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Abstract

This study examines a biology-inspired approach of using reconfigurable ar-
ticulation to reduce the control requirement for soft robotic arms. We con-
struct a robotic arm by assembling Kresling origami modules that exhibit
predictable bistability. Via switching between their two stable states, these
origami modules can behave either like a flexible joint with low bending stiff-
ness or like a stiff link with high stiffness, without requiring any continuous
power supply. In this way, the robotic arm can exhibit pseudo-linkage kine-
matics with lower control requirements and improved motion accuracy. A
unique advantage of using origami as the robotic arm skeleton is that its
bending stiffness ratio between stable states is directly related to the under-
lying Kresling design. Therefore, we conduct extensive parametric analyses
and experimental validations to identify the optimized Kresling pattern for
articulation. The results indicate that a higher angle ratio, a smaller resting
length at contracted stable state, and a large number of polygon sides can
offer more significant and robust bending stiffness tuning. Based on this in-
sight, we construct a proof-of-concept, tendon-driven robotic arm consisting
of three modules, and show that it can exhibit the desired reconfigurable
articulation behavior. Moreover, the deformations of this manipulator are
consistent with kinematic model predictions, which validate the possibility
of using simple controllers for such compliant robotic systems.
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1. Introduction

The ongoing advances in bio-mimicry, material science, advanced fabrica-
tion, and control theory are enabling us to build genuinely soft robotic arms
(or robotic manipulators) that can collaborate with humans in unstructured
and dynamic task environments [1–5]. These robotic arms are constructed
with soft materials featuring low elastic moduli and high strains before fail-
ure, so that they can passively deform their bodies and conform to different
objects. This flexibility makes them inherently superior to and safer than the
traditional rigid-linked robotic manipulator in human-robot interactions [6–
8], thus opening up many potential applications in minimal-invasive surgeries
[9–12] and assistive healthcare [13–15]. However, the compliant and contin-
uous nature of these soft robotic arms also imposes significant challenges
for effective modeling and control [16–20]. They usually struggle to achieve
a high level of precision regarding their arm configuration and movement
control because their soft bodies are high-dimensional and severely under-
actuated. Furthermore, soft materials can exhibit complicated viscoelastic
properties with substantial uncertainties. As a result, inverse kinematics and
overall structural shape are difficult to predict, making control tasks such as
path planning inaccurate and computationally expensive [19]. We are still far
away from widely and commercially adopting soft robotics in many aspects
of our modern life.

One approach to address the control challenge of soft robotic arms is
to decrease their effective degrees of freedom, and nature provides terrific
examples of this strategy. For example, the octopus can generate a quasi-
articulated structure with its arm, similar to that of a human, in order to
achieve precise point-to-point movement and fetch fast-moving prey within
seconds [21]. The octopus achieves such arm reconfiguration by selectively
stiffening sections of its muscles and leaving other sections flexible. Such
reconfigurable structural articulation allows a drastically simplified control by
reducing the kinematic degrees of freedom from effectively infinite to a finite
amount, thus granting the necessary accuracy to carry out the rapid fetching.
To implement this bio-inspired articulation strategy to a soft robotic arm,
one must devise a method of localized stiffness tuning to create and activate
discrete “joints” at different locations. To this end, researchers have achieved
some success by using jamming-based systems [22, 23], low melting point
materials [24], and shape-memory polymers [25]. However, these methods
are limited due to their complexity and lack of scalability. They also require
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a continuous energy supply to maintain their respective changes in stiffness
[26].

In order to achieve the localized stiffness tuning in soft robotic arms in a
scalable and energy-passive manner, we seek to analyze and exploit the me-
chanics of a bistable and cylindrical-shaped origami known as the Kresling
(Figure 1). Kresling origami originates from the buckling and collapsing de-
formation of a cylindrical shell under compression [27], and it has found many
applications in deployable structures [28–31] and robotics [32, 33]. More im-
portantly, Kresling can fold between two stable equilibria (or stable states)
through a coupled longitudinal and rotational motion, and each stable state
possesses unique mechanical properties according to its folding geometry.
Such bistability enables a method of binary bending stiffness tuning. There-
fore, we can construct a soft robotic arm by serially connecting Kresling cells
(or modules) and create joint(s) at any desired locations bDy switching these
cells between their stable states (Figure 1). This approach is unique in that
the localized stiffness tuning is embodied in the skeleton of the robot arm
itself, and the mechanics are scalable because they are derived primarily from
folding geometry.

The objective of this study is twofold. First, we examine the correlation
between Kresling origami design and the bending stiffness ratio between its
two stable states. A significant and robust change in bending stiffness is the
key to successful articulation in the soft robotic arm. To this end, we employ a
nonlinear bar-hinge model, together with experimental validation, to identify
the optimized Kresling pattern design. Parametric analysis findings indicate
that a higher angle ratio, a smaller resting length at the contracted stable
state, and a large number of polygon sides result in a considerable change
in bending stiffness. In particular, the reorientation of the triangular facets
between stable states plays a crucial role.

Based on these insights, the second objective of this study is to validate
the feasibility of manipulator articulation via multi-stability. To this end, we
construct a proof-of-concept, tendon-driven manipulator consisting of three
Kresling modules, and show that it can exhibit the desired reconfigurable
articulation behavior. Moreover, the deformation of this manipulator is con-
sistent with the kinematic model prediction, which validates the feasibility
of using simple controllers for such compliant robotic systems.

In what follows, section 2 of this paper briefly reviews the design of the
generalized Kresling origami, which is a variation of the classical Kresling
pattern to accommodate the kinematic requirement of robotic manipulation.

3



Figure 1: An overview of the envisioned reconfigurable articulation in a continuous and
compliant robotic arm. a) The current paradigms of the completely rigid or completely soft
robotic arm. b) Different articulations of a reconfigurable arm consisting of four modules.
Each module has a relatively stiff stable state and soft state so that this arm can switch
from being entirely stiff (left) to entirely flexible (right), as well as to many intermediate
configurations with a predictable degree-of-freedom. Notice that this conceptual robotic
arm has 16 (= 24) unique configurations, and this figure only shows a few representative
examples. c) Kresling origami can naturally show the desired switch in bending stiffness
between its stable states. In this study, it will be used as the functional skeleton of the
robotic arm.
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Section 3 details the parametric analysis and experimental testing of the
bending stiffness of a Kresling origami module. Section 4 details the results
of the robotic arm prototype. Finally, section 5 concludes this paper with a
summary and discussion. The results of this study will lay down the founda-
tion for constructing a new family of hybrid soft robotics arms that are both
flexible in operation and precise in motion capability.

2. Design and Construction of Generalized Kresling

A generalized Kresling origami cell consists of a group of triangular facets
connected by two polygon end surfaces (Figure 2). Once assembled, the
Kresling cell takes a twisted polygonal prism shape. The convex creases
(or mountain creases) on its side are open slits by design in order to ensure
flexibility and robustness during folding and bending [33]. A Kresling cell can
settle into an extended stable state (referred to as “state (1)” for simplicity
hereafter) or a contracted stable state (aka. “state (0)”). The bistability
of Kresling origami originates from its non-rigid-foldable nature. That is,
the triangular facets are flat and undeformed at the two stable states, but
must deform during the folding transition between these two states. If these
triangular facets were strictly rigid, the Kresling segment would be unable
to fold.

Four independent design parameters can fully define the crease pattern of
the generalized Kresling cell. They are 1) the number of polygon sides (N),
2) radius (R), 3) resting length at the contracted stable state (L(0)), and 4) an
angle ratio (λ). Here, L(0) is the variable that differentiates the generalized
Kresling origami from conventional Kresling. The traditional Kresling has a
zero length by definition at the contracted state (a property often known as
“flat-foldable”). However, a zero resting length would prevent any kinematic
freedom for bending—an essential requirement for robotic arm applications.
Therefore, we generalized the Kresling design with a non-zero resting length
at the state (0) to provide the freedom for bending so that the Kresling cell
can work like a revolute “joint” in the pseudo-articulated structure. The an-
gle ratio (λ) influences the strength of the Kresling bistability. The Kresling
becomes bistable when 0.5 < λ < 1. Moreover, the higher the angle ratio,
the stronger the bistability becomes in that one needs to apply a higher force
to fold the Kresling between two stable states [33].

Once we prescribe the aforementioned design variables, the triangular
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Figure 2: Design and construction of a paper based Kresling origami cell. In this design
N = 8, λ = 0.8, L(0) = 30 mm, and R = 30 mm (a) The origami crease pattern showing
different design parameters. Notice that the triangular tips should be joined together to
form an end polygon. (b) The completed Kresling cell at two different stable states. Notice
that the mountain folds on the side are open slits by design. (c) The intermediate states of
folding Kresling. Triangular panels are attached to reinforce the facets to improve overall
bistability.
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facets can be defined as

V =
√

4R2 cos2 (γ − λγ) + L2
(0), (1)

M =
√
P 2 + V 2 − 4PR cos (γ − λγ) cos (λγ), (2)

θ = cos−1

(
P 2 + V 2 −M2

2PV

)
, (3)

where γ (= π/2 − ϕ) is the angle between the diagonal and side of the end
polygon, P (= 2R sinϕ) is the end polygon side length, and ϕ = π/N .

To calculate the resting length of the generalized Kresling origami at its
extended stable state (aka. L(1)), we first introduce α—the relative rotation
angle between the top and bottom end polygon—as the independent variable
that describes the folding motion. Moreover, we assume the end polygons
are rigid, and the valley creases do not change their length. In this way, facet
deformation in the Kresling cell during folding can be approximated by the
shortening of mountain creases, and we can calculate the current mountain
crease length (m) as well as the overall Kresling cell length (l) as functions
of α [33, 34]:

l(α) =
√
L2
(0) + 2R2

[
cos(α + 2ϕ)− cos(α(0) + 2ϕ)

]
, (4)

m(α) =
√

2R2(1− cos(α)) + l2. (5)

Based on the equations above, one can find the extended stable state
(1) by solving m(α) = M and fully determine the external geometry of the
generalized Kresling origami cell at its two different stable states.

3. Bending Stiffness tuning of Kresling Modules

We use both numerical modeling and experimental testing to examine
the bending stiffness tuning of Kresling modules between their two stable
states, as well as the correlations between this stiffness tuning and underlying
origami design.
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3.1. Methods
For numerical modeling, we adopt a nonlinear bar-hinge approach that

transforms the Kresling origami into a pin-jointed bar-hinge (or truss-frame)
structure. This approach uses stretchable bar elements to represent the
creases and adds additional torsional spring coefficients to approximate the
crease folding and facet bending stiffnesses (Figure 3(a)). These simplifica-
tions result in a reduced-order model capable of analyzing the folding kine-
matics and principle deformations of Kresling origami without incurring the
expensive computational cost associated with three-dimensional finite ele-
ment simulations [31]. Interested readers can refer to supplemental materials
(Appendix 1) for the fundamentals of this bar-hinge approach, and relevant
literature for further details [35, 36].

The overall stiffness of the equivalent bar-hinge structure has two compo-
nents. One comes from the stretching of the bar elements and the other from
the folding (or bending) between adjacent triangular facets defined by these
bar elements. Therefore, it is crucial to assign appropriate elastic properties
to this bar-hinge system so that it can accurately represent the mechanics
of the Kresling module. In this study, we assume the axial bar rigidity (ks)
and folding/bending torsional stiffness per unit length (kf) are all constant
so that the Kresling nonlinearity originates from the large amplitude defor-
mation during folding only.

There are two different types of torsional spring coefficients in this Kres-
ling bar-hinge system. The first type is the torsional stiffness per unit length
of the origami creases (kfc), which applies to the valley creases on the side
(e.g., 2’-3 and 3’-4 in Figure 3(a)) and the creases between end polygons
and triangular facets (e.g., 2-3 and 2’-3’). The magnitude of this stiffness
is experimentally measured to be 0.047 N/radian on average (see Appendix
2 in supplemental materials for test details). The second type of torsional
stiffness per unit length (kfe) applies to the end polygon (e.g., along 0-1 and
0-2). Its magnitude is assumed to be an order of magnitude higher than the
crease torsional stiffness because they represent the polygon material bend-
ing (kfe = 10kfc). It is worth noting that the torsional spring coefficient of the
mountain creases (e.g., 2-2’ and 3-3’) is zero due to the open slit design.

Besides the torsional spring coefficients, we assume the same axial rigidity
for all bar elements in that ks = 105kfc [35]. However, one exception is the
bar elements along the mountain creases on the Kresling side (e.g., 2-2’ and
3-3’). The axial rigidity of these bar elements is two orders of magnitude
lower due to the slit cut design (aka. ksm = 103kfc).
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Figure 3: The numerical and experimental methods used for testing the bending stiffness
of Kresling origami. (a) An illustration of the nonlinear bar-hinge methods, where solid
lines represent the stretchable bar elements, and small circles represent the pin-joints.
The different bar rigidity and folding/bending stiffness per unit length are highlighted for
clarity. (b, c) The three-point bending tests at two different stable states. Notice the
definition of a Kresling “module” in (c), which is an assembly of two Kresling cells of the
same design but different chirality.
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We also fabricated paper-based prototypes of the Kresling module and
conducted a three-point bending test (Figure 2(b, c)). To fabricate a Kresling
cell, we first create the Kresling geometry in a CAD program and convert
it into a vectorized image file. This file is then sent to a cutting plotter
(Graphtec FCX4000-50ES) that can accurately perforate the crease lines and
cut the Kresling cells out of a large piece of thick paper (Daler-Rowney
Canford 150 gsm). We then manually fold these cells and assemble them
into Kresling modules for testing. It is worth noting that the triangular
facets have reinforcement panels attached inside to increase their bending
stiffness, thus increasing the bistability strength [33].

A single Kresling cell, however, shows twisting in addition to longitudinal
deformation when it folds from one stable state to the other, and this twisting
is undesirable for the robotic manipulation purpose. Therefore, we construct
a Kresling “module” by combining two kresling cells of the same design but
opposite chirality (Figure 3(c)). In this way, the two end polygons of a
module do not rotate with respect to each other. We secure an assembly
of two identical Kresling modules to the universal testing machine (ADMET
eXpert 5601) and fix them at either their extended (1) or contracted (0) stable
state (Figure 3(b, c)). We then apply a 5 mm downward displacement, with
a rate of 0.1 mm/sec, at the center (aka. a three-point bending test). In this
way, the effective bending stiffness of a Kresling module is

KB =
M

φ
=

FL

tan−1 (y/L)
, (6)

where M is the applied moment, φ is the rotation angle, F is the reaction
force, y is the downward displacement, and L is the distance between applied
force and rotation axis of the Kresling module. To characterize the perfor-
mance of Kresling module, we define a “bending stiffness ratio” as the ratio
of bending stiffness at the stiff stable state (1) to that at the soft stable state
(0).

3.2. Results

Figure 4(a) summarizes the external moment-bending angle relationships
of four Kresling module assemblies based on different crease designs. The
results indicate that these origami modules can show a significant change in
bending stiffness as they switch from one stable state to the other. More-
over, this change in bending stiffness is directly related to the underlying
origami design. Overall, the bar-hinge model predictions correlate with the
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Figure 4: Bending stiffness change between the two stable states of Kresling modules
with different designs. (a) Experiment results of the three-point bending tests (solid lines)
and the corresponding numerical predictions (dashed lines). The shaded bands are the
standard deviation of three loading cycles. (b, c) Parametric analysis results of the bending
stiffness ratio and axial snap-through force (in N), respectively.
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Design Test KB at (1) KB at (0) KB Ratio

N = 8, λ = 0.8,
L(0) = 30 mm

Experiment 3.50 ± 0.29 0.80 ± 0.07 4.9

Bar-Hinge 2.79 0.48 5.8

N = 8, λ = 0.8,
L(0) = 15 mm

Experiment 3.59 ± 0.17 0.29 ± 0.01 12.3

Bar-Hinge 3.08 0.27 11.4

N = 4, λ = 0.7,
L(0) = 30 mm

Experiment 4.31 ± 0.09 2.20 ± 0.19 2.0

Bar-Hinge 3.59 1.61 2.2

N = 10, λ = 0.9,
L(0) = 15 mm

Experiment 2.88 ± 0.03 0.25 ± 0.02 11.5

Bar-Hinge 3.35 0.20 16.8

Table 1: Summary of the three-point bending test results on four different Kresling module
samples. The unit of bending stiffness KB is [N m/rad].

experimental results well. However, some discrepancies exist at the begin-
ning stage of these tests. Compared to the model predictions, the experiment
results show a stronger nonlinearity when the external load is small. This
discrepancy probably originates from the fact that the Kresling module pro-
totypes have to be compressed slightly before testing so that their initial
length equals to the theoretically predicted resting length at the two stable
states (aka. L ≈ L(0) or L(1)). This small compression generates some initial
stress in the structure. Regardless, the Kresling test samples show a close-
to-linear behavior as the bending angle θ increases, and the analytical and
experimental results agree well with each other in terms of the slope of these
moment-angle curves (Table 1).

Based on the experimentally validated model, we conduct a parametric
analysis to obtain a comprehensive understanding of how we can tune the
bending stiffness by tailoring the underlying Kresling design (Figure 4(b)).
In this analysis, we keep the Kresling module radius R as a constant at 30
mm because it is usually determined by specific application requirements.
We vary the magnitude of the other three independent design parameters
such that the polygon side number N is 4, 6, 8, or 10, the angle ratio λ is
between 0.7 and 0.9, and the resting length at the contracted stable state
L(0) is between 15 mm and 60 mm. These parameter ranges are chosen
carefully according to the fabrication constraints. The numerical simulation
results conclude that, regardless of the number of polygon sides, maximizing
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Figure 5: The correlation between the facet angle ratio and bending stiffness ratio. Here,
each point represent a unique Kresling origami design used in the parametric analyses in
Figure 4.

the angle ratio λ or minimizing the contracted length L(0) can lead to a
higher bending stiffness ratio. In other words, if the Kresling design possesses
stronger bistability and is closer to the traditional design (aka. with zero
L(0)), it will have a higher bending stiffness ratio. Increasing the base polygon
sides (N) can also increase the bending stiffness ratio. However, this benefit
becomes marginal when N becomes bigger than 8.

Careful inspection of the Kresling origami geometry can reveal the phys-
ical principles that underpin this stiffness change. At the extended stable
state (1), the triangular facets in the Kresling origami align close to paral-
lel to the longitudinal axis of the cylindrical-shaped module, so the overall
bending stiffness is relatively high and dominated by the facet stretching.
However, at the contracted state (0), the triangular facets are orientated
close to perpendicular to the longitudinal axis, so the bending stiffness is
low and dictated by the crease folding. To validate this causality, we define
a “facet angle ratio” as the ratio of dihedral angels between the triangular
facet and base polygon between the two stable states. Figure 5 indicates that
a higher facet angle ratio directly creates a higher bending stiffness ratio.

Finally, it is also essential that the stiffness tuning of the Kresling module
is robust against external disturbances. That is, once the Kresling module
settles into the targeted stable state, it should remain in this state so that
external forces (e.g., from the payloads) will not create any unintentional
switch. To evaluate this robustness, we use the bar-hinge model to calcu-
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late the axial force required to switch the Kresling model from the extended
state to the contracted state (Figure 4(c); it is worth noting that pure bend-
ing would not create any switch between stable states). Interestingly, the
parametric analysis shows that the Kresling designs with a higher bending
stiffness ratio also requires a large axial force to be compressed from state
(1) to (0), thus showing a more robust bistability. Based on the results
discussed above, we choose N = 10, λ = 0.9, and L(0)=15 mm as the opti-
mal Kresling module design to construct a proof-of-concept robotic arm with
reconfigurable articulation (as we detail in the following section).

4. Robotic Arm Articulation

Using the optimal Kresling pattern design, we construct a proof-of-concept
robotic arm using three identical modules (or 6 Kresling cells of alternating
chirality). However, instead of using thick paper like in the bending stiff-
ness study, we use a more robust, layered polymer sheet construction for
the robotic arm. It is worth noting that since the correlation between Kres-
ling design and bending stiffness tuning is dictated by the folding geometry,
insights from the previous section apply regardless of the materials selected.

In the plastic-based Kresling, a layer of 0.25 mm thick polyethylene
terephthalate (PET) sheet serves as the base material for the facets, and an
additional layer of 0.05 mm thick PET sheet is used for the flexible creases.
F9460PC adhesive transfer tape bonds these polymer sheets seamlessly (see
Figure 6 for fabrication details). A three-point bending test shows that the
plastic Kresling module can exhibit a bending stiffness ratio of 8.24 between
its two stable states.

We use three evenly spaced, motor-driven tendons routed through the
Kresling robotic arm skeleton as the driving mechanism. Figure 7 summa-
rizes the arm deformation at different configurations. With three Kresling
modules, the robotic arm can settle into 8 (= 23) different configurations. For
clarity, we label these configurations by (ijk) where i, j, and k can take the
value of either 0 or 1, representing the current stable state of three Kresling
modules from the robotic arm base to the tip, respectively. Obviously, the
(111) configuration is immobile since all Kresling modules are in the stiffer
stable state (1), and the (000) configuration is entirely soft, just like the more
conventional soft manipulators. In this proof-of-concept test, we manually
set the Kresling robotic arm into the desired articulation configuration, and
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Figure 6: Fabrication of the PET plastic-based Kresling cell for constructing the proof-
of-concept, robotic manipulator. (a) The layered construction method involves two plastic
sheets, one adhesive sheet for bonding, and two different cuts. (b) The fabrication se-
quence, from top-left and clockwise, i: bond the 0.25 mm PET sheet and adhesive sheet
and secure them on the cutting plotter; ii: perform the first cut, notice that an end poly-
gon piece is also cut out; iii: attach the 0.05 mm PET sheet; iv: perform the second cut; v:
remove the cut Kresling pattern from the cutting plotter; vi: manually fold the Kresling
and attach it to the end polygon piece. (c) the three-point bending test results.
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Figure 7: Proof-of-concept test of the Kresling robotic arm with reconfigurable articula-
tion. a) Test setup that shows the arm with three identical Kresling modules. The three
motor-driven, evenly-spaced tendons i, ii, and iii are highlighted. We also attached green-
colored markers A, B, C, and D at the endpoints of each Kresling module to facilitate
measurement. b) A composite image that shows the robotic arm deformation—with the
(101) configuration—at different tendon actuation levels. The predicted arm deformations
based on the kinematic model are plotted directly on-top-of the composite image as solid
lines, which show good agreement with the green marker positions. c) Similar composite
images showing the robotic arm deformations and corresponding kinematic predictions at
all other stable configurations. In these composite images, the tendon actuation ∆li = 0,
8n(0), 14n(0), and 20n(0)mm, respectively, where n(0) is the number of Kresling modules
at state (0) corresponding to the current articulation configuration. For example, n(0) = 1
for (101), n(0) = 2 for (001), and n(0) = 3 for (000).
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the methods of automatic reconfiguration will be a subject of a follow-up
study.

The robotic arm deformations for the other six configurations validate the
feasibility of reconfigurable articulation. That is, Kresling modules settled at
the stable state (0) act as joints, while those at state (1) act as links (Figure
7(b,c)). To further illustrate the feasibility of using simple controllers for the
articulated Kresling robotic arm, we attach green-colored markers at the end
points of each Kresling module, take high resolution images of the robotic
arm at different tendon actuation inputs, use image processing software to
accurately measure the arm deformation by tracking the position of markers,
and finally compare these measurements to analytical predictions based on
a kinematic model. In Figure 7(b,c), the kinematic predictions are plotted
directly on top of the corresponding robotic arm images for comparison.

The kinematic model in this study adopts the Denavit-Hartenberg (DH)
convention, which represents the transformation of coordinates from the ref-
erence frame attached to one Kresling module to another [37]. By defining
four different reference frames at the four endpoints of Kresling modules (aka.
A, B, C, and D in Figure 7(b)), we can describe the transformation from a
reference frame A to frame B as:

HA
B =

[
RA

B oA
B

0 1

]
, (7)

where RA
B is a 3×3 matrix representing the orientation (rotational) transfor-

mation from frame A to frame B, and oA
B is a 3×1 column vector representing

the translation from the origin of frame A to frame B (both RA
B and oA

B are
formulated with respect to frame A). A series of such transformations can be
performed to describe the total configuration of the robotic arm shown by

HA
D = HA

BHB
CHC

D, (8)

where the final result is a matrix describing the orientation and position of
reference frame D with respect to frame A.

For Kresling modules at state (0), we employ the Jones kinematic model
that describes the shape of these soft modules as a simple arc with constant
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curvature [38, 39]. Thus, their corresponding transformation matrix is:

H(0) =


cosφ − sinφ cos θ sinφ sin θ κ−1 (sinφ (1− cos θ))
sinφ cosφ cos θ − cosφ sin θ −κ−1 (cosφ (1− cos θ))

0 sin θ cos θ κ−1 sin θ
0 0 0 1

 , (9)

where

φ = tan−1

(√
3

3

lii + liii − 2li
lii − liii

)
, (10)

θ = 2N sin−1

[
(l2i + l2ii + l2iii − lilii − liiliii − liliii)

1/2

3Nd

]
, (11)

κ = 2
(l2i + l2ii + l2iii − lilii − liiliii − liliii)

1/2

d (li + lii + liii)
. (12)

Here, li, lii, and liii are the lengths of three driving tendons in this module,
N = 1, and d (= 32 mm) is the distance between tendon and the longitudinal
axis of Kresling module. In the tests shown in Figure 7(b,c), we use the
motors to pull tendon i and release tendon ii and iii simultaneously so that
∆lii = ∆liii = −0.5∆li.

For Kresling modules at state (1), we simply assume that they are straight
links so that their corresponding transformation matrix is:

H(1) =


1 0 0 0
0 1 0 0
0 0 1 L(1)

0 0 0 1

 , (13)

where L(1) (= 111.6 mm) is the resting length of the Kresling module at the
stable state (1).

Overall, the robotic arm deformations agree well with the kinematic pre-
dictions at different tendon actuation levels. Figure 8 further summarizes
the differences between the experimentally measured marker positions and
the corresponding predictions based on the kinematic model. For most of
the stable configurations, these differences are smaller than 5 mm, which is
small compared to the overall length of the robotic arm (ranging from ap-
proximately 50 mm to 270 mm depending on the articulation setup). These
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Figure 8: The differences between experimentally measured Markers B, C, and D positions
and the corresponding kinematic model prediction.

discrepancies probably originate from fabrication imperfections, gravity, as
well as other small and complex Kresling deformations due to its compliant
nature. On the other hand, the position errors of Markers C and D are more
significant at the (011) and (010) configurations as the robotic arm is dis-
placed further. In these two configurations, the Kresling module at the base
behaves like a joint, which is immediately followed by a link-like module.
As a result, the error from the base joint amplifies and accumulates further
down the chain. Regardless, the linkage-like behavior is still evident, so these
marker positions errors can be easily reduced by implementing feedback con-
trol.
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5. Conclusion

This study proposes to exploit the bistability of Kresling origami to enable
localized bending stiffness tuning and reconfigurable articulation of a modu-
lar robotic arm. By strategically switching the Kresling modules between the
stiff, link-like stable state (1) and soft, joint-like stable state (0), one can sig-
nificantly reduce the effective degrees of freedom of a compliant manipulator
to both simplify the control requirements and increase motion precision. Via
both analytical studies using a nonlinear bar-hinge method and experimen-
tal validations using a customized three-point bending method, we uncover
the correlations between the magnitude of bending stiffness change and the
underlying crease pattern design of the Kresling module. Generally speak-
ing, the Kresling modules with more polygon sides, lower resting length at
contracted stable state, and higher angle ratio can offer a more significant
and robust change in bending stiffness between their two stable states. How-
ever, the module length at stable state (0) needs to be chosen carefully to
ensure sufficient kinematic freedom for bending. In experiments, the paper-
based Kirigami modules achieve an order of magnitude change in bending
stiffness by simply switching between two stable states, without the need for
a continuous power supply to maintain this stiffness change.

We construct a tendon-driven, proof-of-concept robotic arm prototype by
assembling three identical Kresling modules. This robotic arm successfully
validates the concept of reconfigurable articulation by exhibiting linkage-like
deformations at different stable configurations. Moreover, the magnitudes
of these deformations agrees well with analytical predictions according to a
kinematic model. Therefore, the results of this study lay down the foundation
for a reconfigurable robotic arm that can adapt to different manipulating task
requirements with a significantly reduced control effort.
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Appendix 1: Fundamentals of the Bar-Hinge Model

The formulation of this appendix is adapted from a previous study by Liu
and Paulino [35], in which interested readers can find the details. The overall
stiffness of the bar-hinge system has two components. One comes from the
stretching of the bar elements and the other from the folding (or bending)
between adjacent triangular facets defined by these bar elements. Using the
bar element connecting pin-joints 5 and 5’ as an example (Figure 9(b)), one
can define u55′ = [dᵀ

5 dᵀ
5′ ]

ᵀ, where d5 and d5′ are the displacement vector of
the pin joint #5 and #5’, respectively. l55′ is the length of this bar element.
The Green-Lagrangian strain of this bar element is

ε55′ = Bu55′ +
1

2
uᵀ
55′Du55′ , (14)

where

B =
1

l55′
[−e e] , (15)

D =
1

l255′

[
I3×3 −I3×3

−I3×3 I3×3

]
. (16)

Here, e = [1 0 0], and I3×3 is the identity matrix of size 3 × 3. The
tangent stiffness matrix components corresponding to this bar element are

K
(bar)
55′ = ks55′l55′ (Bᵀ + Du55′) (Bᵀ + Du55′)

ᵀ + f55′l55′D, (17)

where ks55′ is the axial rigidity of this bar element, and f55′ is the resultant
longitudinal force. It is worth noting that this stiffness matrix involves both
the linear term and nonlinear terms related to geometry and initial displace-
ment [35]. One can then apply similar formulations to all bar elements and
assemble the global bar stiffness matrix.

Besides bar stretching, folding and bending between the adjacent trian-
gular facet are also crucial sources of stiffness. Here, the creases behave like
hinges with prescribed torsional spring stiffnesses. Using the valley crease
defined by pin-joints #3’ and #4 as an example, one can calculate the di-
hedral angle between the two adjacent facets based on their surface normal
vectors (e.g., m and n in Figure 9(c)) so that

θ = η cos−1

(
m · n
‖m‖‖n‖

)
, (18)
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Figure 9: The kinematic setup of the bar-hinge method. (a) The overall bar-hinge setup
of the Kresling origami cell. (b) Stretching of a bar element. (c) Folding of a crease along
bar 3’-4.

where the surface normal vectors m = r33′ × r43′ , n = r43′ × r44′ , and η is a
sign indicator in that

η =

{
sgn(m · r43′) if m · r43′ 6= 0;

1 if m · r43′ = 0.
(19)

The elements of tangent stiffness matrix corresponding to this dihedral
angle are are defined as

K
(fold)
3′4 = kf3′4l3′4

dθ

dx
⊗ dθ

dx
+m3′4

d2θ

dx2
, (20)

where ⊗ is tensor product, l3′4 is the crease length corresponding to this
dihedral angle, kf3′4 is the torsional spring stiffness per unit length of this
crease, m3′4 is the resultant torque, and x is the position vector of the related
pin-joints at the current configuration.

Appendix 2: Measuring the Crease Torsional Stiffness

We experimentally measure the crease torsional stiffness kfc for the non-
linear bar-and-hinge model by using paper-based, hinge-like samples, each
consisting of two 15.24 cm by 4.45 cm rectangular facets connected by a per-
forated crease (Figure 10). The creases are fabricated on a Cricut MakerTM

cutting plotter. We reinforce the upward-facing facet with a thin plastic sheet
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Figure 10: Experimental setup for measuring the crease torsional spring stiffness per unit
length (kfc). (a) Screenshots for the video footage that shows the course of these tests. (b)
Three sets of force-displacement data that shows consistent close-to-linear behaviors.

to eliminate panel bending and secure the bottom facet to the base plate of an
ADMET eXpertTM 5601 universal testing machine with double-sided tape.
A 3D-printed, wedge-shaped probe is used to distribute compressive forces
evenly across the upward facet (Figure 10(a)).

Before carrying out each test, we place the samples under a slight com-
pressive load to ensure sufficient contact between the probe and sample.
Then, a controlled probe displacement of 5 mm deforms the samples in the
downward vertical direction (Figure 10(a)). We take high-resolution videos
of the deformed samples during these tests and use MATLAB image pro-
cessing to measure the sample deformation. More specifically, we extract the
first and last frames from the videos to represent the starting and ending
configurations, respectively. Then we manually select the crease vertex point
A, a point B on the upward facet, and a point C on the downward facet and
then retrieve their respective x and y coordinates using an image processing
program (Figure 10(a)). In this way, we can calculate the distance between

28



these points and the corresponding dihedral folding angle θ:

θ = cos−1

(
L2
AB + L2

AC − L2
BC

2LACLAB

)
(21)

The measured force-displacement curve is close to linear (Figure 10(b)).
Therefore, we performed a linear regression to the data to estimate the ini-
tial force Fi and final external force Ff , respectively. In this way, the linear
crease torsional spring stiffness per unit length can be estimated as

kfc =
LF cos θi (Ff − Fi)

W‖θi − θf‖
, (22)

where θi and θf are the initial and final dihedral angles, respectively. LF is
the distance from the crease vertex to the applied force, and W is the width
of this crease sample. We fabricated five identical samples and conducted
three load cycles on each sample. The measured crease torsional stiffness per
unit length is kfc = 0.047±0.011 N/rad. The averaged kfc value is used in the
nonlinear bar-hinge model.

K+δKe = (k+δke)l
dθ

d(x + δxe)
⊗ dθ

d(x + δxe)
+(m+δme)

d2θ

d(x + δxe)2
, (23)

m = k(θ − θ0) +ml(t, p, v)

29


	1 Introduction
	2 Design and Construction of Generalized Kresling
	3 Bending Stiffness tuning of Kresling Modules
	3.1 Methods
	3.2 Results

	4 Robotic Arm Articulation
	5 Conclusion
	6 Acknowledgement

