6

0.7

0.8

0.9

R D= 500 µm, = 3 µm
R D= 500 µm, = 5 µm
R D= 500 µm, = 7 µm

1         1.05        1.1         1.15        1.2

Dimensionless cavity length, L R/ Dimensionless cavity length, L/R

(c)

F
in

e
s
s
e
,

×
1
0

4

0

1

2

3

4

5

6

Figure 4. (a) |C00| coefficient of the fundamental mode of a cavity with the same

radius of curvature R = 500 µm and different depths D as a function of dimensionless

cavity length. (b) Corresponding loss per round trip. (c) Cavity finesse comprising the

mode loss of (b) and mirror losses of 10−4 per round trip. The shaded regions between

the dotted black lines are magnified on the right-hand side plots. Vertical solid and

dashed lines mark regions where mixing with the 2nd or higher order modes occurs.

and are in general higher for cavities with smaller depths D. Mode mixing between

the fundamental and the 2nd, 4th and 6th order modes also occurs at shorter cavity

lengths and the distances between resonance peaks are smaller in cavities with larger D

parameters.

The quality of an optical cavity is often characterized by its finesse F which depends

on the total loss consisting of the clipping loss of the optical mode upon reflection from

the mirrors Lclip and the transmission and absorption loss of the mirrors Lmir:

F =
2π

Lclip + Lmir
. (12)

For typical mirrors fabricated on fiber tips, the loss is of the order of 10−4 [17], which
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should allow for a cavity finesse above 6 × 104. As can be seen in figure 3 and 4, the

resonances that involve higher order modes are usually associated with an increase of

losses, which may be a hindrance for a high finesse of this cavity mode [17]. However,

when a resonance occurs mainly with the 2nd order mode, the loss per round trip is still

much lower than the mirror loss (below 10−6 at D = 3 µm, and even lower for larger D),

causing no decrease in the cavity finesse. In the next section we will study the cavity

modes around this resonance in more detail.

3.2. Mode mixing in the cavity

We start by determining the cavity length at which the mode mixing between the

fundamental and the 2nd order mode occurs. At this resonance, the eigenvalues γi of

equation (6) have the same phase for both modes, i. e., the modes become degenerate.

Figure 5(a) shows the phases of the 0th and 2nd order mode eigenvalues of the cavities

characterized by different depth parameters. The corresponding phases of basis modes

ψ0 and ψ2 are also shown in the figure. The factor of exp{2ikL} is omitted in the

phase to remove fast oscillations. As can be seen, mode mixing occurs in the region

where the phases of the basis modes cross. A close examination shows a typical avoided

crossing behavior between eigenmodes around the resonances. In cavities with larger D

parameters, the phases of basis modes cross at shorter cavity lengths, and the separation

between the phases of the eigenmodes is smaller. This explains that the resonances in

these cavities are sharper (see figure 4). Further deviation of the eigenmodes phases

from the 0th order mode line in figure 5(a) is related to the mixing with the 4th order

mode, not shown here. The length of the cavity at which the resonance between the

0th and 2nd order modes occurs, Lr, depending on the cavity depth D is plotted in

figure 5(b).

Next, we investigate the mode profile around the resonance. Here we will

concentrate on a cavity with R = 500 µm, D = 5 µm, for which the resonance occurs

at a cavity length L ≈ 531 µm. We should point out that the effects described below

are not limited to these particular dimensions and are also observed at different cavity

parameters R and D with corresponding scaling of the optical mode sizes and the

resonant cavity length as discussed above. The cross-sections of the lowest order mode

at the center and on the mirrors of the cavity away from the resonance (L = 500 µm)

and at the resonance (L = 531 µm) are compared in figure 6. Away from the resonance,

the mode is approximately Gaussian as it is nearly entirely composed of the fundamental

basis mode ψ0, i. e., |C00| ≈ 1 as seen in figures 3 and 4. In this case the mode waist

at the cavity center is given by the optimized basis mode waist w0, as already indicated

above. At the resonance, mode mixing occurs and the superposition of the coupled

basis modes with the corresponding phases results in more complex mode profiles. Most

importantly, the in-phase combination of the coupled basis modes creates an eigenmode

with a small bright peak in the center of the cavity surrounded by a pale concentric

ring, see figure 6(c).



Harnessing the mode mixing in optical fiber-tip cavities 10

Dimensionless cavity length, L R/

1            1.05            1.1            1.15            1.2

-1.5

-1.8

-1.6

-1.7P
h

a
s
e

 (
ra

d
)

R D= 500 µm, = 3 µm
R D= 500 µm, = 5 µm
R D= 500 µm, = 7 µm

0 mode
th

0 mode
th

2 mode
nd

2 mode
nd

R
e

s
o

n
a

n
t 

c
a

v
it
y
 l
e

n
g

th
,

L
R/ r

Depth, ( m)D �

1               3              5              7              9    10

1.5

1.4

1.3

1.2

1.1

1.0

(b)(a)
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Figure 6. Lowest order mode field amplitude (a) and (c) at the center and (b) and

(d) on the mirror planes for cavities with L = 500 µm (away from the resonance) and

with L = 531 µm (at the resonance), respectively. Cavity parameters are R = 500 µm,

D = 5 µm.

The mode field amplitude at the center of the cavity as a function of the cavity

length in the region around the resonance is shown in figure 7. As the cavity length

approaches the resonant value, the field amplitude of the lowest order mode increases
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Figure 7. Amplitudes of the 0th, 2nd and 4th modes at the center of the cavity with

R = 500 µm, D = 5 µm versus L around the resonance at L = 531 µm. The dashed line

shows the amplitude of the fundamental mode for a spherical cavity with R = 500 µm,

which changes by less than 0.5% over these parameters.

and, at the same time, the amplitude of the 2nd mode drops to zero. The fundamental

cavity mode thus is created by the constructive interference of basis mode ψ0 and ψ2 at

the cavity center, while the 2nd cavity mode is a result of the destructive interference.

The most notable result is that the field amplitude of the 0th cavity mode Ψ0(0) increases

by ≈ 50% at the resonance cavity length in comparison with the equivalent spherical

mirror cavity. Since the parameter g0 is the same for the spherical and Gaussian mirror

cavities for a given cavity length (see equations (1) and (2)), the increase of the field

amplitude Ψ0(0) leads to the proportional increase in the coupling strength g(0) of the

fundamental cavity mode to a particle trapped at the center. For such a cavity with

Gaussian-shaped mirrors, the coupling strength g(0) is thus increased at the resonance

by 50 % relative to the equivalent spherical mirror cavity.

3.3. Coupling between cavity and optical fiber

One of the advantages of fabricating cavity mirrors on fiber tips is the potential to

couple light directly from the fiber into the cavity and vice versa. However, to achieve

a high coupling efficiency the spot size as well as the curvature of the wave front of the

cavity mode at the mirror should match those of the optical fiber output. To determine

the mode overlap we calculate the mode matching integral Q between the fundamental

mode Ψ0(r) of the cavity and the output field F (r) of a single-mode fiber,

Q =

∣∣∫ Ψ0(r)F ∗(r) rdr
∣∣2∫

|Ψ0(r)|2 rdr
∫
|F (r)|2 rdr

. (13)

We assume a Gaussian profile for the transverse mode of the optical fiber with a half-

width mode waist ωf , which is a good approximation for the fundamental mode of a

conventional step index fiber. In our calculations the fiber mode size ωf varies from 3 µm

to 12 µm. The refraction of the optical field on the curved cavity interface is also taken

into account in the fiber output field F (r). Figure 8 shows the mode matching integral
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Figure 9. Mode matching integral between the 0th, 2nd and 4th cavity modes and the

fiber modes with the mode half-width of (a) ωf = 3 µm and (b) ωf = 8 µm calculated

for a range of the cavity lengths around the resonance at L = 531 µm. The dashed lines

plot the mode matching integral for a cavity with spherical mirrors with R = 500 µm.

for a cavity with spherical mirrors as a function of the cavity length for a cavity with

R = 500 µm. Mode matching above 95 % is obtained only at small cavity lengths for

wf = 5 µm. As the cavity length increases, the cavity mode field diameter at the mirrors

also increases and thus the highest mode-matching coefficient is obtained with a fiber

having larger wf . However, the fiber mode wave front is concave after being refracted on

the curved fiber interface while the cavity mode wave front is convex. For larger mode

field diameters this difference in wave front curvature becomes increasingly significant

and leads to the overall decrease of the mode matching at longer cavity lengths. For

example, at a cavity length of ∼ 500 µm a highest mode-matching coefficient around

70% is observed for wf = 8 µm.

For cavities with Gaussian mirrors, we concentrate on a cavity with R = 500 µm,

D = 5 µm and length around 531 µm at which mode mixing occurs. Figure 9 shows the
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mode matching integral calculated for the 0th, 2nd and 4th eigenmodes of the Gaussian

mirror cavity and the fiber modes with ωf = 3 µm and ωf = 8 µm for cavity lengths

around the resonance. The figure also shows the mode-matching of a spherical mirror

cavity. For a fiber with ωf = 3 µm (which is a typical mode size of a single mode fiber

for near infrared wavelengths) the mode matching integral at L ∼ 500 µm is below 25%.

The cavity mode size on the mirrors at this cavity length is ∼ 12 µm, much larger than

the chosen fiber mode size. At the resonance, however, the mode-matching coefficient

increases to almost 40%.

If the fiber has a mode size of 8 µm, the mode-matching coefficient for the

fundamental cavity mode is ∼ 70 % at cavity lengths around 500 µm, in line with

the results for a spherical cavity discussed above. At the resonant cavity length, the

coefficient drops below 50% and continues decreasing as the cavity length increases. At

the same time, the mode-matching coefficient of the 2nd order cavity mode increases

up to the level of the spherical mirror cavity. Similar behavior is observed between the

2nd and 4th order cavity modes at around L = 555 µm where these modes are coupled.

However, despite the mode matching decrease around the resonance at L = 531 µm,

just below the resonance in the range of cavity lengths between 528 and 530 µm the

mode-matching coefficient is still between 70 and 60% for the 0th order mode. At

the same time, the optical field intensity of this mode in the center of the cavity (see

figure 7) is 40 to 50% higher compared to the spherical cavity. For these parameters

it is therefore possible to benefit from the enhanced atom-cavity coupling coefficient

observed in Gaussian-shaped mirror cavities by having a stronger field in the cavity

center while maintaining high cavity-fiber optical coupling.

It is worth noticing that all results presented in this section can easily be generalized

to any Gaussian-shaped cavity with different mirror parameters D and R. The cavity

characteristics can be scaled using the relations defined in Sec. 3.1 and 3.2. If the

indentation depth D is different from the one discussed above, the resonant cavity

length can be found using figure 5. For a cavity with different radius of curvature R,

the corresponding cavity length can be obtained from the dependence L ∼ R, and the

optimal fiber mode size from the dependence ωf ∼ R1/2.

4. Conclusion

To summarize, we presented our detailed investigations of the effects of Gaussian-

shaped mirrors in optical fiber cavities on a range of important parameters. Similarly

to spherical mirrors, we found a scaling law for the cavity mode waist and the effective

radius of curvature which allows us to determine these parameters from the mirror

shape without involved numerical simulations. Using a mode mixing matrix approach,

we calculated the effect of the Gaussian mirror shape on the eigenmodes of the cavity and

the associated cavity losses. We found that the losses of the fundamental cavity mode

increase significantly whenever the cavity mode contains a strong higher order mode

component, which happens at discrete “resonant” cavity lengths, a result similar to Ref.



Harnessing the mode mixing in optical fiber-tip cavities 14

[17]. However, when the resonance occurs mainly with the 2nd order mode, the losses

still remain sufficiently low to allow for high finesse cavities. By choosing an appropriate

cavity length, this mode mixing can be utilized to enhance the coupling between the

cavity mode and atomic particles trapped at the cavity center. We investigated this

effect of the fundamental cavity mode in detail and found a 50% increase of the

cavity coupling through enhancement of the local cavity mode field due to the mode

mixing. Furthermore, using the overlap integral between the cavity mode field and

the fiber output field, we simulated the mode matching between the two modes with

special focus on the lowest cavity eigenmodes around the lowest of these mode mixing

resonances. Perhaps surprisingly, the mode matching to a standard single-mode optical

fiber improves when the fundamental cavity mode has a significant higher order mode

contribution, and it is comparable to the maximum mode matching achievable with

spherical mirror fiber cavities using fibers of optimized mode waists.

In conclusion, the coupling between atomic particles and a cavity with Gaussian

shaped mirrors shows a significant enhancement due to mode mixing without substantial

deterioration of the cavity losses or of the cavity to fiber mode matching. Thus, this effect

constitutes a viable method to significantly enhance the interaction between atomic

particles and the cavity for relatively long cavity lengths. We therefore envisage that

the effect will be particularly useful for the efficient coupling of trapped ions to optical

fibers in the context of hybrid quantum information networks [3, 4].
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